直流电动机正反转proteus仿真设计
- 格式:doc
- 大小:329.00 KB
- 文档页数:26
前言 (1)正文 (1)2.1 设计目的和意义 (1)2.1.1 设计目的 (1)2.1.2 设计意义 (1)2.2 设计方法 (1)2.3设计内容 (2)2.3.1 89C51单片机介绍 (2)2.3.2内容概要 (3)2.4电路分析 (3)2.4.1程序流程图 (3)2.4.2元件清单 (4)2.4.3程序电路图 (5)2.4.4程序运行结果 (5)2.4.5 Proteus调试与仿真 (5)结论 (6)总结 (7)参考文献 (8)直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂.功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。
随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。
采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。
正文2.1 设计目的和意义2.1.1 设计目的作为理工科的学生应该在学习与动手实践中提高自己的专业技能知识,通过课程设计使我进一步熟悉了单片机的内部结构和工作原理,掌握了单片机应用系统设计的基本方法和步骤;通过利用AT89C52单片机,理解单片机在自动化装置中的作用以及掌握单片机的编程调试方法;通过设计一个简单的实际应用输入控制及显示系统,掌握protues和Wave以及各种仿真软件的使用。
现在的学习都是为以后的发展而做铺垫,通过课程设计提高自己的动手能力。
2.1.2 设计意义加深理解直流电机在单片机上的运用,增进对电路仿真的兴趣。
2.2 设计方法定义输出或输入为直流电能的旋转电机,称为直流电机,它是能实现直流电能和机械能互相转换的电机。
直流电动机正反转Proteus仿真设计引言随着人民生活水平的提高,产品质量、性能、自动化程度等已经是人们选择产品的主要因素。
其中,直流电动机正反转自动控制在生活中起了很大的作用,比如洗衣机的工作、遥控汽车的操作、DVD的应用等等,它在实际生活中给人们需求上提供了很大的方便与乐趣。
不只是生活,它还在工业、农业、交通运输等各方面得到了广泛的应用,实现电动机正反转的控制是很多产品设计的核心问题。
直流电动机显示出交流电动机不能比拟的良好启动性能和调速性能,比较广泛应用于速度调节要求过高,正反转频繁或多元同步协调运转的机械生产。
因此,学会电动机正反转控制的原理是极其重要的。
然而,在本直流电动机正反转仿真设计中,要借助Proteus软件、Keil软件和C语言的辅助进行仿真设计,通过仿真设计,让我们更清楚了解电动机正反转的原理和电路图,增强对直流电动机的认知。
在Proteus绘制好原理图后,调入已编译好的目标代码文件:*.HEX,可以在Proteus的原理图中看到模拟的实物运行状态和过程,Proteus还提供了一个图形显示功能,可以将线路上变化的信号,以图形的方式实时地显示出来,其作用与示波器相似,但功能更多。
这些虚拟仪器仪表具有理想的参数指标,例如极高的输入阻抗、极低的输出阻抗。
这些都尽可能减少了仪器对测量结果的影响。
在本设计中,Proteus软件采用了电容、电阻、晶振、电动机、LED、开关、电动机等多种元件进行绘图,并基于80C51和ULN2003A进行电路图设计,充分展示Proteus软件元件库量大,掌握它的基本绘图操作。
而对于Keil软件,采取创建工程,创建执行文件,利用C语言编写程序,生成hex文件,为Proteus 仿真提供驱动控制,实现直流电动机正反转的设计。
在本论文设计中,主要介绍直流电动机正反转原理,Proteus软件功能绘图、仿真调试,以及Keil软件功能、程序编写和仿真程序文件生成。
让大家更清楚了解Proteus软件、Keil软件、C语言在直流电动机正反转仿真设计的应用。
1 引言随着微电子技术的不断发展与进步,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。
在现代工业中,直流电动机作为电能转换的传动装置,被广泛应用于机械、冶金、石油、化工、国防等工业部门中。
直流电动机是将直流电能转换为机械能的电动机。
因其良好的调速性能而在电力拖动中得到广泛应用。
随着对生产工艺、产品质量的要求不断提高和产量的增长,越来越多的生产机械要求能实现自动调速。
直流调速系统的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。
正是这些技术的进步使直流调速系统发生翻天覆地的变化。
其中电机的控制部分已经由模拟控制逐渐让位于以单片机为主的微处理器控制,形成数字与模拟的混合控制系统和纯数字控制系统,并向全数字控制方向快速发展。
本文设计了用DAC0808设计直流电动机调速器的基本方案,阐述了该调速器系统的基本结构、工作原理、运行特性及其设计方法。
本系统用电压表测量直流电动机的转速,用MCS-51单片机输出数字信号通过DAC0808芯片实现数模转换,从而输出模拟电压来控制调节直流电动机的转速。
本设计主要研究利用单片机及DAC0808实现数模转换调速,直流电机的控制和测量方法,从而对直流电机的调速控制精度、响应速度以及节约能源等都具有重要意义。
2 设计总体方案2.1 设计要求基本要求:使用AT89C51单片机为核心,使用数模转换元件DAC0808对单片机输出的数字信号进行转换,输出模拟信号驱动直流电动机。
具体要求:在设计中,设计8个按键对应直流电动机的8挡不同转速,按下不同按键时,电动机将以不同速度转动,在8个按键中取一个按键为直流电动机转动停止按键。
8挡不同转速的设定由学生自己决定。
仿真:控制程序在Keil软件中编写,编译,整个控制电路在Proteus仿真软件中连接调示。
摘要直流电机具有良好的启动性能和调速特性,它的特点是启动转矩大,能在宽广的范围内平滑、经济地调速,转速控制容易,调速后效率很高。
本文设计的直流电机调速系统,主要用proteus仿真,实现电机的加减速和正反转以及控制超调量和稳态误差等要求。
采用L298N芯片来设计电机驱动电路。
用LM331来实现电压频率转换。
在仿真中加上PI调节和三角波比较环节来进行直流PWM调速控制系统。
关键词:直流电机;调速控制系统;驱动电路。
目录摘要 (Ⅰ)目录 (Ⅱ)1前言 (1)2设计基本内容 (1)2.1设计题目 (1)2.2主要内容 (1)2.3具体要求 (1)3电路设计 (2)3.1设计基本框图 (2)3.2电机正反转模块 (2)3.3电机加减速模块 (3)3.4驱动电路模块 (3)3.5频电转换模块 (5)3.6PI调节及三角波比较模块 (7)4仿真结果 (7)5总结体会 (9)参考文献 (10)致谢 (11)仿真原理图 (12)1 前言电动机作为最主要的动力源和运动源之一,在生产和生活中占有十分重要的地位。
电动机的调速控制方法过去多用模拟法,随着单片机的产生和发展以及新型自关断元器件的不断涌现,电动机的控制也发生了深刻的变化。
直流电动机控制技术是一项以直流电动机作为机械本体,融入了电力电子技术、微电子技术、单片机控制技术和传感器技术的多学科交叉机电一体化技术。
单片机在电动机控制中的应用使调速系统具有了数值运算、逻辑判断及信息处理的功能。
自从全控型电力电子器件问世以后,就出现了采用全控型的开关功率元件进行脉宽调制的控制方式,形成了脉宽调制变换器-直流电动机调速系统,简称直流脉宽调速系统,或直流PWM调速系统。
PWM系统在很多方面有较大的优越性:主电路线路非常简单,需要用到的功率器件比较少;开关频率比较高,电机损耗及发热都比较少,电流很容易连续,并且谐波少;功率开关器件工作在开关状态,导通损耗比较小,装置效率比较高;低速性能比较好,调速范围比较宽,稳速精度比较高;若与快速响应的电动机配合,则系统频带宽,动态响应比较快,动态抗干扰能力强;直流电源采用不控整流时,电网功率因数比相控整流器高。
基于proteus的51单片机仿真直流电机的正反转演示实例1、本例运行时,按下相应的按键,电机即可产生正转、反转、停止的效果。
同时相应的LED指示灯也会点亮。
当P1.0输出低电平时:Q3,Q2截止,Q7,Q1导通,电机左端输出高电平;P1.1输出高电平时:Q8,Q4截止,Q6,Q5导通,电机右端输出低电平,此时,电机正转。
反之,当P1.0输出高电平时:Q3,Q2导通,Q7,Q1截止,电机左端输出低电平;P1.1输出低电平时:Q8,Q4导通,Q6,Q5截止,电机右端输出高电平,此时,电机反转。
当P1.0输出低电平时;P1.1输出同时也输出低电平:电机两端均为高电平,电机停止转动。
2、需要注意的是,本例仅仅只是演示电机的正反转和停止的控制。
在实际应用中,这种电路是不能稳定可靠的工作的。
具体实际应用电路,请参考相关资料。
3、在keil c51中新建工程ex73,编写如下程序代码,编译并生成ex73.hex文件// 直流电机模拟演示#include <reg51.h>#include <intrins.h>sbit K1 = P3^0; //定义3个按键对应的引脚,正转sbit K2 = P3^1; //反转sbit K3 = P3^2; //停止sbit LED1 = P0^0; //定义3个LED对应的引脚sbit LED2 = P0^1; //sbit LED3 = P0^2; ////sbit MA = P1^0; //定义电机的两个引脚sbit MB = P1^1; ////void main(void){LED1 = 1; //开始3个LED全部熄灭LED2 = 1;LED3 = 1;while(1){if(K1 == 0) //判断那个按键按下{while(K1 == 0); //直到按键松开才进入下一步处理 LED1 = 0;LED2 = 1;LED3 = 1;MA = 0; //正转MB = 1;}if(K2 == 0){while(K2 == 0); // LED1 = 1;LED2 = 0;LED3 = 1;MA = 1; // 反转MB = 0;}if(K3 == 0){while(K3 == 0); // LED1 = 1;LED2 = 1;LED3 = 0;MA = 0; //停止MB = 0;}}}4、在proteus中新建仿真文件ex73.dsn,电路原理图如下所示5、将ex73.hex文件载入at89c51中,启动仿真,观察运行结果。
直流电动机正反转p r o t e u s仿真设计直流电动机正反转Proteus仿真设计引言随着人民生活水平的提高,产品质量、性能、自动化程度等已经是人们选择产品的主要因素。
其中,直流电动机正反转自动控制在生活中起了很大的作用,比如洗衣机的工作、遥控汽车的操作、DVD的应用等等,它在实际生活中给人们需求上提供了很大的方便与乐趣。
不只是生活,它还在工业、农业、交通运输等各方面得到了广泛的应用,实现电动机正反转的控制是很多产品设计的核心问题。
直流电动机显示出交流电动机不能比拟的良好启动性能和调速性能,比较广泛应用于速度调节要求过高,正反转频繁或多元同步协调运转的机械生产。
因此,学会电动机正反转控制的原理是极其重要的。
然而,在本直流电动机正反转仿真设计中,要借助Proteus软件、Keil软件和C语言的辅助进行仿真设计,通过仿真设计,让我们更清楚了解电动机正反转的原理和电路图,增强对直流电动机的认知。
在Proteus绘制好原理图后,调入已编译好的目标代码文件:*.HEX,可以在Proteus的原理图中看到模拟的实物运行状态和过程,Proteus还提供了一个图形显示功能,可以将线路上变化的信号,以图形的方式实时地显示出来,其作用与示波器相似,但功能更多。
这些虚拟仪器仪表具有理想的参数指标,例如极高的输入阻抗、极低的输出阻抗。
这些都尽可能减少了仪器对测量结果的影响。
在本设计中,Proteus软件采用了电容、电阻、晶振、电动机、LED、开关、电动机等多种元件进行绘图,并基于80C51和ULN2003A进行电路图设计,充分展示Proteus软件元件库量大,掌握它的基本绘图操作。
而对于Keil软件,采取创建工程,创建执行文件,利用C语言编写程序,生成hex文件,为Proteus仿真提供驱动控制,实现直流电动机正反转的设计。
在本论文设计中,主要介绍直流电动机正反转原理,Proteus软件功能绘图、仿真调试,以及Keil软件功能、程序编写和仿真程序文件生成。
基于LPC2124的直流电机调速系统Proteus仿真1直流电机、减速器及传感器选型设计要求驱动轮式机器人,两轮的直径相同为0.1m,驱动电机选用直流电机,为了满足加速度需求,每个电机配备了减速装置,且两轮为独立驱动。
小车运行过程中自带电池,电池的供电电压为+24VDC,为满足机器人比赛需要,经需求分析可得该机器人运动控制系统的最大速度为:5.0m/s,最大加速度为:20m/,控制方案采用闭环控制方案。
通过计算可知,在没有减速器的情况下,电机应达到955r/min才能实现最大转速5.0m/s,启动时间应该小于0.25s才能达到最大加速度20m/的要求。
所以,可以选择额定电压24V,空载转速2500r/min的直流电机,采用调速比2.5的减速器,加速度要求通过软件实现。
系统要求采用闭环控制方案,本设计采用转速单闭环控制,选用旋转编码器作为测速传感器。
旋转编码器不仅精度高,而且安全稳定、维护方便,在Proteus 库里有配套旋转编码器的直流电机,方便仿真。
理论上旋转编码器的光栅数越大,测速越精确,但是光栅数的增大会增加制作难度和成本,本设计只是用于轮式机器人的测速,采用光栅数1024的旋转编码器足以,同时可以采用四倍频电路提高转速分辨率。
在基于Proteus仿真的直流电机调速系统中,由于各种限制,设计并不能达到系统的具体要求,但是可以作为一个可供参考的调速模型。
2直流电机调速系统硬件设计2.1硬件系统结构图直流电机转速单闭环调速系统硬件结构图如图1 所示图1 直流电机转速单闭环调速系统硬件结构图2.2 LPC2124简介LPC2124是基于一个支持实时仿真和跟踪的16/32位ARM7TDMI-S CPU的微控制器,并带有256KB嵌入的高速Flash存储器。
128位宽度的存储器接口和独特的加速结构使32位代码能够在最大时钟速率下运行,且可使用16位Thumb 模式。
LPC2124支持多种通信接口,包括UART,和SPI等串行接口以及PWM输出接口,外围接口部分设计极为方便、灵活。
直流电动机正反转Proteus仿真设计引言随着人民生活水平的提高,产品质量、性能、自动化程度等已经是人们选择产品的主要因素。
其中,直流电动机正反转自动控制在生活中起了很大的作用,比如洗衣机的工作、遥控汽车的操作、DVD的应用等等,它在实际生活中给人们需求上提供了很大的方便与乐趣。
不只是生活,它还在工业、农业、交通运输等各方面得到了广泛的应用,实现电动机正反转的控制是很多产品设计的核心问题。
直流电动机显示出交流电动机不能比拟的良好启动性能和调速性能,比较广泛应用于速度调节要求过高,正反转频繁或多元同步协调运转的机械生产。
因此,学会电动机正反转控制的原理是极其重要的。
然而,在本直流电动机正反转仿真设计中,要借助Proteus软件、Keil软件和C语言的辅助进行仿真设计,通过仿真设计,让我们更清楚了解电动机正反转的原理和电路图,增强对直流电动机的认知。
在Proteus绘制好原理图后,调入已编译好的目标代码文件:*.HEX,可以在Proteus的原理图中看到模拟的实物运行状态和过程,Proteus还提供了一个图形显示功能,可以将线路上变化的信号,以图形的方式实时地显示出来,其作用与示波器相似,但功能更多。
这些虚拟仪器仪表具有理想的参数指标,例如极高的输入阻抗、极低的输出阻抗。
这些都尽可能减少了仪器对测量结果的影响。
在本设计中,Proteus软件采用了电容、电阻、晶振、电动机、LED、开关、电动机等多种元件进行绘图,并基于80C51和ULN2003A进行电路图设计,充分展示Proteus软件元件库量大,掌握它的基本绘图操作。
而对于Keil软件,采取创建工程,创建执行文件,利用C语言编写程序,生成hex文件,为Proteus 仿真提供驱动控制,实现直流电动机正反转的设计。
在本论文设计中,主要介绍直流电动机正反转原理,Proteus软件功能绘图、仿真调试,以及Keil软件功能、程序编写和仿真程序文件生成。
让大家更清楚了解Proteus软件、Keil软件、C语言在直流电动机正反转仿真设计的应用。
目录第一章、直流电动机正反转原理 (3)第二章、Proteus软件介绍 (4)2.1、基本知识与功能概述 (4)2.2、基本操作概述 (7)2.3、模拟调试 (10)第三章、Keil软件介绍 (11)3.1、基本知识与功能概述 (12)3.2、基本操作概述 (12)第四章、直流电动机正反转Proteus仿真设计过程 (14)4.1、Proteus电路图设计 (15)4.2、Keil程序编写说明 (16)4.3、仿真调试情况记录 (19)第五章、设计总结 (20)附录1 80C51引脚功能介绍 (21)附录2 Proteus操作指令中英文对照表 (23)参考文献 (25)致谢 (26)第一章、直流电动机正反转原理由直流电动机和发电机工作原理示意图可以看到,直流电机的结构应由定子和转子两大部分组成。
直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。
运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。
直流电机的结构:电机要实现机电能量变换,电路和磁路之间必须有相对运动。
所以旋转电机具备静止的和旋转的两大部分。
静止和旋转部分之间有一定大小的间隙,称为气隙。
静止的部分称为定子,作用是产生磁场和作为电机的机械支撑。
包括主磁极、换向极、机座、端盖、轴承、电刷装置等。
旋转部分称为转子或电枢,作用是感应电势实现能量转换。
包括电枢铁心,电枢绕组,换向器、轴和风扇等。
定子部分:1、主磁极:也称为主极。
作用是产生气隙磁场。
2、换向极:也称为附加极或间极。
作用是改善换向。
装在主极之间。
3、机座:由铸钢或厚钢板焊成。
是电机的机械支撑。
4、电刷装置:将直流电压、电流引入或引出的装置。
其组数与主极极数相等。
转动部分:(转子部分)1、电枢铁心:主磁路的主要部分及嵌放电枢绕组,由硅钢片迭压而成。
2、电枢绕组:由许多按一定规律联接的线圈组成。
用来感应电势和通过电流,是电路的主要部分。
3、换向器:由许多彼此绝缘的换向片构成。
第二章、Proteus软件介绍PROTEUS是英国Labcenter electronics公司研发的多功能EDA软件,它具有功能很强的ISIS智能原理图输入系统,有非常友好的人机互动窗口界面;有丰富的操作菜单与工具。
在ISIS编辑区中,能方便地完成单片机系统的硬件设计、软件设计、单片机源代码级调试与仿真。
PROTEUS有三十多个元器件库,拥有数千种元器件仿真模型;有形象生动的动态器件库、外设库。
特别是有从8051系列8位单片机直至ARM7 32位单片机的多种单片机类型库。
支持的单片机类型有:68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。
它们是单片机系统设计与仿真的基础。
PROTEUS有多达十余种的信号激励源,十余种虚拟仪器(如示波器、逻辑分析仪、信号发生器等);可提供软件调试功能,即具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真的功能;还有用来精确测量与分析的PROTEUS 高级图表仿真(ASF)。
它们构成了单片机系统设计与仿真的完整的虚拟实验室。
PROTEUS同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。
PROTEUS还有使用极方便的印刷电路板高级布线编辑软件(PCB)。
特别指出,PROTEUS库中数千种仿真模型是依据生产企业提供的数据来建模的。
因此,PROTEUS设计与仿真极其接近实际。
目前,PROTEUS已成为流行的单片机系统设计与仿真平台,应用于各种领域。
实践证明:PROTEUS是单片机应用产品研发的灵活、高效、正确的设计与仿真平台,它明显提高了研发效率、缩短了研发周期,节约了研发成本。
2.1、基本知识与功能概述Proteus软件具有其它EDA工具软件(例:multisim)的功能。
这些功能是:(1)原理布图(2)PCB自动或人工布线(3)SPICE电路仿真革命性的特点(1)互动的电路仿真用户甚至可以实时采用诸如RAM,ROM,键盘,马达,LED,LCD,AD/DA,部分SPI器件,部分IIC器件。
(2)仿真处理器及其外围电路可以仿真51系列、AVR、PIC、ARM、等常用主流单片机。
还可以直接在基于原理图的虚拟原型上编程,再配合显示及输出,能看到运行后输入输出的效果。
配合系统配置的虚拟逻辑分析仪、示波器等,Proteus建立了完备的电子设计开发环境。
功能模块(1)智能原理图设计(ISIS)丰富的器件库:超过27000种元器件,可方便地创建新元件;智能的器件搜索:通过模糊搜索可以快速定位所需要的器件;智能化的连线功能:自动连线功能使连接导线简单快捷,大大缩短绘图时间;支持总线结构:使用总线器件和总线布线使电路设计简明清晰;可输出高质量图纸:通过个性化设置,可以生成印刷质量的BMP图纸,可以方便地供WORD、POWERPOINT等多种文档使用。
(2)完善的电路仿真功能(Prospice)ProSPICE混合仿真:基于工业标准SPICE3F5,实现数字/模拟电路的混合仿真;超过27000个仿真器件:可以通过内部原型或使用厂家的SPICE文件自行设计仿真器件,Labcenter也在不断地发布新的仿真器件,还可导入第三方发布的仿真器件;多样的激励源:包括直流、正弦、脉冲、分段线性脉冲、音频(使用wav 文件)、指数信号、单频FM、数字时钟和码流,还支持文件形式的信号输入;丰富的虚拟仪器:13种虚拟仪器,面板操作逼真,如示波器、逻辑分析仪、信号发生器、直流电压/电流表、交流电压/电流表、数字图案发生器、频率计/计数器、逻辑探头、虚拟终端、SPI调试器、I2C调试器等;生动的仿真显示:用色点显示引脚的数字电平,导线以不同颜色表示其对地电压大小,结合动态器件(如电机、显示器件、按钮)的使用可以使仿真更加直观、生动;高级图形仿真功能(ASF):基于图标的分析可以精确分析电路的多项指标,包括工作点、瞬态特性、频率特性、传输特性、噪声、失真、傅立叶频谱分析等,还可以进行一致性分析;(3)独特的单片机协同仿真功能(VSM)支持主流的CPU类型:如ARM7、8051/52、AVR、PIC10/12、PIC16、PIC18、PIC24、dsPIC33、HC11、BasicStamp、8086、MSP430等,CPU类型随着版本升级还在继续增加,如即将支持CORTEX、DSP处理器;支持通用外设模型:如字符LCD模块、图形LCD模块、LED点阵、LED七段显示模块、键盘/按键、直流/步进/伺服电机、RS232虚拟终端、电子温度计等等,其COMPIM(COM口物理接口模型)还可以使仿真电路通过PC机串口和外部电路实现双向异步串行通信;实时仿真:支持UART/USART/EUSARTs仿真、中断仿真、SPI/I2C仿真、MSSP 仿真、PSP仿真、RTC仿真、ADC仿真、CCP/ECCP仿真;编译及调试:支持单片机汇编语言的编辑/编译/源码级仿真,内带8051、AVR、PIC的汇编编译器,也可以与第三方集成编译环境(如IAR、Keil和Hitech)结合,进行高级语言的源码级仿真和调试;(4)实用的PCB设计平台原理图到PCB的快速通道:原理图设计完成后,一键便可进入ARES的PCB 设计环境,实现从概念到产品的完整设计;先进的自动布局/布线功能:支持器件的自动/人工布局;支持无网格自动布线或人工布线;支持引脚交换/门交换功能使PCB设计更为合理;完整的PCB设计功能:最多可设计16个铜箔层,2个丝印层,4个机械层(含板边),灵活的布线策略供用户设置,自动设计规则检查,3D 可视化预览;多种输出格式的支持:可以输出多种格式文件,包括Gerber文件的导入或导出,便利与其它PCB设计工具的互转(如protel)和PCB板的设计和加工。
2.2、基本操作概述Proteus ISIS的工作界面是一种标准的Windows界面,如下图所示,包括:标题栏、主菜单、标准工具栏、绘图工具栏、状态栏、对象选择按钮、预览对象方位控制按钮、仿真进程控制按钮、预览窗口、对象选择器窗口、图形编辑窗口。
2.2.1、图形编辑窗口(1)坐标系统(CO-ORDINATE SYSTEM)(2)点状栅格(The Dot Grid)与捕捉到栅格(Snapping to a Grid):编辑窗口内有点状的栅格,可以通过View菜单的Grid命令在打开和关闭间切换。