弹性力学2-两平面问题、平衡微分方程
- 格式:pdf
- 大小:1.13 MB
- 文档页数:21
2°斜截面上的正应力:全应力矢量p N 在外法线方向n 上的投影即为斜截面上的正应力σN :=r r m n ⋅r r r r r r nσ=n p n ⋅()()x y z p ip j p k li j k ++++(){}{}x T x y z y n p p l p m p n lmn p n p ⎧⎫⎪⎪=++==⎨⎬l zx yxx ττσ⎫⎧⎟⎞⎜⎛z p ⎪⎪⎩⎭}){(}{)(n n n m n ml ij Tzyzxzzy y xyσστττστ=⎪⎭⎪⎬⎪⎩⎪⎨⎟⎟⎠⎜⎜⎝=即}){(}{n n ij T N σσ=(2-15)j 3°斜截面上的切应力:全应力矢量p N 在斜截面内的投影即斜截面上的切应力分量为:||n n n p τ=×r r ++216或2222222()()n n n x y z x y z p p p p p l p m p n τσ=−=++−(2-16)τxσz4-4、弹塑性力学中常用的简化力学模型44、弹塑性力学中常用的简化力学模型σA B分析计算有困难与实际符合较好1、理想弹塑性模型:o εεsσ⎨⎧>=≤=ss sE E εεεσεεεσ当当s理想弹塑性力学模型⎩Bσ1tg −2、线性强化弹塑性力学模型As σ1E 计算复杂⎨⎧>−+=≤=ss s s E E εεεεσσεεεσ当当)(1εoEtg 1−sε⎩型线性强化弹塑性力学模3、幂强化力学模型:σ1=n 参数少想弹性模型n A n<<=εσ100=n 便于分析理想塑性模型当理想弹性模型当A n A n ====σεσ01ε1幂强化力学模型4、刚塑性力学模型(理想塑性模型)在应力到达屈服极限之前应变为零。
AσB分析计算容易oε刚塑性力学模型5σ(刚塑性力学模型)5.理想塑性力学模型σssσσ=ε6.σ6.理想弹性力学模型εσE =ε4-6、常用屈服条件:对屈服条件的研究已有两个世纪。
题提示和答案《弹性力学简明教程》习题提示和参考答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。
2-4 按习题2-2分析。
2-5 在的条件中,将出现2、3阶微量。
当略去3阶微量后,得出的切应力互等定理完全相同。
2-6 同上题。
在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。
其区别只是在3阶微量(即更高阶微量)上,可以略去不计。
2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。
2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。
2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。
2-10 参见本章小结。
2-11 参见本章小结。
2-12 参见本章小结。
2-13 注意按应力求解时,在单连体中应力分量必须满足(1)平衡微分方程,(2)相容方程,(3)应力边界条件(假设)。
2-14 见教科书。
2-15 见教科书。
2-16 见教科书。
2-17 取它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。
2-18 见教科书。
2-19 提示:求出任一点的位移分量和,及转动量,再令,便可得出。
第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件是否满足,(2)求应力,(3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。
3-2 用逆解法求解。
由于本题中l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。
3-3 见3-1例题。
3-4 本题也属于逆解法的问题。
首先校核是否满足相容方程。
再由求出应力后,并求对应的面力。
本题的应力解答如习题3-10所示。
应力对应的面力是:主要边界:所以在边界上无剪切面力作用。
1 / 1第一章 绪论 弹性力学基本假设: 1、连续性假设指组成物体的介质充满了物体所占的空间,物体中不存在任何间隙。
2、均匀性假设物体内的每一点都具有相同的力学性质3、各向同性假设。
指物体内一点的各个方向上的力学性质相同。
4、完全弹性假设指物体在载荷作用下发生变形,当这些荷载拆除以后物体能完全恢复到原来的形状和大小,而没有任何残余变形。
5、小变形假设假定物体内各点在载荷作用下所产生的位移远小于物体原来的尺寸,因而应变分量和转角都远小于1。
6、无初应力假设假定物体的初始状态为自然状态,即载荷作用以前物体内没有应力。
第二章 弹性力学的基本方程 平衡微分方程:000yx x zxx xy y zy y yz xz zz F x y z F xyzF x y zτσττστττσ∂∂∂+++=∂∂∂∂∂∂+++=∂∂∂∂∂∂+++=∂∂∂边界条件:()()()x xy xz s x xy y yz s y xz yz z s z l m n T l m n T l m n T στττστττσ++=++=++=斜面应力公式(Cauchy 公式):x x xy zx y xy y zy z xz yz z T l m n T l m n T l m nστττστττσ=++=++=++ 斜截面上的全应力:T υ斜截面上的正应力:x y z T l T m T n υσ=++斜截面上的总剪应力:222T υυυτσ=-几何方程:;;;x yz y xy z xy u w vx y z v u w y z x w v u z x yεγεγεγ∂∂∂==+∂∂∂∂∂∂==+∂∂∂∂∂∂==+∂∂∂物理方程:()()()2(1)1;2(1)1;2(1)1;x x y z xy xy y y x z yzyz z z y x zx zxv v E E v v E E v v E E εσσσγτεσσσγτεσσσγτ⎡⎤⎣⎦⎡⎤⎣⎦⎡⎤⎣⎦+=-+=+=-+=+=-+=体积应变:x y z θεεε=++x =()y z σσσΘ++12Evθ-=Θ 第三章 平面问题的直角坐标解法 平衡方程:00yxx x xy yy F x yF x yτστσ∂∂++=∂∂∂∂++=∂∂ 几何方程:;;x y xy u v u v x y y xεεγ∂∂∂∂===+∂∂∂∂ 边界条件:;x yx x xy y yl m T l m T σττσ+=+=位移边界条件:;xx y yu u u u ==平面应变:22222y xyx xy y xετε∂∂∂+=∂∂∂平面应力:222220;0;0z z zxy x yεεε∂∂∂===∂∂∂ 平面问题应力解:22222x x y y xy F xy F y x x yϕσϕσϕτ∂=-∂∂=-∂∂=-∂∂相容方程:444422420y x x y ϕϕϕ∂∂∂++=∂∂∂∂ 第四章 平面问题的极坐标解法 平衡微分方程:10210r r r r r r F r r r F r r rθθθθθθτσσσθτστθ∂-∂+++=∂∂∂∂+++=∂∂几何方程:1;1r r r r r u u u r r r u u u r r rθθθθθεεθγθ∂∂==+∂∂∂∂=+-∂∂物理方程:()()r 11;2(1)r r r rv v E E v Eθθθθθεσσεσσγτ=-=-+=相容方程:22222211()0r r r r ϕθ∂∂∂++=∂∂∂ 第五章 应力张量=0x xy xzyx y yz zx zy z σστττσστττσσ---。
xyy x N ml m l τσσσ222++= x y N mp lp -=τ xy y x N lm m l γεεε++=22求切应力公式:()()xyx y N m l lm τσστ22++-= 几何方程在平面中的简化形式:⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂=∂∂=∂∂=y u x v y vx u xy y x γεε最大位移:()22maxv u uN +=平面应力方程(物理方程):()()()⎪⎪⎪⎭⎪⎪⎪⎬⎫+=-=-=xy xy x yy y xx EE E τμγμσσεμσσε1211 平面应变方程:()⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫+=⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛---=xy xy x y y y x x E E E τμγσμμσμεσμμσμε12111122 应力边界问题中:()()()()⎪⎭⎪⎬⎫=+=+y s xy s y x s yx s x f l m f m l τστσ 位移边界:⎭⎬⎫==v v u u x x应力分量:()()()⎪⎪⎪⎭⎪⎪⎪⎬⎫+=+-=+-=xy xy x y y y xx E E E γμτμεεμσμεεμσ121122 弹性方程:()⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=y u x v E x u y v E y v x u E xy y x μτμμσμμσ121122 知识归纳整理平面问题的平衡微分方程:⎪⎪⎭⎪⎪⎬⎫=+∂∂+∂∂=+∂∂+∂∂00y xy y x yx x f x y f x x τστσ 弹性方程简化:⎪⎪⎭⎪⎪⎬⎫=+⎪⎪⎭⎫ ⎝⎛∂∂∂++∂∂-+∂∂-=+⎪⎪⎭⎫⎝⎛∂∂∂++∂∂-+∂∂-021211021211222222222222y x f y x u x v y v E f y x v y u x u E μμμμμμ位移表示平面微分方程:⎪⎪⎭⎪⎪⎬⎫=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-y ss x s s f y u x v l x u y v m E f x v y u m y v x u l E21121122μμμμμμ应变:y x x y xy y x ∂∂∂=∂∂+∂∂γεε22222 平面应力:()()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+-=+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂y f x f y x y x y x μσσ12222 平面应变:()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂--=+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂y f x f y x y x y x μσσ112222 ⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫∂∂Φ∂-=-∂Φ∂=-∂Φ∂=y x y f x x f y xy y y x x 22222τσσ 024422444=∂Φ∂+∂∂Φ∂+∂Φ∂yy x x ⎪⎪⎭⎪⎪⎬⎫++--=+-=022022v x x EI M y EI M v u y xy EIM u ωμω ⎪⎪⎪⎭⎪⎪⎪⎬⎫-=-+-=+++-=x h q xy h q q y h q y h q K Hy y h q y x h q xy y x 2362232264623333323τσσ ⎪⎪⎪⎭⎪⎪⎪⎬⎫=-==0xy y x y EI M y EI M γμεε ⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂+∂∂-=∂∂=∂∂0y ux v y EI M y v y EI Mx u μ ()()⎪⎪⎭⎪⎪⎬⎫+-=+=x f y EI M v y f xy EI M u 2212μ ()()012=++dy y df x EI M dx x df ()()x EI M dx x df dy y df +=-21 求知若饥,虚心若愚。