第七弹性力学平面问题的极坐标系解答
- 格式:doc
- 大小:579.00 KB
- 文档页数:26
第四章 平面问题的极坐标解答典型例题讲解例4-1 如图所示,矩形薄板在四边受纯剪切力作用,切应力大小为q 。
如果离板边较远处有一小圆孔, 试求孔边的最大和最小正应力。
例4-1图【解】(1)根据材料力学公式,求极值应力和量大正应力的方位角max min 2x y σσσσ+⎫=⎬⎭ 其中0,,x y x q σστ===得max min ,q q σσ==-。
最大正应力 所在截面的方位角为max 0max 0tan 104yqq τασσπα=-=-=-→--=-qqx若在该纯剪切的矩形薄板中,沿与板边成方向截取矩形ABCD ,则在其边界上便承受集度为q 的拉力和压力,如图所示。
这样就把受纯剪切作用的板看作与一对边受拉,另一对边受压的板等效。
(2)取极坐标系如图。
由2222442222cos 2(1)(13),cos 2(13),(4-18)sin 2(1)(13).ρφρφr r σq φρρr σq φρr r τq φρρ⎫=--⎪⎪⎪⎪=-+⎬⎪⎪=--+⎪⎪⎭得矩形薄板ABCD 内的应力分量为()()()2222442222cos 2(1)(13)cos 2(13)sin 2(1)(13)ρφρφa a σq φa ρρa σq φb ρa a τq φc ρρ=--=-+=--+ 其中 为小孔的半径,而孔边最大与最小正应力由式(b ),在 处得到44cos 2(13)4cos 2,φa σq φaϕ=-+=-当 , 时,孔边最小正应力为,当时,孔边最大正应力为。
分析:矩形板ABCD 边界上各点的应力状态与板内无孔时的应力状态相同。
也可以应用叠加法,求解薄板的各种较复杂的平面应力(应变)问题。
习题全解4-1试比较极坐标和直角坐标中的平衡微分方程、几何方程和物理方程,指出哪些项是相似的,哪些项是极坐标中特有的?并说明产生这些项的原因。
【解】 (1)极坐标,直角坐标中的平衡微分方程10210f f ρρϕρϕρρϕϕρϕϕστσσρρϕρτστρρϕρ∂∂-⎧+++=⎪∂∂⎪⎨∂∂⎪+++=⎪∂∂⎩ 00yxx x y xy yf xy f y x τσστ∂⎧∂++=⎪∂∂⎪⎨∂⎪++=⎪∂∂⎩将极坐标中的平衡微分方程与直角坐标中的平衡微分方程相比较,第一式中,前两项与直角坐标相似;而项是由于正 面上的面积大于负 面上的面积而产生的,是由于正负 面上的正应力 在通过微分体中心的 方向有投影而引起的。
第七章 平面问题的极坐标解知识点极坐标下的应力分量 极坐标下的应变分量 极坐标系的 Laplace 算符 轴对称应力分量 轴对称位移和应力表达式 曲梁纯弯曲 纯弯曲位移与平面假设 带圆孔平板拉伸问题 楔形体问题的应力函数 楔形体应力 楔形体受集中力偶作用、内容介绍在弹性力学问题的处理时,坐标系的选择从本质上讲并不影响问题的求解, 但是坐标的选取直接影响边界条件的描述形式,从而关系到问题求解的难易程 度。
对于圆形,楔形,扇形等工程构件,采用极坐标系统求解将比直角坐标系统 要方便的多。
本章的任务就是推导极坐标表示的弹性力学平面问题基本方程, 且求解一些典型问题。
极坐标平衡微分方程 几何方程的极坐标表达 应力函数 轴对称位移 厚壁圆筒作用均匀压力 曲梁弯曲应力 曲梁作用径向集中力 孔口应力 楔形体边界条件 半无限平面作用集中力二、重点1、基本未知量和基本方程的极坐标形式;2、双调和方程的极坐标形式;3、轴对称应力与厚壁圆筒应力;4、曲梁纯弯曲、楔形体和圆孔等典型问题§7.1平面问题极坐标解的基本方程学习思路:选取极坐标系处理弹性力学平面问题,首先必须将弹性力学的基本方程以及边界条件通过极坐标形式描述和表达。
本节的主要工作是介绍基本物理量,包括位移、应力和应变的极坐标形式;并且将基本方程,包括平衡微分方程、几何方程和本构关系转化为极坐标形式。
由于仍然采用应力解法,因此应力函数的极坐标表达是必要的。
应该注意的是坐标系的选取与问题求解性质无关,因此弹性力学直角坐标解的基本概念仍然适用于极坐标。
学习要点:1、极坐标下的应力分量;2、极坐标平衡微分方程;3、极坐标下的应变分量;4、几何方程的极坐标表达;5、本构方程的极坐标表达;6极坐标系的LaPIaCe算符;7、应力函数。
1、极坐标下的应力分量为了表明极坐标系统中的应力分量,从考察的平面物体中分割出微分单元体ABCD ,其由两个相距茁的圆柱面和互成d「的两个径向面构成,如图所示在极坐标系中,用二表示径向正应力,用二表示环向正应力,「,和•二:分别表示圆柱面和径向面的切应力,根据切应力互等定理,.J=.二:。
1.6按位移法求解
基本未知函数为位移u r , uθ,应变、应力均由位移导出。
1.截面的几何形状为圆环、圆盘。
2.受力和约束对称于中心轴,因此,可知体积力分量fθ=0;在边
2.2轴对称平面问题的基本公式
图示圆盘受力情况,得应力为σr=σθ=2C= -q
2.按位移法求解:
本节讨论楔形体分别受三种不同荷载作用时,其应力解答如何,并将其中某些解答推广到半无限体情况。
楔形体分别受三种不同荷载作用时,应力函数φ( r, θ)的选取考虑:(1)采用分离变量法φ( r, θ)=g(r)f(θ) ;
(2)考虑应力函数在楔形体边界上的变化规律,将φ( r, θ)中的g( r)的形式假设出来,然后利用∇4φ = 0求f( θ)的形
式;
首先应考虑边界条件来定,即θ = ±α /2 时,σθ= 0,τrθ= 0,自然满足。
可见仅靠力的边界条件不能确定所有待定系数,这是由于本问题的载荷是作用于一点的集中力,在顶点有奇点,待定系数需靠部分楔形体
2.当α =π时楔形体变为半无限体,受集中力作用:。