华理复变答案12次作业答案
- 格式:doc
- 大小:395.00 KB
- 文档页数:8
第一章习题35A .010005.0*700N HL I NI HL )p13( 700A/m H 1B 1T 10*20002.0S B 1.14===⇒=====Φ=-页上例题查铸钢曲线当解同的磁通。
也相应增大才能产生相说明增加气隙后,电流)(页上例题查铸钢曲线当同上题解* 94.150.4980.7N HL I 102.0410 100.250700L H L H NIA/m 4101041BH )p13( 700A/m H 1B )1T (B 1.2272001177-00=+⨯==⨯⨯+⨯-⨯=+==⨯=====∑--ππππμ均不变。
、、所以时、)解:当(均增加。
、、所以,,时,,当)解:(均减小。
、、所以;时,当)解:(不变。
、、不变)解:(均减小。
、、均减小,所以、减小,减小增加时,当不变不变时,、、)解:(均不变。
、、不变不变不变)解:(的变化、、分析R I I B B B U 21U f 21f 6 R I I B NHLI H 2B B f 21f S 4.44fNB U 5 R I I B 2NLB N L H I B 21B 2N N S 4.44fNB U 4 R I I B L 2NI H LH I N RU I 3 R I I B R I I HL NI H B S U N f S S4.44fNS 4.44fNB U 2 R I I B B H HL NI R U I 1 R I I B 1.322m 21m 211122mm 22⇒='⇒='='↑=↑⇒='='≈⇒↓'=''='='⇒=≈↑↑⇒=⇒⎪⎩⎪⎨⎧==⇒=⇒⇒Φ⇒Φ=≈⇒⇒⇒⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==μ2916.0212070UI P cos UIcos P 63W P P 1.75270P R I P 1.4Fe Fe 2Fe 2=⨯==⇒==∆⇒∆+⨯=⇒∆+=ϕϕ:解()NS 42702m 7ii77100332221112124241078.4206.0121610B 1610F 1.05AI LH NI A/m 10411041S B H 0A/m 04H 8.0075.00.06S B 350A/m H 106.00.06S B )S1(S3002m;.00.2cm 0.10.1d d 075m .0103025S20.85m;2520-80L2 06m .0103020S12m;2080270L1 1.5⨯≈⨯⨯⨯==≈⇒=⨯=⨯=Φ===⇒==Φ==⇒==Φ====+=+=⨯⨯==+==⨯⨯==-+⨯=∑---ππππμμ吸力:以小的计算气隙:衔铁:铁心::忽略气息的边缘效应解第二章习题、能量损耗增加。
华理复变答案12次作业答案华东理⼯⼤学复变函数与积分变换作业(第1册)班级____________学号_____________姓名_____________任课教师_____________第⼀次作业教学内容:1.1复数及其运算 1.2平⾯点集的⼀般概念1.填空题:(1)35arctan 2,234,2523,25,23-+-πk i (2)3arctan 2,10,31,3,1-+-πk i(3))31(21i +- (4) 13,1=-=y x 。
2.将下列复数化成三⾓表⽰式和指数表⽰式。
(1)31i +; 解:32)3sin 3(cos 2)2321(231πππi e i i i =+=+=+ (2))0(sin cos 1π≤≤+-i 解:)22(2sin 2)]22sin()22[cos(2sin 2sin cos 1?π??π?π-=-+-=+-i e i i(3)32)3sin 3(cos )5sin 5(cos φφφφi i -+. 解:φφφφφφφφφ199********)/()()3sin 3(cos )5sin 5(cos i i i i i e ee e e i i ===-+-- φε19sin 19cos i +3.求复数11+-z z 的实部与虚部解:2|1|)1)(1()1)(1()1)(1(11++-=+++-=+-=z z z z z z z z z w 222|1|Im 2|1|1|1|)1(+++-=+--+=z z i z z z z z z z z 所以,2|1|1Re +-=z z z w ,2|1|Im 2Im +=z z w 4. 求⽅程083=+z 的所有的根. 解:.2,1,0,2)8()21(331==-=+k e z k i π即原⽅程有如下三个解:31,2,31i i --+5. 若 321z z z ==且0321=++z z z ,证明:以321,,z z z 为顶点的三⾓形是正三⾓形. 证明:记a z =||1,则232232223221|||(|2||z z z z z z z --+=+= 得22323||a z z =-221|)||(|z z -=,同样,22212123||a z z z z =-=- 所以.||||212321z z z z z z -=-=-6. 设2,1z z 是两个复数,试证明.212z z ++221z z -22122()z z =+. 并说明此等式的⼏何意义.证明:左式=(21z z +)(21z z +)+(21z z +)(21z z -)=(21z z +)(21z z +)+(21z z +)(21z z -) =2121221121212211z z z z z z z z z z z z z z z z ?-?-?+?+?+?+?+? =2(2221z z z z ?+?)=2(2221z z +)7.求下列各式的值: (1)5)3(i -; 解:5)3(i -=6556532)2()223(2ππi i e e i--==??- =i i 16316)65sin()65cos(32--=???-+-ππ(2)31)1(i -;解: 31)1(i -.2,1,0,2)2()221(23)24(631431===-=+--k e e i k i i πππ可知31)1(i -的3个值分别是)12sin 12(cos 22626πππi e i -=-;)127sin 127(cos 226276πππi e i +=)45sin 45(cos 226456πππi e i +=(3)求61-解:61-=.5,4,3,2,1,0,)(6/)21(612-=++k e e k i k i πππ可知61-的6个值分别是223,1,2236526i ei e i e i i i +-==+=πππ 223,,2234112367i e i e i e i i i -=-=--=πππ(4) ()()()()1001001001005050511+i +1-i =cos +isin +cos -isin 4444 =2cos 25+isin 25+2cos 25-isin 25 =-2ππππππππ8.化简2)1()1(--+n ni i 解:原式1222211)1(+-=-=??? ??-+-=n i n n i ie i i i π9. 设bi a iyx +=-+iy x ,其中y x b a ,,,均为实数,证明: 122=+b a解:先求出b a ,的y x ,表达式,因为bi a yx ixy y x iy x iy x +=++-=+-+=-+222222iy x iy x iy x ))(()(⽐较系数得b yx xy a y x y x =+=+-2222222, 于是1)2()(2222222222=+++-=+y x xy y x y x b a 10. 设ω是1的n 次根,且1≠ω,证明:ω满⾜⽅程:0112=++++-n zz z 解:因1=n ω,即01=—n ω故01)(1-(12=++++-)n ωωωω由于1≠ω,故01(12=++++-)n ωωω,即0112=++++-n z z z第⼆次作业教学内容:1.2 平⾯点集的⼀般概念 1.3复变函数1. 填空题(1)连接点i +1与i 41--的直线断的参数⽅程为10)52(1≤≤--++=t t i i z(2)以原点为中⼼,焦点在实轴上,长轴为a ,短轴为b 的椭圆的参数⽅程为π20sin cos ≤≤+=t t ib t a z2.指出下列各题中点z 的轨迹,并作图. (1)12≥-i z ;中⼼在i 2-半径为1的圆周及其外部。
化学反应工程期中自测试卷( 1 )科 目:化学反应工程 适用对象:化学工程与工艺本科2004-7-6I.填空题1.(1)_______是化学反应工程的基础。
2.(1)不论是设计、放大或控制,都需要对研究对象作出定量的描述,也就要用数学式来表达个参数间的关系,简称_______。
3.(2)一级连串反应AS P在平推流反应器中,则目的产物P 的最大浓度=max ,P C _______、=opt t ______。
4.(1)着眼反应组分K 的转化率的定义式为_______。
5.(2)一级连串反应AS P在间歇式全混流反应器中,则目的产物P 的最大浓度=max ,P C _______、=opt t ______。
6.(1)化学反应速率式为βαB AC A C C K r =-,如用浓度表示的速率常数为C K ,用压力表示的速率常数P K ,则C K =_______P K 。
7.(2)理想反应器是指_______、_______。
8.(2)具有良好搅拌装置的釜式反应器按_______反应器处理,而管径小,管子较长和流速较大的管式反应器按_______反应器处理。
9.(2)全混流反应器稳定的定常态操作点的判据为_______、_______。
10.(1)平推流反应器的返混为_______。
II.单项选择 1.(2)气相反应CO + 3H 2CH 4 + H 2O 进料时无惰性气体,CO 与2H 以1∶2摩尔比进料,则膨胀因子CO δ=_______。
A. -2B. -1C. 1D. 22.(2)一级连串反应AS P在间歇式反应器中,则目的产物P 的最大浓度=max ,P C _______。
A. 122)(210K K KA K K C - B. 22/1120]1)/[(+K K C A C. 122)(120K K KA K K C - D. 22/1210]1)/[(+K K C A3.(2)串联反应A → P (目的)→R + S ,目的产物P 与副产物S 的选择性P S =_______。
第 12 章 (之1)(总第67次)教学内容: §12.1二重积分概念与性质 **1.解下列各题:(1) 若D 是以)1,0(),0,1(),0,0(===B A O 为顶点的三角形区域,利用二重积分的几何意义可得到y x y x Dd d )1(⎰⎰--=___________.答:61(2) 设f (t )为连续函数,则由平面 z =0,柱面122=+y x 和曲面)(2xy f z= 所围立体的体积可用二重积分表示为___________________________________________. 答:⎰⎰≤+1222d d )(y x y x xy f .(3) 设⎰⎰≤+++=122sin cos 1d d y x y x yx I 则I 满足 ( ) (A) 232≤≤I (B) 32≤≤I(C) 21≤≤I D (D)01≤≤-I答:(A).(4) 设σd y x I D⎰⎰+=)ln(1,σd y x I D⎰⎰+=22)(及σd y x I D⎰⎰+=)(3其中D 是由直线 x =0,y =0,21=+y x 及1=+y x 所围成的区域,则I 1,I 2,I 3的大小顺序为 ( )(A) I 3<I 2<I 1; (B) I 1<I 2<I 3; (C) I 1<I 3<I 2; (D) I 3<I 1<I 2.答:(B ).(5) 设),0(:222>≤+a a y x D 当________=a 时,π=--⎰⎰dxdy y x a D222.(A ) 1; (B) 323; (C) 343; (D) 321 .答:(B ).**2.解下列问题:(1) 利用二重积分性质,比较二重积分的大小:⎰⎰+Dy x e σd 22与⎰⎰++Dy x σd )1(22,其 中,D 为任一有界闭区间.解:令 22y x u +=,且()()u e u f u +-=1,则有()1'-=ue uf .∵0≥u ,∴ ()0',01≥≥-u f e u即, ()u f 是增函数.∵ ()0100=-=e f , ∴ ()()00≥-f u f 即 ()01≥+-u e u,∴22122y x e y x++≥+, 因此()⎰⎰⎰⎰++≥+DDy x d y x d e σσ22122.(2) 利用二重积分性质,估计二重积分的值:⎰⎰++Dy x σd )1(22,}144169),{(22≤+=y x y x D . 解:先求出目标函数()1,22++=y x y x f 在区域()⎭⎬⎫⎩⎨⎧≤+=1916,22y x y x D 上的最小值和最大值,由于区域D 上的点到坐标原点()0,0=O 的距离为22y x +,∴4040222=+≤+≤y x ,∴()17,1≤≤y x f ,又因为该区域的面积为 ππ1243=⨯⨯=D ,∴ ()ππσπ2041217,12=⨯≤≤⎰⎰Dd y x f .***3.试利用积分值与积分变量名称无关,解下列问题: (1)⎰⎰≤+-1322d d )sin(y x y x y x ;解:因为I x y x y y x y x I x y y x -=-=-=⎰⎰⎰⎰≤+≤+13132222d d )sin(d d )sin(,所以0=I .(2) ⎰⎰≤≤++1,122d d e e e e y x yx yx y x b a . 解:⎰⎰⎰⎰≤≤≤≤++=++=1,11,12222d d e e e e d d e e e e x y x y xy y x yx yx x y b a y x b a I , ⎥⎥⎦⎤⎢⎢⎣⎡+++++=⎰⎰⎰⎰≤≤≤≤1,11,12222d d e e e e d d e e e e 21x y xy xy y x y x y x x y b a y x b a I )(2d d 2d d e e e )(e )(211,11,12222b a y x b a y x b a b a y x y x y x y x +=+=++++=⎰⎰⎰⎰≤≤≤≤.***4. 设),(y x f 是连续函数,试利用积分中值定理求极限⎰⎰≤+→222d ),(1lim20r y x r y x f r σπ.解:积分区域 222:r y x D ≤+ 为有界区域,且 ()y x f , 连续, ∴ 由积分中值定理可知:存在点()D ∈ηξ,,使得()()DDSf d y x f ηξσ,,=⎰⎰,即:()()ηξπσ,,2222f r d y x f r y x =⎰⎰≤+,又 ∵ 当0→r 时,()()0,0,→ηξ,且()y x f ,在()0,0连续.∴ ()()0,0,1lim22220f d y x f r r y x r =⎰⎰≤+→σπ.第 12 章 (之2)(总第68次)教学内容 : §12.2.1 二重积分在直角坐标系下的计算方法 1.解下列各题:**(1)设),(y x f 是连续函数,则()+⎰⎰--x y x f y y a aya ad ,d 222220()y y x f dy y a a a d ,2202⎰⎰-()0>a 可交换积分次序得___________________________.答:原式=⎰⎰--ax a ax a y y x f x22222d ),(d .**(2)设),(y x f 是连续函数,则二次积分⎰⎰++-2111d ),(d x x y y x f x ( )(A )⎰⎰--1110d ),(d y x y x f y ⎰⎰--+11212d ),(d y x y x f y ; (B )⎰⎰--1110d ),(d y x y x f y ;(C) ⎰⎰--1110d ),(d y x y x f y ⎰⎰---+11212d ),(d y x y x f y ; (D)⎰⎰---11202d ),(d y x y x f y .答:(C)**(3)设()y x f ,是连续函数,交换二次积分()dy y x f dx x e⎰⎰ln 01,的积分次序的结果为( )(A )()dx y x f dy xe ⎰⎰ln 01,; (B) ()dx y x f dy xe ⎰⎰ln 01,;(C) ()dx y x f dy xe ⎰⎰ln 01,; (D)()dx y x f dy eey ⎰⎰,1.答:(D)**(4)设),(y x f 是连续函数,则积分⎰⎰⎰⎰-+xx y y x f x y y x f x 20211d ),(d d ),(d 2可交换积分次序为 ( ) (A )()+⎰⎰dx y x f dy y 010,()dx y x f dy y⎰⎰-2021,; (B )()+⎰⎰dx y x f dy x 21,()dx y x f dy x⎰⎰-2021,;(C )⎰⎰-yydx y x f dy 210),(;(D )()dx y x f dy xx ⎰⎰-212,.答: (C )**(5)设函数()y x f ,在122≤+y x 上连续,使()()dyy x f dx dxdy y x f x y x ⎰⎰⎰⎰-≤+=2221011,4,成立的充分条件是 ( ) (A )),(),(y x f y x f =-, ),(),(y x f y x f -=-;(B )),(),(y x f y x f -=-,),(),(y x f y x f =-; (C )),(),(y x f y x f -=-,),(),(y x f y x f -=-; (D )),(),(y x f y x f =-,),(),(y x f y x f =-. 答:(D ).2.画出下列各题中给出的区域D ,并将二重积分化成两种不同顺序的二次积分(假定 在区域上连续). **(1)D 由曲线2,,1===x x y xy 围成;解:()()()dx y x f dy dx y x f dy dy y x f dx I yx yx⎰⎰⎰⎰⎰⎰+==2212121,,,1211**(2)()(){}11,1max ,≤≤--=y x x y x D解:()()()dxy x f dy dy y x f dx dy y x f dx I yyx x⎰⎰⎰⎰⎰⎰+---=+=1111121111,,,**(3) D :1≤+y x ,1≤-y x ,0≥x .解:原式=⎰⎰--xx dy y x f dx111),(=⎰⎰⎰⎰-+-+011110),(),(y ydx y x f dy dx y x f dy .3.计算二次积分: **(1)⎰⎰-422222y xx dx edy .解:22,42:≤≤≤≤x yy D , 变换积分次序得x y x D 22,21:*≤≤≤≤, 原式()⎰⎰⎰-==--212222122222dx x e dy dx e xxxx x()ee x x e x xxx112d 212212222-==-=--⎰.**(2)⎰⎰--+-111221xdy y x x dx . 解:原式=dx y x x dy y⎰⎰-+-111221=dy y )1(31311⎰-- =21.4.计算下列二重积分 **(1)⎰⎰-Dyd 2σ,其中(){}y y x y x D 2,22≤+=;解:原式=238222202=-⎰⎰-y y ydx dy .**(2) 计算二重积分⎰⎰Dx dxdy e 2,其中D 是第一象限中由y =x 和y =x 3所围成的区域. 解:原式=⎰⎰xx x dy dx e 321=dx e x xex x )(2213⎰- =121-e .**(3) 计算二重积分⎰⎰-Dd y x σ12,其中}10),{(2x y y x D -≤≤=. 解:(){}10:10,2≤≤⇒-≤≤=y D x y y x D , 原式⎰⎰----=yydx x dy y 11211()()[]()()()()92192113213211111313111031021021011103=--=---=-=--+---=-=⎰⎰⎰⎰---y y d y dy y dy y y y y y x dy y y y**(4) 计算二重积分⎰⎰-Dy x σd ,其中{}20,10),(≤≤≤≤=y x y x D .解:直线x y =把区域D 分成1D (上)、2D (下)两个部分,⎰⎰⎰⎰⎰⎰-+-=-21)d ()d (d D D Dy x x y y x σσσ⎰⎰⎰⎰⎰⎰---=-+-=10021022100102d )(21d )(21d )(d d )(d x y x x x y y y x x y x y x xx xx 34231)d 22(123102=+-=+-=⎰x x x x x x .**(5) 计算二重积分⎰⎰+Dd y x x σ)sin(,其中D 由直线π=x 、抛物线x x y -=2及其在(0,0)点的切线围成.解:抛物线x x y -=2在(0,0)处切线斜率 1)0('-=y ,此切线方程为 x y -=,区域D:x x y x x -≤≤-≤≤2,0π,⎰⎰+Dd y x x σ)sin(⎰⎰--+=π2)sin(xx x dy y x x dx ⎰⎰--++=π2)()sin(xx xy x d y x x dxxx y xy y x x dx -=-=⎰+-=2)]cos([π⎰-=π2)cos 0(cos dx x x ⎰-=π2)cos 1(dx x x ππ202sin 2121x x -==2π.6.试利用积分区域的对称性和被积函数(关于某个单变量)的奇偶性,计算二重积分: **(1) ()⎰⎰++Dd c by ax σ,其中 (){}222,R y x y x D ≤+=,a ,b ,c 为常数. 解:()⎰⎰⎰⎰⎰⎰⎰⎰++=++DDDDcd byd axd d c by ax σσσσ,∵(){}222,R y x y x D ≤+=,既关于y 轴对称,又关于x 轴对称. 又∵()ax x f =为奇函数,()by y g =也为奇函数. ∴由积分区域对称性及被积函数的奇偶性可知:0,0==⎰⎰⎰⎰DDbyd axd σσ.**(2) ()⎰⎰+++Ddxdy x yx x 652111,其中(){}20,1,≤≤≤=y x y x D .解:()⎰⎰⎰⎰⎰⎰++++=+++DD D dxdy x y x dxdy x x dxdy x y x x 6762652111111,∵(){}20,1,≤≤≤=y x y x D ,关于y 轴对称,又()6711,x y x y x u ++=,关于x 为奇函数, ∴01167=++⎰⎰Ddxdy x yx ,∴ ()⎰⎰⎰⎰⎰⎰+=+=+++-2062116265211111dy x x dx dxdy x x dxdy x y x x DD ()3arctan 34d 1134d 122103103231062π==+=+=⎰⎰xx x x x x .第 12 章(之3)(总第69次)教学内容: §12.2.2 二重积分在极坐标系下的计算方法1. 填空与选择 **(1) 设D :20,10πθρ≤≤≤≤,根据二重积分的几何意义,则___________d θd 1D2=-⎰⎰ρρρ.答:π61.**(2) 设区域D 是x 2+y 2≤1与x 2+y 2≤2x 的公共部分,试写出⎰⎰Ddxdy y x f ),(在极坐标系下先对ρ积分的累次积分_________________.解:记ρθρθρθρ)sin ,cos (),(f F =,则ρθρθρθρθρθρθππθππππθd ),(d d ),(d d ),(d 23cos 2033132cos 20⎰⎰⎰⎰⎰⎰++---F F F .**(3)若区域D 为(x -1)2+y 2≤1,设ρθρθρθρ)sin ,cos (),(f F =, 则二重积分⎰⎰D y x y x f d d ),(化成累次积分为 ( )(A)ρθρθπθd ),(d 0cos 20⎰⎰F ; (B) ρθρθππθd ),(d cos 20⎰⎰-F ;(C)ρθρθππθd ),(d 22cos 20⎰⎰-F ; (D) ρθρθπθd ),(d 220cos 20⎰⎰F .答:(C ).** (4)若区域D 为x 2+y 2≤2x ,则二重积分dxdy y x y x D22)(++⎰⎰化成累次积分为( ) (A)⎰⎰+-θππρρθρθθθcos 2022d cos 2)sin (cos d ;(B)⎰⎰+θπρρθθθcos 2030d d )sin (cos ;(C) ⎰⎰+θπρρθθθcos 2030d d )sin (cos 2; (D)⎰⎰-+θππρρθθθcos 20322d d )sin (cos .答:(D ).2.化下列二重积分为极坐标下的二次积分 **(1)⎰⎰Dd xy f σ)(,其中 }1,10),{(2≤≤≤≤=y x x y x D .解:令θρθρsin ,cos ==y x在区域D1上2)cos (sin θρθρ=即)20(cos sin 2πθθθρ≤≤=,在区域D2上1sin =θρ即)20(sin 1πθθρ≤≤=,ρρθθρρρθθρθσππθπθθd f d f d d xy f D⎰⎰⎰⎰⎰⎰+=24sin 1024cos sin 02)cos sin ()cos sin ()(2.**(2).⎰⎰+Dd y x f σ)(,其中}10,2),{(2≤≤-≤≤=y y x y y x D .解:令θρθρsin ,cos ==y x ,由θθρθρθρ222cos sin )cos (sin =⇒=⇒=x y ,由 2222=⇒=+ρy x ,θθθθ22cos 2sin 2cos sin =⇒=, θθ42cos 2cos 1=-,解得:421cos 2πθθ==,, ⎰⎰⎰⎰+=+402cos sin 2)sin cos ()(πθθρρθρθρθσd f d d y x f D.3. 用极坐标计算下列积分 **(1)dy y x dx x xx ⎰⎰--+22442210;解:将二次积分⎰⎰--+2244221x x x dy y x dx 看作二重积分⎰⎰Dd y x f σ),(化来,224410:x y x x x D -≤≤-≤≤,,令θρθρsin ,cos ==y x ,则: 2cos 4≤≤ρθ, 如图,两圆交点)3,1(),(=y x ,即)3,2(),(πθρ=,所以⎰⎰--+2244221x x x dy y x dx ⎰⎰⋅=232cos 4ππθρρρθd d⎰⎰-==233232cos 43)cos 36438()31(ππππθθθθρd d ⎰--⨯=232sin )sin 1(364638ππθθπd ]3sin 2sin [31364)3sin 2(sin 3649433)()(πππππ-⋅+--=38912894+-=π.**(2)⎰⎰-2122arctany ydx xydy . 解:()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤≤-≤≤=220,1,2y y x y y x D ()⎭⎬⎫⎩⎨⎧≤≤≤≤=40,10,πθρθρ,∴64arctan 2104012202πθρρθθπ=⋅=⎰⎰⎰⎰-d d d dx x y dy y y.**4.设),(y x f 是连续函数,将二次积分ρρθρθρθρρθρθρθππππd )sin ,cos (d d )sin ,cos (d 43222⎰⎰⎰⎰+-aa f f ,)0(>a化为在直角坐标系下先对y 后对x 的二次积分.解:原式=⎰⎰⎰⎰------+0220222222),(),(a x a xax a x a dy y x f dxdy y x f dx.5. 计算下列二重积分***(1)⎰⎰+Dx y d yx eσ22arctan ,其中}3,41),{(22x y x y x y x D ≤≤≤+≤=. 解:在极坐标变换θρθρsin ,cos ==y x 下,x y x 3≤≤,有3tan 1≤≤θ,即34πθπ≤≤,又 4122≤+≤y x , 则 412≤≤ρ,即21≤≤ρ,所以⎰⎰+Dxy d y x eσ22arctan⎰⎰⎰==3421)arctan(tan 34ππθθππθρρθd e d e d 4334ππππθe e e -==. ***(2)⎰⎰Dxydxdy e,其中(){}x y x xy y x D 2,21,≤≤≤≤=.解:⎰⎰=θθθθθθρπρρθsin cos 2sin cos 1cos sin 2arctan 42d ed I⎰⎥⎥⎦⎤⎢⎢⎣⎡=2arctan 4sin cos 2sin cos 1sin cos 2sin cos 121πθθθθθθρθθθd e()⎰-=2arctan 421sin cos 121πθθθd e 2ln 22e e -=6. 计算下列平面区域的面积:*(1) 计算由抛物线y =x 2及直线y =x +2围成区域的面积.解: ∵x 2 = x +2 即 x =-1, x =2. ∴交点为(-1,1)与(2,4)A=⎰⎰-+2122x xdy dx=⎰--+212)2(dx x x =214.**(2) }cos 121|}cos ,cos {(ϕρϕρϕρ+≤≤=D . 解:⎰⎰=Dd A σ。
第二章 误差及分析数据的统计处理思考题答案1 正确理解准确度和精密度,误差和偏差的概念。
答:准确度表示测定结果和真实值的接近程度,用误差表示。
精密度表示测定值之间相互接近的程度,用偏差表示。
误差表示测定结果与真实值之间的差值。
偏差表示测定结果与平均值之间的差值,用来衡量分析结果的精密度,精密度是保证准确度的先决条件,在消除系统误差的前提下,精密度高准确度就高,精密度差,则测定结果不可靠。
即准确度高,精密度一定好,精密度高,准确度不一定好。
2 下列情况分别引起什么误差?如果是系统误差,应如何消除?(1)砝码被腐蚀; 答:系统误差。
校正或更换准确砝码。
(2)天平两臂不等长; 答:系统误差。
校正天平。
(3)容量瓶和吸管不配套; 答:系统误差。
进行校正或换用配套仪器。
(4)重量分析中杂质被共沉淀; 答:系统误差。
分离杂质;进行对照实验。
(5)天平称量时最后一位读数估计不准;答:随机误差。
增加平行测定次数求平均值。
(6)以含量为99%的邻苯二甲酸氢钾作基准物标定碱溶液;答:系统误差。
做空白实验或提纯或换用分析试剂。
3 用标准偏差和算术平均偏差表示结果,哪一个更合理?答:标准偏差。
因为标准偏差将单次测定的偏差平方后,能将较大的偏差显著地表现出来。
4 如何减少偶然误差?如何减少系统误差?答:增加平行测定次数,进行数据处理可以减少偶然误差。
通过对照实验、空白实验、校正仪器、提纯试剂等方法可消除系统误差。
5 某铁矿石中含铁39.16%,若甲分析结果为39.12%,39.15%,39.18%,乙分析得39.19%,39.24%,39.28%。
试比较甲、乙两人分析结果的准确度和精密度。
答:通过误差和标准偏差计算可得出甲的准确度高,精密度好的结论。
x 1 = (39.12+39.15+39.18)÷3 =39.15(%) x 2 = (39.19+39.24+39.28) ÷3 = 39.24(%) E 1=39.15-39.16 =-0.01(%) E 2=39.24-39.16 = 0.08(%)%030.01/)(1)(2221=-∑-∑=--∑=n n x x n x x s i %035.01/)(222=-∑-=∑n nx x s i6 甲、乙两人同时分析同一矿物中的含硫量。
大学基础化学_202301_模拟卷_答案注:找到所考试题直接看该试题所有题目和答案即可。
查找按键:Ctrl+F 超越高度一、单选题1. 下列反应焓等于该反应产物的摩尔反应焓的为( )2. A.Ag(s) + 12Cl 2(l) = AgCl(s) B.C(石墨) + O 2(g) = CO 2(g) 3. C.2H 2(g) +O 2(g) = 2H 2O(l) D.Ag(s) + 12Br 2 (g) = AgBr(l) 答案:B2. 已知在一定温度下 SO 2(g) +21O 2(g) SO 3(g) K c1 NO(g) +21O 2(g) NO 2(g) K c2则反应 SO 2(g) + NO 2(g)SO 3(g) + NO(g) 的K c 为 ( ) A. K c1K c2 B. K c1+K c2 C. K c1-K c2 D. K c1/K c2答案:D4. 反应N 2(g)+3H 2(g)2NH 3(g) = -92kJ·mol -1,从热力学观点看,欲提高NH 3的产率,反应的条件应该是( )5. A.低温高压 B.低温低压 C.高温高压 D.高温低压6. 答案:A7. 下面数值中,有效数字为三位的是( )8. A.ωcao =8.30% B.pH=8.00 C.0.020 D.1009. 答案:A5. 下列哪项不是消除系统误差的方法( )A. 对照试验B.空白实验C.增加测定次数D.进行仪器校准答案:C6. 根据酸碱质子理论,HS —的共轭碱的化学式为( )A.H 2SB.S 2-C.Na +D.H +答案:B7. 下列溶液中,pH 值最小的是( )A.0.010mol·L -1HClB.0.010 mol·L -1HAcC.0.010 mol·L -1HFD.0.010 mol·L -1H 2CO 3答案:A8.MgF 2的K sp = 7.1×10-9,在氟离子浓度为3.0 mol·L -1的溶液中Mg 2+离子可能的最高浓度是( )A.2.37×10-9mol·L-1B.7.9×10-10mol·L-1C.2.1×10-8mol·L-1D.6.4×10-8mol·L-1答案:B9. 已知:φθ(MnO4-/Mn2+) = 1.51 V,φθ(Cl2/Cl-) = 1.36 V,则反应2MnO4-+ 10Cl-+ 16H+= 2Mn2++ 5Cl2(g) + 8H2O的lg K分别是()A.10×(φMnO4−/Mn2+θ−φCl2/Cl−θ)0.059B.2×(φMnO4−/Mn2+θ−φCl2/Cl−θ)0.059C.5×(φMnO4−/Mn2+θ−φCl2/Cl−θ)0.059D.7×(φMnO4−/Mn2+θ−φCl2/Cl−θ)0.059答案:A10. 已知=0.54V,=0.77V,由此可知()A.Fe2+与I2能反应B.Fe2+与I-能反应C.Fe3+与I-能反应D.Fe3+与I2能反应答案:C11.下列量子数组合表示电子的运动状态,合理的是()12.A.n=3,l=3,m=1,ms=+1/2 B.n=3,l=3,m=2,ms= +1/213.C.n=3,l=3,m=3,ms= -1/2 D.n=3,l=2,m=1,ms= -1/214.答案:D12. H2O分子的空间构型、中心原子的杂化方式分别为()A.直线形、sp杂化B.V形、sp2杂化C.V形、sp3杂化D.三角形、sp2杂化答案:C13. 在[Co(NH3)5Cl]Cl2中,Co的氧化数和配位数分别是()A.+2和4B.+4和6C.+3和6D.+3和4答案:C14. EDTA滴定金属离子,准确滴定的条件是()A.K MY≥106B.K'MY≥106C.cK MY≥106D.cK'MY≥106答案:D15. 用EDTA滴定Zn2+离子,在pH=10时,以铬黑T为指示剂,终点所呈现的颜色是()A.酒红色 B.蓝色C.紫红色D.橙色答案:B二、填空题1. 按照酸碱质子理论,给出H+称为_________,得到H+称为_________。
华东理工大学复变函数与积分变换作业(第1册)班级____________学号_____________姓名_____________任课教师_____________第一次作业教学内容:1.1复数及其运算 1.2平面点集的一般概念1.填空题:(1)35arctan 2,234,2523,25,23-+-πk i (2)3arctan 2,10,31,3,1-+-πk i(3))31(21i +- (4) 13,1=-=y x 。
2.将下列复数化成三角表示式和指数表示式。
(1)31i +; 解:32)3sin 3(cos 2)2321(231πππi e i i i =+=+=+ (2))0(sin cos 1πϕϕϕ≤≤+-i 解:)22(2sin 2)]22sin()22[cos(2sin 2sin cos 1ϕπϕϕπϕπϕϕϕ-=-+-=+-i e i i(3)32)3sin 3(cos )5sin 5(cos φφφφi i -+. 解:φφφφφφφφφ199********)/()()3sin 3(cos )5sin 5(cos i i i i i e ee e e i i ===-+-- φε19sin 19cos i +3.求复数11+-z z 的实部与虚部 解:2|1|)1)(1()1)(1()1)(1(11++-=+++-=+-=z z z z z z z z z w 222|1|Im 2|1|1|1|)1(+++-=+--+=z z i z z z z z z z z 所以,2|1|1Re +-=z z z w ,2|1|Im 2Im +=z z w 4. 求方程083=+z 的所有的根. 解:.2,1,0,2)8()21(331==-=+k e z k i π即原方程有如下三个解:31,2,31i i --+5. 若 321z z z ==且0321=++z z z ,证明:以321,,z z z 为顶点的三角形是正三角形. 证明:记a z =||1,则232232223221|||(|2||z z z z z z z --+=+= 得22323||a z z =-221|)||(|z z -=,同样,22212123||a z z z z =-=- 所以.||||212321z z z z z z -=-=-6. 设2,1z z 是两个复数,试证明.212z z ++221z z -22122()z z =+. 并说明此等式的几何意义.证明: 左式=(21z z +)(21z z +)+(21z z +)(21z z -)=(21z z +)(21z z +)+(21z z +)(21z z -) =2121221121212211z z z z z z z z z z z z z z z z ⋅-⋅-⋅+⋅+⋅+⋅+⋅+⋅=2(2221z z z z ⋅+⋅)=2(2221z z +)7.求下列各式的值: (1)5)3(i -; 解:5)3(i -=6556532)2()223(2ππi i e e i--==⎥⎦⎤⎢⎣⎡- =i i 16316)65sin()65cos(32--=⎥⎦⎤⎢⎣⎡-+-ππ(2)31)1(i -;解: 31)1(i -.2,1,0,2)2()221(23)24(631431===⎥⎦⎤⎢⎣⎡-=+--k e e i k i i πππ 可知31)1(i -的3个值分别是)12sin 12(cos 22626πππi e i -=-;)127sin 127(cos 226276πππi e i +=)45sin 45(cos 226456πππi e i +=(3)求61-解:61-=.5,4,3,2,1,0,)(6/)21(612-=++k e e k i k i πππ可知61-的6个值分别是223,1,2236526i ei e i e i i i +-==+=πππ 223,,2234112367i e i e i e i i i -=-=--=πππ(4) ()()()()1001001001005050511+i +1-i =cos +isin +cos -isin 4444 =2cos 25+isin 25+2cos 25-isin 25 =-2ππππππππ⎤⎤⎫⎫⎪⎪⎥⎥⎭⎭⎦⎦8.化简2)1()1(--+n ni i 解:原式1222211)1(+-=-=⎪⎭⎫ ⎝⎛-+-=n i n n i ie i i i π9. 设bi a iyx +=-+iy x ,其中y x b a ,,,均为实数,证明: 122=+b a解:先求出b a ,的y x ,表达式,因为bi a yx ixy y x iy x iy x +=++-=+-+=-+222222iy x iy x iy x ))(()( 比较系数得b yx xy a y x y x =+=+-2222222, 于是1)2()(2222222222=+++-=+y x xy y x y x b a 10. 设ω是1的n 次根,且1≠ω,证明:ω满足方程:0112=++++-n zz z 解:因1=n ω,即01=—n ω故01)(1-(12=++++-)n ωωωω由于1≠ω,故01(12=++++-)n ωωω ,即0112=++++-n z z z第二次作业教学内容:1.2 平面点集的一般概念 1.3复变函数1. 填空题(1)连接点i +1与i 41--的直线断的参数方程为10)52(1≤≤--++=t t i i z(2)以原点为中心,焦点在实轴上,长轴为a ,短轴为b 的椭圆的参数方程为π20sin cos ≤≤+=t t ib t a z2.指出下列各题中点z 的轨迹,并作图. (1)12≥-i z ;中心在i 2-半径为1的圆周及其外部。
(2)1)2Re(-=+z .直线3-=x (3)413=+++z z以-3与-1为焦点,长轴为4的椭圆 (4)4)arg(π=-i z以i 为起点的射线1+=x y (5) 123≥--z z 直线25=x 及其右半平面 3.指出下列不等式所确定的区域或闭区域,并指出是有界区域还是无界区域,多连通还是单连通的。
(1)11<--za a z ; 解:z a a z -<-12)1)(1())((z a z a a z a z --<--0)1)(1(22<--a z1<a 时,表示单位圆的内部,有界单连通域。
1>a 时,表示单位圆的外部,无界单连通域,1=a 不表示任何区域。
(2)4)2()2(≤--+-z i z i z z圆9)1()2(22=++-y x 及其内部区域,有界,单连通区域。
(3)141+<-z z 中心在1517-=z ,半径为158的圆外部区域,无界,多连通 (4)2)2arg(6ππ<+<i z 且.2>z解:i y x i z )2(2++=+x y 2tan +=⇒θx y i z 2arctan )2arg(+=+⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<-+<<<<++<><<+<>⇒22arctan 6,0,022arctan 6,0,022arctan 6,0ππππππππx y y x x y y x x y x 332>+⇒x y 且有422222>+⇒>+=y x y x z 以i 2-为顶点,两边分别与正实轴成角度6π与2π的角形域内部,且以原点为圆心,半径为2的圆外部分,无界单连通区域。
4.设 t 是实参数,指出下列曲线表示什么图形 (1)tit z +=; ;1,1=⎪⎩⎪⎨⎧==⇔+=+=xy t y t x t i t iy x z 即为双曲线 (2)it it be ae z -+=。
1)()(2222=-++b a y b a x ,为椭圆。
5.已知函 数z w 1=,求以下曲线的像曲线. (1)422=+y x ;解:,,,1122222222yx y v y x x u y x y i y x x iy x z w +-=+=+-+=+== 411)(222222222=+=++=+y x y x y x v u ,是w 平面上一圆周。
(2)1=x ;解:由,1=x 知,1,1122y y v y u +-=+=从而u yv u =+=+22211 此为222)21()21(=+-v u ,是平面上一圆周。
(3)x y =; x i i x w 21)1(1-=+=,则,xv x u 21,21-==,像曲线为v u -=。
6. 讨论下列函数的连续性:(1) z w =解:设0z 为复平面上任一点,因为00lim z z z z =→ 函数z w =在平面上处处连续。
(2)⎪⎩⎪⎨⎧=≠+=0,00,)(22z z y x xy z f解:当z 沿实轴趋向于零时,x z =,有0lim )(lim 00==→→x z f x z 当z 沿某一直线趋向于零时0tan 1tan tan 1tan lim )(lim 2200≠+=+=→→θθθθz z z f 故)(z f 在0=z 处不连续。
7. 下列函数在何处可导?求出其导数。
(1)nz )1(-解:对任意的z ,有101020100)(lim lim 00----→→=+++=--n n n n z z n n z z nz z z z z z z z z 即由复合函数求导法则,得[]1)1()1(--='-n n z n z(2)2z z解;由于2z 在全平面处处可导,z 在全平面处处不可导,故2z z 在0≠z 处处不可导。
在0=z ,由定义可得 0lim 0lim )0(020==-='→→z z zz z f z z 知2z z 除在0=z 可导外,在复平面上不可导。