高一:零点问题的解题方法
- 格式:doc
- 大小:466.00 KB
- 文档页数:14
高中数学解决零点问题教案
一、教学目标
1. 理解零点的概念,掌握零点问题的解决方法。
2. 学会利用函数图象、方程、不等式等方法求解零点问题。
3. 培养学生的数学思维和问题解决能力。
二、教学内容
1. 零点的概念及意义。
2. 零点问题的解决方法。
3. 利用函数图象、方程、不等式等方法求解零点问题。
三、教学过程
1. 引入:通过一个简单的例子引入零点概念,让学生了解什么是零点。
2. 授课:介绍零点问题的解决方法,包括利用函数图象、方程、不等式等方法求解零点问题的基本步骤。
3. 案例分析:给学生若干个实际问题,并引导他们分析问题,利用所学知识解决问题。
4. 练习:让学生进行练习,巩固所学内容。
5. 总结:总结本节课所学内容,并强调方法的运用和注意事项。
四、教学要点
1. 熟练掌握零点的概念及其解决方法。
2. 学会运用函数图象、方程、不等式等方法解决零点问题。
3. 注意理解问题的意义,加强实际问题的练习。
五、教学辅助
1. 教材课件
2. 案例练习册
六、教学效果评估
1. 课堂提问:通过提问学生并解答问题来评估学生的理解程度。
2. 练习成绩:通过练习册的成绩来评估学生的掌握程度。
3. 课堂表现:通过观察学生的课堂表现来评估学习态度和参与度。
七、教学反馈
1. 及时对学生的练习册进行批改和评价。
2. 分析学生在学习中的问题和不足,及时进行指导和辅导。
二次函数零点问题题类型方法总结二次函数是高中数学中的重要内容,求其零点是常见的题目类型之一。
本文将对二次函数零点问题的题型和解题方法进行总结。
题型总结在求解二次函数零点的过程中,常见的题型可以归纳为以下几种:1. 一元二次方程的解法:给定一个一元二次方程,要求求解方程的解。
2. 零点的个数:给定一个二次函数,要求计算其零点的个数。
3. 零点的坐标:给定一个二次函数,要求计算其零点的坐标。
4. 求参数:已知一个二次函数的零点和另外一个点的坐标,要求求解该二次函数的参数。
解题方法总结对于不同的题型,可以采用不同的解题方法来求解二次函数零点问题。
以下是常见的解题方法总结:1. 完全平方公式:对于一元二次方程,可以使用完全平方公式进行求解,即 $$x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}$$。
通过代入方程中的系数,即可得到方程的解。
2. 判别式法:通过计算方程的判别式来判断二次函数的零点个数。
若判别式 $$\Delta=b^2-4ac$$ 大于0,则方程有两个不相等的实数根;若判别式等于0,则方程有两个相等的实数根;若判别式小于0,则方程没有实数根。
3. 坐标法:对于求零点坐标的问题,可以通过将二次函数表示为顶点形式,然后根据顶点坐标和其他给定的坐标求解未知参数,进而得到零点的坐标。
4. 求参数法:对于求参数的问题,可以利用已知的零点坐标和另一点的坐标,构建方程组,然后通过解方程组求解未知参数。
总结通过以上的总结,我们可以了解到二次函数零点问题的常见题型和解题方法。
在实际解题中,根据题目要求选择合适的方法,并根据具体情况灵活运用,以获得正确的解答。
希望本文对您理解和解决二次函数零点问题有所帮助。
考点 1零点的求法及零点的个数题型 1:求函数的零点。
[例1]求函数 y x32x2x 2的零点.[ 解题思路 ] 求函数yx 32x 2x 2的零点就是求方程 x 32x 2x 2 0的根[解析]令 x32x2x 2 0,∴ x2 ( x 2) ( x 2) 0∴ (x 2)( x 1)( x 1) 0 ,∴x1或x 1或 x 2即函数yx32x 2x2的零点为 -1 ,1,2。
[ 反思归纳 ]函数的零点不是点,而是函数函数y f ( x) 的图像与x轴交点的横坐标,即零点是一个实数。
题型 2:确定函数零点的个数。
[例2]求函数 f(x)=lnx+2x - 6 的零点个数 .[ 解题思路 ] 求函数 f(x)=lnx+ 2x -6 的零点个数就是求方程 lnx + 2x -6=0 的解的个数[ 解析 ] 方法一:易证 f(x)= lnx+ 2x -6 在定义域(0,)上连续单调递增,又有 f (1) f (4)0,所以函数 f(x)= lnx + 2x-6 只有一个零点。
方法二:求函数 f(x)=lnx +2x- 6 的零点个数即是求方程lnx +2x- 6=0 的解的个数y ln x即求y62x 的交点的个数。
画图可知只有一个。
[ 反思归纳 ]求函数y f ( x)的零点是高考的热点,有两种常用方法:①(代数法)求方程f ( x)0的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数y f ( x)的图像联系起来,并利用函数的性质找出零点。
题型 3:由函数的零点特征确定参数的取值范围[ 例3] (2007 ·广东 ) 已知 a 是实数 , 函数f x2ax22x 3a, 如果函数y f x在区间1,1上有零点,求 a 的取值范围。
[ 解题思路 ] 要求参数 a 的取值范围,就要从函数y f x 在区间1,1 上有零点寻找关于参数 a 的不等式(组),但由于涉及到 a 作为x2的系数,故要对 a 进行讨论[ 解析]若a 0, f ( x)2x 3 ,显然在1,1上没有零点 ,所以a 0.48a 3a8a 224a4, 解得a37令2 a37y f x1,12时,上;①当恰有一个零点在②当f1 f 1a1a50 ,即1 a 5 时,yf x在1,1 上也恰有一个零点。
函数零点问题【高考地位】函数的零点是新课标的新增内容,其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为新课标高考命题的热点.其经常与函数的图像、性质等知识交汇命题,多以选择、填空题的形式考查.类型一 零点或零点存在区间的确定万能模板 内 容使用场景 一般函数类型解题模板第一步 直接根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0; 第二步 若其乘积小于0,则该区间即为存在的零点区间;否则排除其选项即可.例1 函数()43xf x e x =+-的零点所在的区间为( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫⎪⎝⎭ C .13,24⎛⎫ ⎪⎝⎭ D .3,14⎛⎫ ⎪⎝⎭【变式演练1】(2023·全国·高三专题练习)在下列区间中,函数()23xf x x =--的零点所在的区间为( )A .)(01,B .()12,C .()23,D .()34,【变式演练2】(2022·江苏·金沙中学高一阶段练习)函数sin sin()13y x x π=-+-在区间(0,2)π上的零点所在的区间为( )A .(0,)2πB .(,)2ππC .3(,)2ππ D .3(,2)2ππ 【变式演练3】(2022·全国·高一课时练习)已知函数()226xf x x =+-的零点为0x ,不等式06x x ->的最小整数解为k ,则k =( ) A .8B .7C .5D .6类型二 零点的个数的确定方法1:定义法万能模板 内 容使用场景一般函数类型解题模板 第一步 判断函数的单调性;第二步 根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0;若其乘积小于0,则该区间即为存在唯一的零点区间或者直接运用方程的思想计算出其 零点;第三步 得出结论.例2.函数x e x f x3)(+=的零点个数是( ) A .0 B .1 C .2 D .3【变式演练4】(2022·重庆·三模)已知函数()21,02log ,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,则函数()()12g x f x =-的零点个数为( )A .0个B .1个C .2个D .3个【变式演练5】(2023·全国·高三专题练习)已知函数|2|1()2x f x -=,()g x 是定义在R 上的奇函数,且满足(2)(2)g x g x +=-,当[0,2]x ∈时,2()log (1)g x x =+.则当[0,2022]x ∈时,方程()()f x g x =实根的个数为_______.【变式演练6】(2022·北京·高三开学考试)已知函数()x af x a x a+=--,给出下列四个结论: ①存在a ,使得函数()f x 可能没有零点; ②存在a ,使得函数()f x 恰好有1个零点; ③存在a ,使得函数()f x 恰好有2个零点; ④存在a ,使得函数()f x 恰好有3个零点. 其中所有正确结论的序号是______.方法2:数形结合法万能模板 内 容使用场景 一般函数类型解题模板第一步 函数()g x 有零点问题转化为方程()()f x m x =有根的问题; 第二步 在同一直角坐标系中,分别画出函数()y f x =和()y m x =的图像;第三步 观察并判断函数()y f x =和()y m x =的图像的交点个数第四步 由()y f x =和()y m x =图像的交点个数等于函数()0g x =的零点即可得出结论.例3. 方程3()|log |3x x =的解的个数是 ( ) A .3 B .2 C .1 D .0【变式演练7】(2023·全国·高三专题练习)已知函数()f x 是定义在R 上的偶函数,满足()()1f x f x +=-,当[]0,1x ∈时,()πcos 2f x x =,则函数()y f x x =-的零点个数是( ) A .2B .3C .4D .5【变式演练8】(2022·河北省曲阳县第一高级中学高三阶段练习)(多选)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()()()1g x f f x =+,则下列说法正确的是( ) A .当0a >时,()g x 有4个零点 B .当0a >时,()g x 有5个零点 C .当0a <时,()g x 有1个零点D .当0a <时,()g x 有2个零点【变式演练9】(2022·湖南师大附中三模)(已知)已知函数()[)[)1,0,1,21,1,2,3x x f x x x ⎧-∈⎪=⎨-∈⎪-⎩对定义域内任意x ,都有()(2)f x f x =-,若函数()()=-g x f x k 在[0,+∞)上的零点从小到大恰好构成一个等差数列,则k 的可能取值为( ) A .0B .1C 2D 21【高考再现】1.【2021年北京市高考数学试题】已知函数,给出下列四个结论: ①若,则有两个零点; ①,使得有一个零点; ①,使得有三个零点; ①,使得有三个零点. 以上正确结论得序号是_______.2.【2021年天津高考数学试题】设,函数,若在区间()lg 2f x x kx =--0k =()f x 0k ∃<()f x 0k ∃<()f x 0k ∃>()f x a ∈R 22cos(22).()2(1)5,x a x a f x x a x a x a ππ-<⎧=⎨-+++≥⎩()f x (0,)+∞内恰有6个零点,则a 的取值范围是( ) A .B .C .D .3.【2020年高考天津卷9】已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞4.【2020年高考上海卷11】已知a R ∈,若存在定义域为R 的函数()f x 同时满足下列两个条件,①对任意0x R ∈,0()f x 的值为0x 或02x ;②关于x 的方程()f x a =无实数解;则a 的取值范围为 .5. 【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) (A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}6.【2018年全国普通高等学校招生统一考试数学(浙江卷)】已知λ①R ,函数f (x )={x −4,x ≥λx 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________①7.【2017江苏】设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 .8.【2018年全国普通高等学校招生统一考试理科数学(天津卷)】已知a >0,函数f(x)={x 2+2ax +a, x ≤0,−x 2+2ax −2a,x >0.若关于x 的方程f(x)=ax 恰有2个互异的实数解,则a 的取值范围是______________.【反馈练习】1.函数的图象与函数的图象交点横坐标所在的区间可能为( )95112,,424⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭9112,,344⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭11,2,3447⎛⎫⎡⎫⋃ ⎪⎪⎢⎝⎭⎣⎭()()=x f x e ()2ln g x x =-A .B .C .D .【来源】重庆市南开中学2022届高三上学期7月考试数学试题2.(2022·河南·高三阶段练习(文))已知直线l 与曲线ln (01)y x x =<<相切于点00(,)M x y ,若OM l ⊥,则0x 所在的取值区间是( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫ ⎪⎝⎭C .13,24⎛⎫ ⎪⎝⎭D .3,14⎛⎫ ⎪⎝⎭3.(2022·重庆南开中学高三阶段练习)已知函数()()2ln 16f x x x =++-,则下列区间中含()f x 零点的是( )A .()0,1B .()1,2C .()2,3D .()3,44.(2023·全国·高三专题练习)已知()=ln f x x ,()e x g x =,若()()f s g t =,则当s t -取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭5.(2023·全国·高三专题练习)正实数,,a b c 满足422,33,log 4ab a bc c -+=+=+=,则实数,,a b c 之间的大小关系为( ) A .b a c <<B .a b c <<C .a c d <<D .b c a <<6.(2022·江西·南昌二中高三开学考试(理))已知a 是()323652f x x x x =--+-的一个零点,b 是()e 1x g x x =++的一个零点,132log 5c =,则( )A .a c b <<B .a b c <<C .b c a <<D .a c b <<或c b a <<7.(2022·陕西·武功县普集高级中学高三阶段练习(理))定义在R 上的函数()f x 满足()()22f x f x x x =+-,则函数()()21g x xf x x=-的零点个数为( ) A .3B .4C .5D .68.(2022·甘肃·兰州市第五十五中学高三开学考试(文))定义域在R 上的奇函数()f x ,当0x ≥时,12log (1),01()13,1x x f x x x +≤<⎧⎪=⎨⎪--≥⎩,则关于x 的函数()()12g x f x =-的所有零点的和是( )A 21B .122C .122-D .129.(2022·河南·高三开学考试(文))已知定义域为R 的偶函数()f x 的图像是连续不间断的曲线,且()0,1()1,2()2,3()3,4(2)()(1)f x f x f ++=,对任意的1x ,20[]2,x -∈,12x x ≠,()()12120f x f x x x ->-恒成立,则()f x 在区间[]100,100-上的零点个数为( ) A .100B .102C .200D .20210.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( ) A .5或6个B .3或9个C .9或10个D .5或9个11.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( )A .()e 2x y f x -=--B .()e 2x y f x =+C .()e 2x y f x =-D .()e 2x y f x =-+12.(2022·陕西·西安铁一中滨河高级中学高三阶段练习(理))函数()222,0,23,0lnx x x x f x x x x ⎧-+>=⎨--≤⎩的零点个数为( ) A .0B .1C .2D .313.(2022·全国·模拟预测(文))已知函数()2,1,121,11,,1,1xx x f x x x x x x ⎧<-⎪+⎪=--≤≤⎨⎪⎪>-⎩方程()()()()2220f x a f x a a R -++=∈的不等实根个数不可能是( ) A .2个B .3个C .4个D .6个14.(2023·全国·高三专题练习)(多选)已知函数e x y x =+的零点为1x ,ln y x x =+的零点为2x ,则( ) A .120x x +>B .120x x <C .12ln 0xe x +=D .12121x x x x -+<15.(2022·福建·上杭一中高三阶段练习)(多选)已知函数()1,0ln ,0kx x f x x x +≤⎧=⎨>⎩,下列关于函数()1y f f x =+⎡⎤⎣⎦的零点个数判断正确的是( ) A .当0k <时,有1个零点; B .当0k >时,有4个零点; C .无论k 取何值,均有2个零点;D .无论k 取何值,均有4个零点;16.(2022·全国·高二专题练习)设定义域为(0,)+∞的单调函数()f x ,对任意的,()0x ∈+∞,都有[]3()log 4f f x x -=,若0x 是方程()2()3f x f x '-=的一个解,且*0,(1),N x a a a ∈+∈,则实数a =_____. 17.(2022·重庆·高三阶段练习)函数||21()2x f x x ⎛⎫=- ⎪⎝⎭的零点个数是______.18.(2021·福建·福州市第十中学高三开学考试)已知函数24,1()lg 1,1x x x f x x x ⎧-≥⎪=⎨-<⎪⎩,则((9))f f -=__________,()f x 的零点个数为__________个.19.已知函数有两个不同的零点,则实数k 的取值范围是_________. 【来源】河北省衡水市饶阳中学2021届高三5月数学精编试题20.【陕西省榆林市2020-2021学年高三上学期第一次高考模拟测试文科】已知函数2,0()12,02x e x f x x x x ⎧≤⎪=⎨-+->⎪⎩. (1)求斜率为12的曲线()y f x =的切线方程; (2)设()()f x g x m x=-,若()g x 有2个零点,求m 的取值范围.()()112 ()1421x x f x k -=-+-。
高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。
(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。
分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。
高一数学零点问题解题技巧
1. 零点存在性定理:如果函数在区间[a,b]上连续,且f(a)和f(b)异号,即f(a) f(b) < 0,则函数在区间(a,b)内至少存在一个零点。
2. 二分法:如果函数在区间[a,b]上连续,且f(a)和f(b)异号,则可以通过不断将区间[a,b]分成两半,并判断中间点的函数值是大于0还是小于0,来确定零点所在的子区间。
3. 函数零点与方程根的关系:如果函数y=f(x)在x=a处的值为0,即
f(a)=0,则x=a是方程f(x)=0的根。
反之,如果x=a是方程f(x)=0的根,则f(a)=0。
4. 零点存在定理的推论:如果函数在区间[a,b]上连续,且在该区间上函数值从正变负或从负变正,则函数在该区间内至少存在一个零点。
5. 零点定理的应用:在求解方程的根、判断函数的单调性、求函数的极值等方面都有应用。
高中数学导数求零点做题方法及例题《高中数学导数求零点做题方法及例题》导数求零点是高中数学中的一个重要概念和解题方法。
理解和掌握此方法,对于解决各种数学问题以及考试取得优异成绩都非常关键。
本文将介绍导数求零点的做题方法,并通过例题加深理解。
首先,我们回顾一下导数的定义。
在数学中,给定一个函数f(x),若其在某一点x_0处的导数f'(x_0)等于0,那么x_0就被称为函数f(x)的一个零点。
换句话说,零点就是函数曲线与x轴相交的点,即函数取值为零的位置。
那么,如何求解导数为零的点呢?我们可以运用微积分中的导数概念以及一些求根的方法,例如二分法、牛顿迭代法等。
下面以实际例题来说明导数求零点的做题方法。
例题1:已知函数f(x)=x^3-3x^2-9x+5,求其在(-∞,+∞)上的所有零点。
解:首先,我们需要求出导数f'(x)。
对于f(x)=x^3-3x^2-9x+5,求导后可得到f'(x)=3x^2-6x-9。
其次,我们将求得的导数f'(x)令为0,并解方程得到零点。
即3x^2-6x-9=0,两侧同时除以3,化简得到x^2-2x-3=0。
利用求根公式或配方法,解得x=-1,x=3。
因此,函数f(x)=x^3-3x^2-9x+5在(-∞,+∞)上的零点为 x=-1 和 x=3。
通过此例题,我们可以总结出求导数零点的方法:1. 求函数的导数。
2. 将导数等于0,即f'(x)=0,转化为方程。
3. 解方程得到零点。
导数求零点的方法在高中数学中经常出现,它常被应用于曲线的切线问题、函数图像的性质研究等。
掌握此方法不仅可以提升解题效率,还可以更加深刻地理解函数的性质。
总结起来,导数求零点是一种常用的数学方法,通过对函数的导数进行求解得到函数的零点。
掌握了此方法,我们可以在解决各种数学问题时更加轻松而高效。
因此,同学们在学习数学时,应该注重理解和运用导数求零点的做题方法,才能在考试中取得好成绩。
专题13 函数的零点的问题一、题型选讲题型一 函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解. 例1、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)设函数f(x)=⎩⎪⎨⎪⎧e -x -12,x>0,x 3-3mx -2,x ≤0(其中e 为自然对数的底数)有3个不同的零点,则实数m 的取值范围是________.例2、(2018扬州期末)已知函数f(x)=e x ,g(x)=ax +b ,a ,b ∈R . 若对任意实数a ,函数F (x )=f (x )-g (x )在(0,+∞)上总有零点,求实数b 的取值范围.例3、(2019苏州期末)已知函数f(x)=ax 3+bx 2-4a(a ,b ∈R ).(1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求ba 的值;题型二 函数零点个数证明与讨论函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点。
例4、(2017南通一调)已知函数f (x )=ax 2-x -ln x ,a ∈R .(1) 当a =38时,求函数f (x )的最小值;(2) 若-1≤a ≤0,证明:函数f (x )有且只有一个零点; (3) 若函数f (x )有两个零点,求实数a 的取值范围.例5、(2016南通一调)已知函数f (x )=a +x ln x (a ∈R ).(1) 求f (x )的单调区间;(2) 试求f (x )的零点个数,并证明你的结论.题型三 函数零点问题的不等式的证明函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围以及证明零点方面的不等问题时,这些问题时要用到这三者的灵活转化。
谈函数与方程(零点问题)的解题方法课题——解题技能篇从近几年高考试题看,函数的零点、方程的根的问题是高考的热点,题型主要以选择题、填空题为主,难度中等及以上.主要考查转化与化归、数形结合及函数与方程的思想.(1)函数零点的定义对于函数y=f(x) (x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.(2)零点存在性定理(函数零点的判定)若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f (a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应方程f(x)=0在区间(a,b)内至少有一个实数解.也可以说:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.[提醒]此定理只能判断出零点存在,不能确定零点的个数.(3)几个等价关系函数y=f(x)有零点⇔方程f(x)=0有实数根⇔函数y=f(x)的图象与函数y=0(即x轴)有交点.推广:函数y=f(x)-g(x)有零点⇔方程f(x)-g(x)=0有实数根⇔函数y=f(x)-g(x)的图象与y=0(即x轴)有交点.推广的变形:函数y=f(x)-g(x)有零点⇔方程f(x)=g(x)有实数根⇔函数y=f(x)的图象与y=g(x)有交点.1.函数的零点是函数y=f(x)与x轴的交点吗?是否任意函数都有零点?提示:函数的零点不是函数y=f(x)与x轴的交点,而是y=f(x)与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数;并非任意函数都有零点,只有f(x)=0有根的函数y=f(x)才有零点.2.若函数y=f(x)在区间(a,b)内有零点,一定有f(a)·f(b)<0吗?提示:不一定,如图所示,f(a)·f(b)>0.3.若函数y=f(x)在区间(a,b)内,有f(a)·f(b)<0成立,那么y=f(x)在(a,b)内存在唯一的零点吗?提示:不一定,可能有多个.(4)二次函数y =ax 2+bx +c (a >0)的图象与零点的关系Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数 y=ax 2+bx +c (a >0)的图象与x 轴的交点 (x 1,0),(x 2,0)(x 1,0) 无交点 零点个数21对于日后的考试中仍以考查函数的零点、方程的根和两函数图象交点横坐标的等价转化为主要考点,涉及题目的主要考向有:1.函数零点的求解与所在区间的判断;2.判断函数零点个数;3.利用函数的零点求解参数及取值范围.考向一、函数零点的求解与所在区间的判断1.(2015·温州十校联考)设f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( ) A.(0,1) ﻩﻩ ﻩ ﻩ B.(1,2) C.(2,3)ﻩﻩD.(3,4)【解析】法一:∵f (1)=l n 1+1-2=-1<0,f (2)=ln 2>0,∴f(1)·f (2)<0,∵函数f (x )=ln x +x -2的图象是连续的,∴函数f (x )的零点所在的区间是(1,2).法二:函数f(x )的零点所在的区间转化为函数g (x )=ln x ,h(x )=-x +2图象交点的横坐标所在的范围,如图所示,可知f (x )的零点所在的区间为(1,2).【答案】B2.(2015·西安五校联考)函数y =ln(x +1)与y =1x 的图象交点的横坐标所在区间为( )A .(0,1) ﻩﻩﻩﻩﻩB.(1,2)C.(2,3)ﻩﻩﻩﻩD.(3,4)【解析】函数y =ln(x +1)与y =错误!的图象交点的横坐标,即为函数f (x )=ln(x+1)-错误!的零点,∵f(x)在(0,+∞)上为增函数,且f(1)=ln 2-1<0,f(2)=ln3-错误!>0,∴f(x)的零点所在区间为(1,2).【答案】B3.函数f(x)=3x-7+ln x的零点位于区间(n,n+1)(n∈N)内,则n=________.【解析】求函数f(x)=3x-7+lnx的零点,可以大致估算两个相邻自然数的函数值,如f(2)=-1+ln 2,由于ln2<lne=1,所以f(2)<0,f(3)=2+ln3,由于ln 3>1,所以f(3)>0,所以函数f(x)的零点位于区间(2,3)内,故n=2.【答案】24.(2015·长沙模拟)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间()A.(a,b)和(b,c)内ﻩﻩB.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内【解析】本题考查零点的存在性定理.依题意得f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-b)(c-a)>0,因此由零点的存在性定理知f(x)的零点位于区间(a,b)和(b,c)内.【答案】A5.(2014·高考湖北卷)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x,则函数g(x)=f (x)-x+3的零点的集合为()A.{1,3}ﻩﻩﻩﻩﻩB.{-3,-1,1,3}C.{2-错误!,1,3} ﻩﻩﻩD.{-2-错误!,1,3}【解析】令x<0,则-x>0,所以f(x)=-f(-x)=-[(-x)2-3(-x)]=-x2-3x.求函数g(x)=f(x)-x+3的零点等价于求方程f(x)=-3+x的解.当x≥0时,x2-3x=-3+x,解得x1=3,x2=1;当x<0时,-x2-3x=-3+x,解得x3=-2-7.【答案】D确定函数f(x)零点所在区间的方法(1)解方程法:当对应方程f(x)=0易解时,可先解方程,再看解得的根是否落在给定区间上.(2)利用函数零点的存在性定理:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.(3)数形结合法:通过画函数图象,观察图象与x轴在给定区间上是否有交点来判断.1.已知函数f(x)=\f(6,x)-log2x,在下列区间中,包含f(x)零点的区间是( )A.(0,1) B.(1,2) C.(2,4) ﻩ ﻩD.(4,+∞)【解析】因为f (1)=6-log 21=6>0,f (2)=3-l og 22=2>0,f(4)=\f (3,2)-log 24=-错误!<0,所以函数f (x )的零点所在区间为(2,4).【答案】C2.方程log 3x +x =3的根所在的区间为( )A.(0,1) ﻩﻩB.(1,2) C.(2,3) ﻩﻩD.(3,4)【解析】法一:方程log 3x +x=3的根即是函数f(x)=log 3x +x -3的零点,由于f (2)=lo g32+2-3=log 32-1<0,f (3)=log 33+3-3=1>0且函数f (x)在(0,+∞)上为单调增函数.∴函数f(x )的零点即方程log 3x +x=3的根所在区间为(2,3).法二:方程log 3x +x =3的根所在区间即是函数y 1=log 3x与y 2=3-x 交点横坐标所在区间,两函数图象如图所示.由图知方程log 3x +x=3的根所在区间为(2,3).【答案】C3.(2015·武汉调研)设a 1,a 2,a 3均为正数,λ1<λ2<λ3,则函数f(x )=错误!+错误!+错误!的两个零点分别位于区间( )A .(-∞,λ1)和(λ1,λ2)内ﻩB.(λ1,λ2)和(λ2,λ3)内C .(λ2,λ3)和(λ3,+∞)内 ﻩﻩﻩD.(-∞,λ1)和(λ3,+∞)内【解析】本题考查函数与方程.利用零点存在定理求解.当x∈(λ1,λ2)时,函数图象连续,且x →λ1,f(x )→+∞,x →λ2,f (x)→-∞,所以函数f (x )在(λ1,λ2)上一定存在零点;同理当x∈(λ2,λ3)时,函数图象连续,且x→λ2,f(x)→+∞,x→λ3,f (x )→-∞,所以函数f (x )在(λ2,λ3)上一定存在零点,故选B .【答案】B考向二、判断函数零点个数1.已知函数f(x )=错误!满足f (0)=1,且f (0)+2f(-1)=0,那么函数g(x )=f (x )+x的零点个数为________.【解析】∵f(0)=1,∴c =1,又∵f (0)+2f (-1)=0,∴f (-1)=-1-b +1=-12,∴b =12.∴当x >0时,g (x )=2x -2=0有唯一解x=1;当x ≤0时,g (x )=-x 2+错误!x +1,令g (x )=0得x =-错误!或x =2(舍去),综上可知,g(x)=f(x)+x有2个零点.【答案】 22.(2013·高考天津卷)函数f(x)=2x|log0.5x|-1的零点个数为( )A.1ﻩB.2C.3ﻩﻩﻩﻩﻩD.4【解析】由f(x)=2x|log0.5x|-1=0,可得|log0.5x|=错误!x.设g(x)=|log0.5x|,h(x)=错误!x,在同一坐标系下分别画出函数g(x),h(x)的图象,可以发现两个函数图象一定有2个交点,因此函数f(x)有2个零点.【答案】B3.(2015·高考天津卷)已知函数f(x)=错误!函数g(x)=3-f(2-x),则函数y=f(x)-g(x)的零点个数为()A.2ﻩﻩ B.3C.4ﻩﻩ D.5【解析】分别画出函数f(x),g(x)的草图,观察发现有2个交点.【答案】A4.若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点个数是________.【解析】由题意知,f(x)是周期为2的偶函数.在同一坐标系内作出函数y=f(x)及y=log3|x|的图象,如下:观察图象可以发现它们有4个交点,即函数y=f(x)-log3|x|有4个零点.【答案】4判断函数零点个数的方法(1)解方程法:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.1.(2015·淄博期末)函数f(x)=x-ln(x+1)-1的零点个数是________.【解析】函数f(x)=x-ln(x+1)-1的零点个数,即为函数y=ln(x+1)与y=x-1图象的交点个数.在同一坐标系内分别作出函数y=ln(x+1)与y=x-1的图象,如图,由图可知函数f(x)=x-ln(x+1)-1的零点个数是2.【答案】22.若定义在R上的函数f(x)满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=1-x2,函数g(x)=错误!则方程f(x)-g(x)=0在区间[-5,5]上的解的个数为()A.5 ﻩﻩﻩB.7C.8 ﻩﻩﻩﻩD.10【解析】依题意得,函数f(x)是以2为周期的函数,在同一坐标系下画出函数y=f(x)与函数y=g(x)的图象,结合图象得,当x∈[-5,5]时,它们的图象的公共点共有8个,即方程f(x)-g(x)=0在区间[-5,5]上的解的个数为8.【答案】C考向三、利用函数的零点求解参数及取值范围1.(2014·合肥检测)若函数f(x)=ax2-x-1有且仅有一个零点,则实数a的取值为( )A.0ﻩﻩﻩﻩﻩﻩﻩB.-错误!C.0或-\f(1,4)ﻩﻩﻩﻩD.2【解析】当a=0时,函数f(x)=-x-1为一次函数,则-1是函数的零点,即函数仅有一个零点;当a≠0时,函数f(x)=ax2-x-1为二次函数,并且仅有一个零点,则一元二次方程ax2-x-1=0有两个相等实根.∴Δ=1+4a=0,解得a=-\f(1,4).综上,当a=0或a=-错误!时,函数仅有一个零点.【答案】C2.(2014·洛阳模拟)已知方程|x2-a|-x+2=0(a>0)有两个不等的实数根,则实数a的取值范围是( ) A.(0,4) ﻩﻩﻩB.(4,+∞)C.(0,2) ﻩﻩﻩD.(2,+∞)【解析】依题意,知方程|x2-a|=x-2有两个不等的实数根,即函数y=|x2-a|的图象与函数y=x-2的图象有两个不同交点.如图,则\r(a)>2,即a>4.【答案】B3.已知函数f(x)=log2x-错误!x,若实数x0是方程f(x)=0的解,且0<x1<x0,则f(x1)的值为()A.恒为负ﻩﻩB.等于零C.恒为正ﻩﻩﻩﻩD.不小于零【解析】在同一坐标系中作出y=log2x和y=错误!x的图象,由图象知f(x1)<0.【答案】A4.(2014·高考江苏卷)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=错误!.若函数y=f(x)-a在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是________.【解析】当x∈[0,3)时,f(x)=错误!=错误!,由f(x)是周期为3的函数,作出f(x)在[-3,4]上的图象,如图.函数y=f(x)-a在区间[-3,4]上有互不相同的10个零点,即函数y=f(x),x∈[-3,4]与y=a时满足题意.的图象有10个不同交点,在坐标系中作出函数f(x)在一个周期内的图象如图,可知当0<a<12【答案】错误!5.(2015·湖北八校联考)已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=\f([x],x)-a(x≠0)有且仅有3个零点,则a的取值范围是()A.错误!∪错误!ﻩB.错误!∪错误!C.错误!∪错误!ﻩD.错误!∪错误!【解析】当0<x<1时,f(x)=错误!-a=-a;当1≤x<2时,f(x)=错误!-a=错误!-a;当2≤x<3时,f(x)=错误!-a=错误!-a;….f(x)=错误!-a的图象是把y=错误!的图象进行纵向平移而得到的,画出y=错误!的图象,如图所示,通过数形结合可知a∈错误!∪错误!.【答案】A已知函数有零点(方程有根)求参数取值范围常用的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.1.(2015·莱芜一模)已知函数f(x)=错误!则函数f(x)的零点为()A.错误!,0ﻩﻩB.-2,0C.\f(1,2)ﻩﻩﻩﻩﻩD.0【解析】当x≤1时,由f(x)=2x-1=0,解得x=0;当x>1时,由f(x)=1+log2x=0,解得x=错误!,又因为x>1,所以此时方程无解.综上,函数f(x)的零点只有0.【解析】D2.已知函数f(x)=错误!若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是________.【解析】画出f(x)=错误!的图象,如图.由函数g(x)=f(x)-m有3个零点,结合图象得:0<m<1,即m∈(0,1).【答案】(0,1)3.已知函数f(x)=错误!有三个不同的零点,则实数a的取值范围是________.【解析】要使函数f(x)有三个不同的零点,则当x≤0时,方程2x-a=0,即2x=a必有一根,此时0<a≤1;当x>0时,方程x2-3ax+a=0有两个不等实根,即方程x2-3ax+a=0有2个不等正实根,于是错误!∴a >错误!,故错误!<a≤1.【答案】错误!必记结论有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.1.(2015·高考安徽卷)下列函数中,既是偶函数又存在零点的是()A.y=cos xﻩﻩﻩB.y=sin xC.y=lnxﻩﻩﻩD.y=x2+1【解析】y=cosx是偶函数,且存在零点;y=sin x是奇函数;y=ln x既不是奇函数又不是偶函数;y=x2+1是偶函数,但不存在零点.【答案】A2.函数f(x)=2x-错误!-a的一个零点在区间(1,2)内,则实数a的取值范围是( )A.(1,3)ﻩﻩﻩﻩB.(1,2)C.(0,3) ﻩ D.(0,2)【解析】由题意知f(1)·f(2)<0,即a(a-3)<0,∴0<a<3.【答案】C3.(2016·东城期末)函数f(x)=e x+错误!x-2的零点所在的区间是( )A.错误!ﻩﻩB.错误!C.(1,2) ﻩﻩﻩﻩﻩD.(2,3)【解析】∵f错误!=错误!-错误!<错误!-错误!<0,f(1)=e-错误!>0,∴零点在区间错误!上.【答案】B4.(2014·昆明三中、玉溪一中统考)若函数f(x)=3ax+1-2a在区间(-1,1)内存在一个零点,则a的取值范围是( )A.错误!ﻩﻩﻩB.(-∞,-1)∪错误!C.错误!ﻩﻩﻩﻩﻩﻩD.(-∞,-1)【解析】当a=0时,f(x)=1与x轴无交点,不合题意,所以a≠0;函数f(x)=3ax+1-2a在区间(-1,1)内是单调函数,所以f(-1)·f(1)<0,即(5a-1)(a+1)>0,解得a<-1或a>错误!.【答案】B5.f(x)是R上的偶函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x2,则函数y=f(x)-|log5x|的零点个数为( )A.4 B.5 C.8ﻩﻩﻩﻩD.10【解析】由零点的定义可得f(x)=|log5x|,两个函数图象如图,总共有5个交点,所以共有5个零点.【答案】B6.(2014·开封模拟)偶函数f(x)满足f(x-1)=f(x+1),且当x∈[0,1]时,f(x)=-x+1,则关于x的方程f(x)=lg(x+1)在x∈[0,9]上解的个数是()A.7ﻩﻩB.8 C.9ﻩ D.10【解析】依题意得f(x+2)=f(x),所以函数f(x)是以2为周期的函数.在平面直角坐标系中画出函数y=f(x)的图象与y=lg(x+1)的图象(如图所示),观察图象可知,这两个函数的图像在区间[0,9]上的公共点共有9个,因此,当x∈[0,9]时,方程f(x)=lg(x+1)的解的个数是9.【答案】C7.(2014·南宁模拟)已知函数f(x)=lnx+3x-8的零点x0∈[a,b],且b-a=1,a,b∈N*,则a+b=________.【解析】∵f(2)=ln 2+6-8=ln2-2<0,f(3)=ln3+9-8=ln 3+1>0,且函数f(x)=ln x+3x-8在(0,+∞)上为增函数,∴x0∈[2,3],即a=2,b=3.∴a+b=5.【答案】58.已知函数y=f(x)(x∈R)满足f(-x+2)=f(-x),当x∈[-1,1]时,f(x)=|x|,则y=f(x)与y=log7x的交点的个数为________.【解析】因为f(-x+2)=f(-x),所以y=f(x)为周期函数,其周期为2.在同一直角坐标系中,画出函数y=f(x)和y=log7x的图象如图,当x=7时,f(7)=1,log77=1,故y=f(x)与y=log7x共有6个交点.【答案】69.若函数y=f(x)(x∈R) 满足f(x+2)=f(x)且x∈[-1,1]时,f(x)=1-x2;函数g(x)=lg|x|,则函数y=f(x)与y=g(x)的图象在区间[-5,5]内的交点个数共有________个.【解析】函数y=f(x)以2为周期,y=g(x)是偶函数,画出图象可知有8个交点.【答案】810.(2015·高考湖南卷)已知函数f(x)=错误!若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是________.【解析】令φ(x)=x3(x≤a),h(x)=x2(x>a),函数g(x)=f(x)-b有两个零点,即函数y=f(x)的图象与直线y=b有两个交点,结合图象(图略)可得a<0或φ(a)>h(a),即a<0或a3>a2,解得a<0或a>1,故a∈(-∞,0)∪(1,+∞).【答案】(-∞,0)∪(1,+∞)1.(2014·高考山东卷)已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是( )A.错误!ﻩB.错误!C.(1,2) ﻩﻩD.(2,+∞)【解析】先作出函数f(x)=|x-2|+1的图象,如图所示,当直线g(x)=kx与直线AB平行时斜率为1,当直线g(x)=kx过A点时斜率为\f(1,2),故f(x)=g(x)有两个不相等的实根时,k的范围为错误!.【答案】B2.若函数f(x)=a x-x-a(a>0且a≠1)有两个零点,则实数a的取值范围是( )A.(2,+∞)ﻩB.错误!C.(1,+∞)D.(0,1)【解析】函数f(x)=a x-x-a(a>0且a≠1)有两个零点,就是函数y=a x(a>0且a≠1)与函数y=x+a(a>0且a≠1)的图象有两个交点,由图1知,当0<a<1时,两函数的图象只有一个交点,不符合题意;由图2知,当a>1时,因为函数y=a x(a>1)的图象与y轴交于点(0,1),而直线y=x+a与y轴的交点一定在点(0,1)的上方,所以两函数的图象一定有两个交点,所以实数a的取值范围是a>1.【答案】C3.(2015·高考天津卷)已知函数f(x)=错误!函数g(x)=b-f(2-x),其中b∈R.若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是()A.错误!ﻩﻩB.错误!C.错误!ﻩ D.错误!【解析】函数y=f(x)-g(x)恰有4个零点,即方程f(x)-g(x)=0,即b=f(x)+f(2-x)有4个不同的实数根,即直线y=b与函数y=f(x)+f(2-x)的图象有4个不同的交点.又y=f(x)+f(2-x)=错误!作出该函数的图象如图所示,由图可得,当错误!<b<2时,直线y=b与函数y=f(x)+f(2-x)有4个交点.【答案】D4.已知函数f(x)满足f(x)+1=错误!,当x∈[0,1]时,f(x)=x,若在区间(-1,1]内,函数g(x)=f(x)-mx-m 有两个零点,则实数m的取值范围是()A.错误!B.错误!C.错误! D.错误!【解析】当x∈(-1,0]时,x+1∈(0,1].因为函数f(x)+1=错误!,所以f(x)=错误!-1=错误!-1=-错误!.即f(x)=错误!函数g(x)=f(x)-mx-m在区间(-1,1]内有两个零点等价于方程f(x)=m(x+1)在区间(-1,1]内有两个根,令y=m(x+1),在同一坐标系中画出函数y=f(x)和y=m(x+1)的部分图象(图略),可知当m∈错误!时,函数g(x)=f(x)-mx-m有两个零点.【答案】A5.(2014·高考天津卷)已知函数f(x)=错误!若函数y=f(x)-a|x|恰有4个零点,则实数a的取值范围为________.【解析】画出函数f(x)的图象如图所示.函数y=f(x)-a|x|有4个零点,即函数y1=a|x|的图象与函数f(x)的图象有4个交点(根据图象知需a>0).当a=2时,函数f(x)的图象与函数y1=a|x|的图象有3个交点.故a<2.当y1=a|x|(x≤0)与y=|x2+5x+4|相切时,在整个定义域内,f(x)的图象与y1=a|x|的图象有5个交点, 此时,由错误!得x2+(5-a)x+4=0.由Δ=0得(5-a)2-16=0,解得a=1,或a=9(舍去),则当1<a<2时,两个函数图象有4个交点.故实数a的取值范围是1<a<2.【答案】(1,2)考向四、二分法(1)定义:对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.(2)给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:①确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;②求区间(a,b)的中点c;③计算f(c);(ⅰ)若f(c)=0,则c就是函数的零点;(ⅱ)若f (a )·f (c )<0,则令b =c (此时零点x 0∈(a ,c ));(ⅲ)若f(c)·f (b)<0,则令a =c (此时零点x 0∈(c ,b )).④判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a (或b );否则重复②③④.1.(教材习题改编)下列函数图象与x 轴均有交点,其中不能用二分法求图中函数零点的是( )A B C D【解析】由图象可知,选项C所对应零点左右两侧的函数值的符号是相同的,故不能用二分法求解.【解析】C2.(教材习题改编)用二分法求函数y =f (x )在区间(2,4)上的近似解,验证f (2)·f(4)<0,给定精确度ε=0.01,取区间(2,4)的中点x1=2+42=3,计算得f(2)·f (x 1)<0,则此时零点x0所在的区间为( ) A.(2,4) ﻩﻩB.(3,4)C .(2,3) D.(2.5,3)【解析】∵f (2)·f(4)<0,f (2)·f (3)<0,∴f (3)·f (4)>0,∴零点x0所在的区间为(2,3).【解析】C3.用二分法求方程x 2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间[1.4,1.5],则要达到精确度要求至少需要计算的次数是________.【解析】设至少需要计算n 次,由题意知\f(1.5-1.4,2n )<0.001,即2n >100,由26=64,27=128知n =7.【解析】7。