山东省临沂市平邑县2018--2019学年度七年级下学期期中数学试题
- 格式:docx
- 大小:289.21 KB
- 文档页数:6
平邑县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,天平右边托盘里的每个砝码的质量都是1千克,则图中显示物体质量的范围是()A. 大于2千克B. 小于3千克C. 大于2千克且小于3千克D. 大于2千克或小于3千克【答案】C【考点】一元一次不等式组的应用【解析】【解答】解:由图可知,物体的质量大于两个砝码的质量,故物体质量范围是大于2千克.故答案为:C【分析】由图知:第一个图,天平右边高于左边,从而得出物体的质量大于两个砝码的质量,从第二个图可知:天平右边低于左边,物体的质量小于三个砝码的质量,从而得出答案。
2、(2分)如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()A. ∠1=∠2B. ∠3=∠4C. ∠C=∠CBED. ∠C+∠ABC=180°【答案】B【考点】平行线的判定【解析】【解答】解:A、根据内错角相等,两直线平行可得AB∥CD,故此选项不正确;B、根据内错角相等,两直线平行可得AD∥BC,故此选项符合题意;C、根据内错角相等,两直线平行可得AB∥CD,故此选项不符合题意;D、根据同旁内角互补,两直线平行可得AB∥CD,故此选项不符合题意;故答案为:B【分析】判断AD∥BC,需要找到直线AD与BC被第三条直线所截形成的同位角、内错角相等,或同旁内角互补来判定.3、(2分)在图示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A. B. C. D.【答案】D【考点】平移的性质,利用平移设计图案【解析】【解答】解:根据平移的概念,观察图形可知图案D通过平移后可以得到.故答案为:D【分析】根据平移的定义及平移的性质,可出答案。
4、(2分)如图,直线相交于点于点,则的度数是()A. B. C. D.【答案】B【考点】余角、补角及其性质,对顶角、邻补角【解析】【解答】解:,,,对顶角相等,故答案为:B.【分析】因为OE ⊥AB ,所以根据余角的意义可得∠ A O C = 90 ∘−∠ C O E = 90 ∘−61 ∘= 29 ∘,再根据对顶角相等可得∠BOD=∠AOC=29。
平邑镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)设方程组的解是那么的值分别为()A.B.C.D.【答案】A【考点】解二元一次方程组【解析】【解答】解:解方程组,由①×3+②×2得19x=19解之;x=1把x=1代入方程①得3+2y=1解之:y=-1∴∵方程组的解也是方程组的解,∴,解之:故答案为:A【分析】利用加减消元法求出方程组的解,再将x、y的值分别代入第一个方程组,然后解出关于a、b的方程组,即可得出答案。
2、(2分)若方程组的解为x,y,且x+y>0,则k的取值范围是()A. k>4B. k>﹣4C. k<4D. k<﹣4【答案】B【考点】解二元一次方程组,解一元一次不等式【解析】【解答】解:两式相加得:4x+4y=k+4∵x+y>0∴4x+4y=4(x+y)>0即k+4>0k>﹣4故答案为:B.【分析】先观察x,y的系数,系数之和都是4,所以两式相加得x+y=(k+4)÷4,再让k+4>0,解得k>﹣4 3、(2分)把方程改写成含的式子表示的形式为()A. B. C. D.【答案】B【考点】解二元一次方程【解析】【解答】根据题意,把y当做未知数,通过移项,系数化为1,解关于y的方程即可得到.故答案为:B.【分析】根据题意,把x看着已知数,把y当做未知数,通过移项,系数化为1,解关于y的方程即可求解。
4、(2分)下列说法中错误的是()A.中的可以是正数、负数或零B.中的不可能是负数C.数的平方根有两个D.数的立方根有一个【答案】C【考点】平方根,立方根及开立方【解析】【解答】A选项中表示a的立方根,正数,负数和零都有立方根,所以正确;B选项中表示a的算术平方根,正数和零都有算术平方根,而负数没有算术平方根,所以正确;C选项中正数的平方根有两个,零的平方根是零,负数没有平方根,所以数a是非负数时才有两个平方根,所以错误;D选项中任何数都有立方根,所以正确。
平邑县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)4的平方的倒数的算术平方根是()A.4B.C.-D.【答案】D【考点】算术平方根【解析】【解答】解:∵42=16,16的倒数=,。
故答案为:D.【分析】根据平方、倒数、算术平方根的意义即可解答。
2、(2分)在“同一平面内”的条件下,下列说法中错误的有()①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③两条不同直线的位置关系只有相交、平行两种;④不相交的两条直线叫做平行线;⑤有公共顶点且有一条公共边的两个角互为邻补角.A. 1个B. 2个C. 3个D. 4个【答案】B【考点】对顶角、邻补角,垂线,平行公理及推论,平面中直线位置关系【解析】【解答】解:①同一平面内,过直线外一点有且只有一条直线与已知直线平行,故①错误;②同一平面内,过一点有且只有一条直线与已知直线垂直,故②正确;③同一平面内,两条不同直线的位置关系只有相交、平行两种,故③正确;④同一平面内,不相交的两条直线叫做平行线,故④正确;⑤有公共顶点且有一条公共边,另一边互为反向延长线的两个角互为邻补角,⑤错误;错误的有①⑤故答案为:B【分析】根据平行线公理,可对①作出判断;过一点作已知直线的垂线,这点可能在直线上也可能在直线外,且只有一条,可对②作出判断;同一平面内,两条不同直线的位置关系只有相交、平行两种,可对③作出判断;根据平行线的定义,可对④作出判断;根据邻补角的定义,可对⑤作出判断。
即可得出答案。
3、(2分)下列四个方程组中,是二元一次方程组的有()个.(1 ),(2)(3)(4).A. 4B. 3C. 2D. 1【答案】D【考点】二元一次方程组的定义【解析】【解答】解:(1)是二元二次方程组;(2 )是二元二次方程组;(3 )是分式,不是二元一次方程组;(4 )是二元一次方程组;故答案为:D.【分析】根据二元一次方程组的定义,两个方程中,含有两个未知数,且含未知数项的次数都是1的整式方程。
2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。
2018-2019学年七年级第二学期期中数学试卷一、选择题1.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.2.的算术平方根是()A.5 B.﹣5 C.D.3.下列各式正确的是()A.=±3 B.﹣=4 C.=4D.=±6 4.在平面直角坐标系中,点P(﹣5,a2+1)在()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2C.∠3=∠4 D.∠B=∠56.在,,,π,3.14,3.212212221…,这些数中,无理数的个数为()A.3 B.4 C.5 D.67.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°8.平面直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3,4,则点P的坐标为()A.(﹣4,﹣3)B.(3,4)C.(﹣3,﹣4)D.(4,3)9.下列语句是真命题的有()①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行.A.2个B.3个C.4个D.5个10.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣1,﹣1)D.(﹣2,0)11.一个正方形的面积为17,估计它的边长大小为()A.2与3之间B.3与4之间C.4与5之间D.5与6之间12.已知|7+b|+=0,则a+b为()A.8 B.﹣6 C.6 D.813.如图,已知a∥b,∠1=50°,∠2=120°,则∠3等于()A.100°B.110°C.120°D.130°14.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b),如f(1,2)=(﹣1,2);②g(a,b)=(b,a),如g(1,2)=(2,1);③h(a,b)=(﹣a,﹣b),如h(1,2)=(﹣1,﹣2).按照以上变换有:g(h(f(1,2)))=g(h(﹣1,2))=g(1,﹣2)=(﹣2,1),那么h(f (g(3,﹣4)))等于()A.(4,﹣3)B.(﹣4,3)C.(﹣4,﹣3)D.(4,3)二、填空题(本大题共5小题,每小题3分,共15分)15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.比较大小2﹣﹣1.17.已知2x﹣y=6,若用含x的代数式表示y,则y=.18.如图,△OAB的顶点B的坐标为(4,0),把△OAB沿x轴向右平移得到△CED,如果CB=1,那么E点的坐标为.19.如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2等于.三、解答题(本大题共6小题,共63分)20.计算:(1)+(2)(﹣1)﹣|2﹣|﹣21.求下列各式中的x的值:(1)25x2﹣16=0(2)(x﹣5)3=﹣3222.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点在格点上.且A(1,﹣4),B(5,﹣3),C(4,﹣1).(1)画出△ABC;(2)将△ABC先向左平移3个单位,再向上平移2个单位,画出平移后的三角形;(3)求出△ABC的面积.23.如图,△AOB纸片沿CD折叠,若O′C∥BD,那么O′D与AC平行吗?请说明理由.24.如图,已知∠1=70°,∠2=55°,∠D=70°,AE∥BC,求∠C的度数.25.已知,在平面直角坐标系中,AB⊥x轴于点B,点A(a,b)满足+|b﹣2|=0,平移线段AB使点A与原点重合,点B的对应点为点C.(1)则a=,b=;点C坐标为;(2)如图1,若在x轴上存在点M,连接MA,MB,使S△MAB=S▱ABCO,求出点M的坐标;(3)如图2,P是线段AB所在直线上一动点,连接OP,OE平分∠PON,作OF⊥OE,当点P在直线AB上运动过程中,请探究∠OPE与∠FOP的数量关系,并证明.参考答案一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.【分析】根据有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角进行分析即可.解:A、∠1与∠2不是对顶角,故此选项错误;B、∠1与∠2是对顶角,故此选项正确;C、∠1与∠2不是对顶角,故此选项错误;D、∠1与∠2不是对顶角,故此选项错误;故选:B.2.的算术平方根是()A.5 B.﹣5 C.D.【分析】首先根据算术平方根的定义把化简为5,再计算5的算术平方根即可.解:∵=5,∴5的算术平方根是,故选:C.3.下列各式正确的是()A.=±3 B.﹣=4 C.=4D.=±6 【分析】利用算术平方根、平方根的定义解答即可.解:∵±=±3,故选项A错误,∵这个式子无意义,故选项B错误,∵=≠4,故选项C错误,∵±=±6,故选项D正确,故选:D.4.在平面直角坐标系中,点P(﹣5,a2+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据非负数的性质判断出点P的纵坐标是正数,然后根据各象限内点的坐标特征解答.解:∵a2≥0,∴a2+1≥1,∴点P(﹣5,a2+1)在第二象限.故选:B.5.如图,不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2C.∠3=∠4 D.∠B=∠5【分析】根据同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行分别对四个选项进行判断,即可得到答案.解:A、∠B+∠BCD=180°,则AB∥CD(同旁内角互补,两直线平行);所以A选项不符;B、∠1=∠2,则AD∥BC(内错角相等,两直线平行),所以B选项符合;C、∠3=∠4,则AB∥CD(内错角相等,两直线平行),所以C选项不符;D、∠B=∠5,则AB∥CD(同位角相等,两直线平行),所以D选项不符.故选:B.6.在,,,π,3.14,3.212212221…,这些数中,无理数的个数为()A.3 B.4 C.5 D.6【分析】根据无理数的概念进行解答即可.解:,∵无限不循环小数叫无理数,∴这一组数中的无理数有:,,π,3.212212221…,共4个.故选:B.7.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°【分析】根据平移的性质得出l1∥l2,进而得出∠2的度数.解:∵将直线l1沿着AB的方向平移得到直线l2,∴l1∥l2,∵∠1=50°,∴∠2的度数是50°.故选:B.8.平面直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3,4,则点P的坐标为()A.(﹣4,﹣3)B.(3,4)C.(﹣3,﹣4)D.(4,3)【分析】根据点的坐标的几何意义及点在第三象限内的坐标符号的特点解答即可.解:∵点P在第三象限,且点P到x轴和y轴的距离分别为3,4,∴点P的横坐标是﹣4,纵坐标是﹣3,即点P的坐标为(﹣4,﹣3).故选:A.9.下列语句是真命题的有()①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行.A.2个B.3个C.4个D.5个【分析】利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.解:①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;②两直线平行,内错角相等,故错误,是假命题;③两点之间线段最短,正确,是真命题;④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题,真命题有2个,故选:A.10.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣1,﹣1)D.(﹣2,0)【分析】根据向左平移横坐标减,向下平移纵坐标减求解即可.解:∵点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,∴点B的横坐标为1﹣2=﹣1,纵坐标为3﹣4=﹣1,∴B的坐标为(﹣1,﹣1).故选:C.11.一个正方形的面积为17,估计它的边长大小为()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】首先求出正方形的边长,进而估算其边长的取值范围.解:∵一个正方形的面积为17,∴正方形的变长为:,估计它的边长大小为:4<<5,故选:C.12.已知|7+b|+=0,则a+b为()A.8 B.﹣6 C.6 D.8【分析】根据绝对值和算术平方根的非负性得出7+b=0,a﹣1=0,求出a、b的值即可.解:|7+b|+=0,7+b=0,a﹣1=0,b=﹣7,a=1,所以a+b=1+(﹣7)=﹣6,故选:B.13.如图,已知a∥b,∠1=50°,∠2=120°,则∠3等于()A.100°B.110°C.120°D.130°【分析】利用平行线的性质以及三角形的外角的性质解决问题即可.解:如图,∵a∥b,∴∠2+∠4=180°,∵∠2=120°,∴∠4=60°,∵∠3=∠1+∠4,∠1=50°,∴∠3=50°+60°=110°,故选:B.14.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b),如f(1,2)=(﹣1,2);②g(a,b)=(b,a),如g(1,2)=(2,1);③h(a,b)=(﹣a,﹣b),如h(1,2)=(﹣1,﹣2).按照以上变换有:g(h(f(1,2)))=g(h(﹣1,2))=g(1,﹣2)=(﹣2,1),那么h(f (g(3,﹣4)))等于()A.(4,﹣3)B.(﹣4,3)C.(﹣4,﹣3)D.(4,3)【分析】根据新定义先变换g(3,﹣4)=(﹣4,3),再变换f(﹣4,3)=(4,3),最后变换h(4,3)=(﹣4,﹣3).解:∵g(3,﹣4)=(﹣4,3),∴f(﹣4,3)=(4,3),∴h(4,3)=(﹣4,﹣3),即h(f(g(3,﹣4)))=(﹣4,﹣3).故选:C.二、填空题(本大题共5小题,每小题3分,共15分)15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.16.比较大小2﹣<﹣1.【分析】根据实数的估计和实数的大小比较即可.解:∵9<13<16,∴3<<4,∴﹣4<﹣<﹣3,∴﹣2<2﹣<﹣1,故答案为:<17.已知2x﹣y=6,若用含x的代数式表示y,则y=2x﹣6 .【分析】要用含x的代数式表示y,就要把含有y的项移到方程的左边,其它的移到方程的另一边:先移项,再系数化为1即可.解:移项,得﹣y=6﹣2x,系数化为1,得y=2x﹣6.故填:2x﹣6.18.如图,△OAB的顶点B的坐标为(4,0),把△OAB沿x轴向右平移得到△CED,如果CB=1,那么E点的坐标为(7,0).【分析】根据对应点间的距离等于平移的长度可得BE=OC,再求出OE,然后写出点E 的坐标即可.解:∵B(4,0),∴OB=4,∵CB=1,∴OC=OB﹣CB=4﹣1=3,由平移性质得,BE=OC=3,∴OE=OB+BE=4+3=7,∴点E的坐标为(7,0).故答案为:(7,0).19.如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2等于58°.【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.解:如图,∵AB∥CD,∴∠1=∠BAC=116°,由折叠可得,∠BAD=∠BAC=58°,∵AB∥CD,∴∠2=∠BAD=58°,故答案为:58°.三、解答题(本大题共6小题,共63分)20.计算:(1)+(2)(﹣1)﹣|2﹣|﹣【分析】(1)首先计算二次根式的化简、开立方,后算加减即可;(2)首先计算乘法、绝对值、开立方,后算加减即可.解:(1)原式=9﹣3+2=8;(2)原式=5﹣﹣(﹣2)+3,=5﹣﹣+2+3,=10﹣2.21.求下列各式中的x的值:(1)25x2﹣16=0(2)(x﹣5)3=﹣32【分析】(1)根据等式的性质,可化成平方的形式,根据开方运算,可得答案;(2)根据等式的性质,可化成立方的形式,根据开方运算,可得答案.解:(1)移项,得25x2=16,两边都除以25,得x2=,解得x=±;(2)两边都乘以2,得(x﹣5)3=﹣64,x﹣5=﹣4,x=1.22.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点在格点上.且A(1,﹣4),B(5,﹣3),C(4,﹣1).(1)画出△ABC;(2)将△ABC先向左平移3个单位,再向上平移2个单位,画出平移后的三角形;(3)求出△ABC的面积.【分析】(1)利用点的坐标的意义描点得到△ABC;(2)利用点平移的坐标规律写出A、B、C的对应点A′、B′、C′的坐标,然后描点即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积.解:(1)如图,△ABC为所作;(2)如图,△A′B′C′为所作;(3)△ABC的面积=4×3﹣×4×1﹣×2×1﹣×3×3=4.5.23.如图,△AOB纸片沿CD折叠,若O′C∥BD,那么O′D与AC平行吗?请说明理由.【分析】此题根据平行线的性质,得∠2=∠4;根据折叠的性质,得∠2=∠1,∠3=∠4;因此∠3=∠1,根据平行线的判定就可证明.解:O′D与AC平行.理由如下:∵O′C∥BD,∴∠2=∠4.∵∠2=∠1,∠3=∠4,∴∠3=∠1.∴O′D∥AC.24.如图,已知∠1=70°,∠2=55°,∠D=70°,AE∥BC,求∠C的度数.【分析】根据平行线的判定推出AB∥CD,根据平行线的性质求出∠AED=∠2=55°,根据平行线的性质求出∠C=∠AED=55°即可.解:∵∠1=70°,∠D=70°,∴∠1=∠D,∴AB∥CD,∵∠2=55°,∴∠AED=55°,又∵AE∥BC,∴∠C=∠AED=55°.25.已知,在平面直角坐标系中,AB⊥x轴于点B,点A(a,b)满足+|b﹣2|=0,平移线段AB使点A与原点重合,点B的对应点为点C.(1)则a= 4 ,b= 2 ;点C坐标为(0,﹣2);(2)如图1,若在x轴上存在点M,连接MA,MB,使S△MAB=S▱ABCO,求出点M的坐标;(3)如图2,P是线段AB所在直线上一动点,连接OP,OE平分∠PON,作OF⊥OE,当点P在直线AB上运动过程中,请探究∠OPE与∠FOP的数量关系,并证明.【分析】(1)由非负性可求a,b的值,即可求点A坐标,由平移的性质可求点C坐标;(2)M(a,0),由面积关系可求a的值,即可求点M坐标;(3)由角平分线的性质和平行线的性质可得∠POE=∠NOE,∠OPE+∠NOP=180°,由余角的性质可求解.解:(1)∵+|b﹣2|=0,∴a=4,b=2,∴点A(4,2)∵AB⊥x轴∴AB=2,∵平移线段AB使点A与原点重合,点B的对应点为点C.∴四边形ABCO是平行四边形∴OC=AB=2∴点C(0,﹣2)故答案为:4,2,(0,﹣2);(2)存在,设M(a,0),∵S△MAB=S▱ABCO,∴×2×|4﹣a|=×4×2∴a=6或2∴点M的坐标(2,0)或(6,0);(3)∠OPE=2∠FOP证明:∵OE平分∠PON∴∠POE=∠NOE∵AB∥CD∴∠OPE+∠NOP=180°故∠OPE=180°﹣2∠POE∵OF⊥OE∴∠FOE=90°∴∠FOP=90°﹣∠POE即∠OPE=2∠FOP。
平邑镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)在实数,,,0,-1.414,,,0.1010010001中,无理数有()A. 2个B. 3个C. 4个D. 5个【答案】A【考点】无理数的认识【解析】【解答】解:无理数有:共2个.故答案为:A.【分析】无理数指的是无限不循环的小数,其中包括开放开不尽的数,特殊之母,还有0.101001000100001 2、(2分)在图1、2、3、4、5中,∠1和∠2是同位角的有()A. (1)(2)(3)B. (2)(3)(4)C. (2)(3)(5)D. (1)(2)(5)【答案】D【考点】同位角、内错角、同旁内角【解析】【解答】解:(1)(2)(5)都是同位角;(3)不是三线所形成的角,(4)不在直线的同一侧.故答案为:D.【分析】此题考查了同位角的概念,两条直线被第三条直线所截形成的角中,同位角是指两个角都在第三条直线的同旁,在被截的两条直线同侧的位置的角,呈“F”型,即可得出答案。
3、(2分)在图示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A. B. C. D.【答案】D【考点】平移的性质,利用平移设计图案【解析】【解答】解:根据平移的概念,观察图形可知图案D通过平移后可以得到.故答案为:D【分析】根据平移的定义及平移的性质,可出答案。
4、(2分)6月8日我县最高气温是29℃,最低气温是19℃,则当天我县气温t(℃)的变化范围是()A.19≤t≤29B.t<19C.t≤19D.t≥29【答案】A【考点】不等式及其性质【解析】【解答】解:因为最低气温是19℃,所以19≤t,最高气温是29℃,t≤29,则今天气温t(℃)的范围是19≤t≤29.故答案为:A.【分析】由最高气温是19℃,最低气温是29℃可得,气温变化范围是19≤t≤29,即可作出判断。
第二学期期中考试 初一年级数学试卷一、选择题(每小题2分,共30分) 1、 计算327的结果是( )A. 33±B. 33C. ± 3D. 32、 如图,四个图形中的∠1和∠2,不是同位角的是( )A. B. C. D.3、 在平面直角坐标系中,点(﹣1,m 2+1)一定在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4、 在下面各数中无理数的个数有( )﹣3.14,722,0.1010010001……,+1.99,3π-。
A. 1个B. 2个C. 3个D. 4个5、 如图,直线AB ∥CD ,AF 交CD 于点E ,∠CEF =140°,则∠A 等于( )A. 35°B. 40°C. 45°D. 50° 6、 下列说法正确的是( )A. ﹣5是25的平方根B. 25的平方根是﹣5C. ﹣5是 (﹣5)2的算术平方根D. ±5是(﹣5)2的算术平方根7、 若方程组⎩⎨⎧=-+=+6)1(1434y k kx y x 的解中x 与y 的值相等,则k 为( )A. 4B. 3C. 2D. 18、 线段CD 是由线段AB 平移得到的,点A (﹣1,4)的对应点为C (4,7),则点D (1,2)的对应点B 的坐标为( ) A. (2,9) B. (5,3) C. (﹣4,﹣1) D. (﹣9,﹣4) 9、 在实数范围内,下列判断正确的是( )A. 若n m = ,则m =nB. 若22b a >,则a >b C. 若22)(b a =,则a =bD. 若33b a =,则a =b10、在平面直角坐标系中,若A 点坐标为(﹣3,3),B 点坐标为(2,0),则△ABO 的面积为( )A. 15B. 7.5C. 6D. 311、如图所示,下列条件中,不能..判断l 1∥l 2的是( ) A. ∠1=∠3 B. ∠2=∠3 C. ∠4=∠5 D. ∠2+∠4=180° 12、有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的补角相等;④同一平面内,垂直于同一条直线的两条直线互相平行。
2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共24分)1.计算a6÷a2的结果是( )A.a3 B.a4 C.a8 D.a122.二元一次方程2x+y=11的非负整数解有( )A.1个 B.2个 C.6个 D.无数个3.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.A、C两点之间 B.E、G两点之间C.B、F两点之间 D.G、H两点之间4.方程3x+2y=1和2x=y+3的公共解是( )A. B. C. D.5.若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式、如在代数式a+b+c中,把a和b互相替换,得b+a+c;把a和c互相替换,得c+b+a;把b和c…;a+b+c 就是完全对称式、下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a其中为完全对称式的是( )A.①② B.②③ C.①③ D.①②③6.已知方程组的解满足x+y=3,则k的值为( )A.10 B.8 C.2 D.﹣87.甲,乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x米/秒,乙的速度为y米/秒,则下列方程组中正确的是( )A. B.C .D .8.现有一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片的小正方形卡片((a <b <a )如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab ﹣15,则小正方形卡片的面积是( )A .10B .8C .2D .5二、填空题(每题3分,共30分)9.某细胞的直径约为0.0000102米,用科学记数法表示为 米. 10.计算:1012﹣992= .11.若(a ﹣2)x |a |﹣1+3y =1是二元一次方程,则a = .12.已知(m +n )2=7,(m ﹣n )2=3,则m 2+n 2= .13.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2= °.14.设A =(x ﹣3)(x ﹣7),B =(x ﹣2)(x ﹣8),则A 、B 的大小关系为 .15.如图,面积为3cm 2的△ABC 纸片沿BC 方向平移至△DEF 的位置,平移的距离是BC 长的2倍,则△ABC 纸片扫过的面积为 .16.如果4x 2﹣mxy +9y 2是一个完全平方式,则m =.17.如果方程组的解中x 与y 的值相等,那么a 的值是 .18.对于正整数m ,若m =pq (p ≥q >0,且p ,q 为整数),当p ﹣q 最小时,则称pq 为m 的“最佳分解”,并规定f (m )=(如:12的分解有12×1,6×2,4×3,其中,4×3为12的最佳分解,则f (12)=).关于f (m )有下列判断:①f (27)=3;②f (13)=;③f (2018)=;④f (2)=f (32);⑤若m 是一个完全平方数,则f (m )=1.其中,正确判断的序号是 . 三、解答题(共96分) 19.(8分)计算(1)(3.14﹣π)0+(﹣4)2﹣()﹣1(2)(x ﹣3)2﹣(x +2)(x ﹣2)20.(8分)因式分解 (1)a 2﹣25 (2)xy 2﹣4xy +4x 21.(8分)解方程组 (1) (2)22.(8分)先化简再求值:4(a +2)2﹣7(a +3)(a ﹣3)+3(a ﹣1)2,其中a 是最小的正整数. 23.(8分)如图,EG ⊥BC 与点G ,∠BFG =∠DAC ,AD 平分∠BAC ,试判断AD 与BC 的位置关系,并说明理由.24.(8分)小明和小丽同解一个二元一次方程组,小明正确解得,小丽因抄错了c ,解得.已知小丽除抄错c 外没有发生其他错误,求a +b +c 的值.25.(12分)拼图游戏:一天,小嘉在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a +2b )(a +b )=a 2+3ab +2b 2.(1)则图③可以解释为等式: .(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为3a 2+7ab +2b 2,并通过拼图对多项式3a 2+7ab +2b 2因式分解:3a 2+7ab +2b 2= . (3)如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个长方形的两边长(x >y ),结合图案,指出以下关系式:(1)xy =;(2)x +y =m ;(3)x 2﹣y 2=m •n ;(4)x 2+y 2=其中正确的关系式的个数有( ) A .1个 B .2个 C .3个 D .4个. 26.(12分)先阅读下面的内容,再解决问题: 例题:若m 2+2mn +2n 2﹣6n +9=0,求m 和n 的值. ∵m 2+2mn +2n 2﹣6n +9=0∴m 2+2mn +n 2+n 2﹣6n +9=0∴(m +n )2+(n ﹣3)2=0∴m +n =0,n ﹣3=0∴m =﹣3,n =3 根据你的观察,探究下面的问题:(1)若x 2+4x +4+y 2﹣8y +16=0,求的值.(2)试说明不论x ,y 取什么有理数时,多项式x 2+y 2﹣2x +2y +3的值总是正数.(3)已知a ,b ,c 是△ABC 的三边长,满足a 2+b 2=10a +8b ﹣41,且c 比a 、b 都大,求c 的取值范围.27.(12分)某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人. (1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满: ①请你设计出所有的租车方案;②若小客车每辆租金150元,大客车每辆租金250元,请选出最省线的租车方案,并求出最少租金.28.(12分)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN= °;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD 交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.【分析】根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减计算即可. 【解答】解:a6÷a2=a6﹣2=a4.故选:B.【点评】本题主要考查同底数幂的除法,熟练掌握运算性质是解题的关键.2.【分析】最小的非负整数为0,把x=0,x=1,x=2,x=3…依次代入二元一次方程2x+y=11,求y值,直至y为负数,从而得到答案.【解答】解:最小的非负整数为0,当x=0时,0+y=11,解得:y=11,当x=1时,2+y=11,解得:y=9,当x=2时,4+y=11,解得:y=7,当x=3时,6+y=11,解得:y=5,当x=4时,8+y=11,解得:y=3,当x=5时,10+y=11,解得:y=1,当x=6时,12+y=11,解得:y=﹣1(不合题意,舍去)即当x≥6时,不合题意,即二元一次方程2x+y=11的非负整数解有6个,故选:C.【点评】本题考查解二元一次方程,正确掌握代入法是解题的关键.3.【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释. 【解答】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.4.【分析】组成方程组求解即可.【解答】解:解方程组得,故选:D.【点评】本题主要考查了二元一次方程的解,解题的关键是正确求出方程组的解.5.【分析】由于将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式,由于将代数式中的任意两个字母互相替换,代数式不变,根据这个定义分别将①②③进行替换,看它们都有没有改变,由此即可确定是否完全对称式. 【解答】解:①∵(a﹣b)2=(b﹣a)2,∴①是完全对称式;②ab+bc+ca中把a和b互相替换得ab+bc+ca,∴②是完全对称式;③a2b+b2c+c2a中把a和b互相替换得b2a+a2c+c2b,和原来不相等,∴不是完全对称式;故①②正确.故选:A.【点评】此题是一个阅读材料题,考查了完全平方公式,难点在于读懂题意,然后才能正确利用题意解决问题.6.【分析】理解清楚题意,运用三元一次方程组的知识,解出K的数值.【解答】解:由题意可得,2×①﹣②得y=k﹣,②﹣③得x=﹣2,代入③得y=5,则k﹣=5,解得k=8.故选:B.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.7.【分析】此题中的等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;②乙先跑2秒,则甲跑4秒就可追上乙.【解答】解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故选:A.【点评】此题是追及问题.注意:无论是哪一个等量关系中,总是甲跑的路程=乙跑的路程. 8.【分析】根据题意、结合图形分别表示出图2、3中的阴影部分的面积,根据题意列出算式,根据整式是混合运算法则计算即可.【解答】解:图3中的阴影部分的面积为:(a﹣b)2,图2中的阴影部分的面积为:(2b﹣a)2,由题意得,(a﹣b)2﹣(2b﹣a)2=2ab﹣15,整理得,b2=5,则小正方形卡片的面积是5,故选:D.【点评】本题考查的是整式的混合运算,正确表示出两个阴影部分的面积是解题的关键. 二、填空题(每题3分,共30分)9.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000102=1.02×10﹣5,故答案为:1.02×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.【分析】直接利用平方差公式分解因式进而计算得出即可.【解答】解:1012﹣992=(101+99)×(101﹣99)=400.故答案为:400.【点评】此题主要考查了平方差公式的应用,熟练掌握平方差公式是解题关键.11.【分析】根据二元一次方程的定义知,未知数x的次数|a|﹣1=1,且系数a﹣2≠0. 【解答】解:∵(a﹣2)x|a|﹣1+3y=1是二元一次方程,∴|a|﹣1=1且a﹣2≠0,解得,a=﹣2;故答案是:﹣2.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.12.【分析】利用完全平方公式计算即可求出所求.【解答】解:∵(m+n)2=m2+n2+2mn=7①,(m﹣n)2=m2+n2﹣2mn=3②,∴①+②得:2(m2+n2)=10,则m2+n2=5,故答案为:5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.13.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.【点评】本题考查了三角形的内角和定理,平行线的性质,邻补角的定义的应用,解此题的关键是能求∠3的度数,难度适中.14.【分析】根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案. 【解答】解:∵A=(x﹣3)(x﹣7)=x2﹣10x+21,B=(x﹣2)(x﹣8)=x2﹣10x+16, ∴A﹣B=x2﹣10x+21﹣(x2﹣10x+16)=5>0,∴A>B,故答案为:A>B.【点评】本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.15.【分析】根据平移的性质可以知道四边形ACED 的面积是三个△ABC 的面积,△ABC 纸片扫过的面积为四边形ABDF 的面积=5个△ABC 的面积; 【解答】解:∵平移的距离是边BC 长的两倍, ∴BC =CE =EF ,∴四边形ACED 的面积是三个△ABC 的面积; ∴△ABC 纸片扫过的面积=S四边形ABFD=5×3=15cm 2,【点评】【点评】考查了平移的性质,考查了平移的性质,考查了平移的性质,本题的关键是得出四边形本题的关键是得出四边形ACED 的面积是三个△ABC 的面积.然后根据已知条件计算.16.【分析】这里首末两项是2x 和3y 这两个数的平方,那么中间一项为加上或减去2x 和3y 积的2倍.【解答】解:∵4x 2﹣mxy +9y 2是一个完全平方式, ∴﹣mxy =±2×2x ×3y , ∴m =±12.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 17.【分析】把y =x 代入方程组求出a 的值即可. 【解答】解:把y =x 代入方程组得:,解得:,则a 的值是3, 故答案为:3【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.【分析】先分解因数,进而找出最佳分解,即可得出结论. 【解答】解:①∵27的分解有27×1,9×3, ∴9×3为27的最佳分解,则f (12)==,故说法①错误;②∵13的分解有13×1,∴13×1为13的最佳分解,则f (13)=,故说法②正确;③∵2018的分解有2018×1,1009×2,∴1009×2为2018的最佳分解,则f (2018)=,故说法③错误;④∵2的分解有2×1,∴2×1为2的最佳分解,则f (2)=,∵32的分解有32×1,16×2,8×4,∴8×4为32的最佳分解,则f (22)==,∴f (2)=f (32),故说法④正确;⑤∵m 是一个完全平方数,设m =n 2(m >0),∴n ×n 为m 的最佳分解,则f (m )==1,故说法⑤正确,∴正确判断的序号为②④⑤,故答案为②④⑤.【点评】此题主要考查了新定义,分解因数,完全平方数的特点,能正确分解因数是解本题的关键.三、解答题(共96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用完全平方公式,以及平方差公式计算即可求出值.【解答】解:(1)原式=1+16﹣2=15;(2)原式=x 2﹣6x +9﹣x 2+4=﹣6x +13.【点评】此题考查了平方差公式,完全平方公式,以及实数的运算,熟练掌握公式及法则是解本题的关键.20.【分析】(1)两项考虑平方差公式;(2)提取公因式x后,再用完全平方公式.【解答】解:(1)原式=(a+5)(a﹣5);(2)原式=x(y2﹣4y+4)=x(y﹣2)2.【点评】本题考查了因式分解的平方差公式和完全平方公式.题目比较简单,掌握公式是关键.21.【分析】(1)用代入法求解方程组比较简便;(2)变形2x+y=1,可用代入法求解,亦可①×2﹣②用加减法求解.【解答】解:(1),把②代入①,得2(1﹣y)+4y=5,解得,y=,把y=代入②,得x=1﹣=﹣.∴原方程组的解为.(2)由①,得y=1﹣2x③,把③代入②,得5x+2(1﹣2x)=3,解得x=1把x=1代入③,得y=1﹣2×1=﹣1.所以原方程组的解为.【点评】本题考查的是二元一次方程组的解法,题目相对简单,掌握代入、加减消元法是解决本题的关键.22.【分析】利用完全平方公式和平方差公式计算,进一步合并同类项,再进一步代入求得数值即可.【解答】解:原式=4(a2+4a+4)﹣7(a2﹣9)+3(a2﹣2a+1)=4a 2+16a +16﹣7a 2+63+3a 2﹣6a +3=10a +82,最小的正整数是1,则a =1,原式=10+82=92,.【点评】此题考查整式的混合运算,注意先利用公式计算,再进一步代入求得数值即可. 23.【分析】根据角平分线的定义可得∠BAD =∠DAC ,从而可得∠BFG =∠BAD ,再根据同位角相等,两直线平行可得EG ∥AD ,然后根据EG ⊥BC 即可证明AD ⊥BC .【解答】解:AD ⊥BC .理由如下:∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∵∠BFG =∠DAC ,∴∠BFG =∠BAD ,∴EG ∥AD ,∴∠EGC =∠ADC ,又∵EG ⊥BC ,∴∠EGC =90°,∴∠ADC =90°,∴AD ⊥BC .【点评】本题考查了平行线的判定与角平分线的定义,找出相等的角是解题的关键. 24.【分析】因为小明的解正确,所以可以代入任何一个方程,代入①可求c 的值,代入②得a ﹣b =2;因为小丽抄错了c ,因此可以代入②中,得a ﹣3b =1,建立方程组,可以得出a 、b 的值,从而求出结论.【解答】解:将代入cx ﹣3y =﹣2①得,c +3=﹣2,c =﹣5, 将代入ax +by =2②得,a ﹣b =2③, 将代入②得,2a ﹣6b =2,a ﹣3b =1④,将③,④联立,, 解之得,所以.【点评】本题考查了二元一次方程组的解,要求方程组的字母系数,通常采用代入法,将正确的解代入即可.25.【分析】(1)看图即可得出所求的式子;(2)画出的矩形边长分别为(3a+b)和(a+2b)即可;(3)根据图中每个图形的面积之间的关系即可判断出正确的有几个.【解答】解:(1)由分析知:图③所表示的等式为:(2a+b)(a+2b)=2a2+5ab+2b2;(2)示意图如下3a2+7ab+2b2=(3a+b)(a+2b);(3)D.【点评】此题考查利用图形面积研究因式分解,同时也加深了对多项式乘多项式的理解. 26.【分析】(1)已知等式利用完全平方公式整理配方后,求出x与y的值,即可求出所求;(2)原式配方变形后,利用非负数的性质判断即可;(3)已知等式利用完全平方公式配方后,利用非负数的性质求出a与b的值,即可求出c的范围.【解答】解:(1)已知等式整理得:(x+2)2+(y﹣4)2=0,可得x+2=0,y﹣4=0,解得:x=﹣2,y=4,则原式=﹣2;(2)∵(x﹣1)2≥0,(y+1)2≥0,∴原式=(x﹣1)2+(y+1)2+1≥1>0,则不论x,y取什么有理数时,多项式x2+y2﹣2x+2y+3的值总是正数;(3)已知等式整理得:(a﹣5)2+(b﹣4)2=0,可得a﹣5=0,b﹣4=0,解得:a=5,b=4,则c的范围是5<c<9.【点评】此题考查了配方法的应用,非负数的性质:偶次幂,以及三角形三边关系,熟练掌握完全平方公式是解本题的关键.27.【分析】(1)设每辆小客车能坐x人,每辆大客车能坐y人,根据题意可得等量关系:3辆小客车座的人数+1辆大客车座的人数=105人;1辆小客车座的人数+2辆大客车座的人数=110人,根据等量关系列出方程组,再解即可;(2)①根据题意可得小客车m辆运的人数+大客车n辆运的人数=400,然后求出整数解即可;②根据①所得方案和小客车每辆租金150元,大客车每辆租金250元分别计算出租金即可.【解答】解:(1)设每辆小客车能坐x人,每辆大客车能坐y人,据题意:,解得:,答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:150×20=3000(元),方案二租金:150×11+250×4=2650(元),方案三租金:150×2+250×8=2300(元),∴方案三租金最少,最少租金为2300元.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出二元一次方程或方程组.28.【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t﹣180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t﹣120°,∠BCD=120°﹣∠BCD=t﹣60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【解答】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得 t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点评】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.。
第1页(共21页)2018-2019学年七年级下学期期中考试数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列式子中,属于最简二次根式的是( )ABCD2x 的取值范围是( )A .3x <B .3x …C .3x >D .3x …3.下列计算错误的是( )A=B=C= D.3=4.实数a( )A .7B .7-C .215a -D .无法确定 5.已知a =b =,则a 与b 的关系是( )A .a b =B .1ab =C .a b =-D .5ab =-6.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( )A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线互相垂直的四边形D .对角线相等的四边形7.如图,ABCD 的对角线AC 与BD 相交于点O ,AB AC ⊥,若4AB =,6AC =,则BD的长是( )A .8B .9C .10D .11 8.如图,在ABC ∆中,45A ∠=︒,30B ∠=︒,CD AB ⊥,垂足为D ,1AD =,则BD 的长第2页(共21页)为( )AB .2 CD .39.如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A .25海里B .30海里C .40海里D .50海里10.如图,平行四边形ABCD 中,5AD =,3AB =,AE 平分BAD ∠交BC 边于点E ,则EC 等于( )A .1B .2C .3D .411.如图, 在ABC ∆中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH BC⊥于H ,8FD =,则HE 等于( )A . 20B . 16C . 12D . 812.如图,已知OP 平分AOB ∠,60AOB ∠=︒,2CP =,//CP OA ,PD OA ⊥于点D ,PE OB⊥于点E .如果点M 是OP 的中点,则DM 的长是( )。
临沂初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列说法中,不正确的是()A. 8的立方根是22B. -8的立方根是-2C. 0的立方根是0D. 125的立方根是±5 【答案】D【考点】立方根及开立方【解析】【解答】A、8的立方根是2,故不符合题意;B、-8的立方根是-2,故不符合题意;C、0的立方根是0,故不符合题意;D、∵5的立方等于125,∴125的立方根等于5,故符合题意.故答案为:D.【分析】立方根是指如果一个数的立方等于a 那么这个数叫作a的立方根。
(1)根据立方根的意义可得原式=2;(2)根据立方根的意义可得原式=-2;(3)根据立方根的意义可得原式=0;(4)根据立方根的意义可得原式=5.2、(2分)下列计算正确的是()A.=0.5B.C.=1D.-=-【答案】C【考点】立方根及开立方【解析】【解答】A选项表示0.0125的立方根,因为0.53=0.125,所以,A选项错误;B选项表示的立方根,因为,所以,B选项错误;C选项表示的立方根,因为,,所以,C选项正确;D选项表示的立方根的相反数,因为,所以,D选项错误。
故答案为:C【分析】分别求出0.5,,,的3次方的值,再与A、B、C、D四个选项中的被开方数进行比较,相等的即为正确的选项。
3、(2分)三元一次方程组的解为()A. B. C. D.【答案】C【考点】三元一次方程组解法及应用【解析】【解答】解:②×4−①得2x−y=5④②×3+③得5x−2y=11⑤④⑤组成二元一次方程组得,解得,代入②得z=−2.故原方程组的解为.故答案为:C.【分析】观察方程组中同一个未知数的系数特点:z的系数分别为:4,1、-3,存在倍数关系,因此由②×4−①;②×3+③分别消去z,就可得到关于x、y的二元一次方程组,利用加减消元法求出二元一次方程组的解,然后将x、y的值代入方程②求出z的值,就可得出方程组的解。
临沂初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列说法中,不正确的是()A. 8的立方根是22B. -8的立方根是-2C. 0的立方根是0D. 125的立方根是±5【答案】D【考点】立方根及开立方【解析】【解答】A、8的立方根是2,故不符合题意;B、-8的立方根是-2,故不符合题意;C、0的立方根是0,故不符合题意;D、∵5的立方等于125,∴125的立方根等于5,故符合题意.故答案为:D.【分析】立方根是指如果一个数的立方等于a 那么这个数叫作a的立方根。
(1)根据立方根的意义可得原式=2;(2)根据立方根的意义可得原式=-2;(3)根据立方根的意义可得原式=0;(4)根据立方根的意义可得原式=5.2、(2分)下列计算正确的是()A.=0.5B.C.=1D.-=-【答案】C【考点】立方根及开立方【解析】【解答】A选项表示0.0125的立方根,因为0.53=0.125,所以,A选项错误;B选项表示的立方根,因为,所以,B选项错误;C选项表示的立方根,因为,,所以,C选项正确;D选项表示的立方根的相反数,因为,所以,D选项错误。
故答案为:C【分析】分别求出0.5,,,的3次方的值,再与A、B、C、D四个选项中的被开方数进行比较,相等的即为正确的选项。
3、(2分)三元一次方程组的解为()A. B. C. D.【答案】C【考点】三元一次方程组解法及应用【解析】【解答】解:②×4−①得2x−y=5④②×3+③得5x−2y=11⑤④⑤组成二元一次方程组得,解得,代入②得z=−2.故原方程组的解为.故答案为:C.【分析】观察方程组中同一个未知数的系数特点:z的系数分别为:4,1、-3,存在倍数关系,因此由②×4−①;②×3+③分别消去z,就可得到关于x、y的二元一次方程组,利用加减消元法求出二元一次方程组的解,然后将x、y的值代入方程②求出z的值,就可得出方程组的解。
临沂市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)若m>n,下列不等式不成立的是()A. m+2>n+2B. 2m>2nC.D. -3m>-3n【答案】D【考点】不等式及其性质【解析】【解答】A、m>n,不等式两边加2得:m+2>n+2,故此选项成立;B、m>n,不等式两边乘2得:2m>2n,故此选项成立;C、m>n,不等式两边除以2得:>,故此选项成立;D、m>n,不等式两边乘-3得:-3m<-3n,故此选项不成立.故答案为:D.【分析】根据不等式的性质,对各选项逐一判断。
2、(2分)关于下列问题的解答,错误的是()A.x的3倍不小于y的,可表示为3x>yB.m的与n的和是非负数,可表示为+n≥0C.a是非负数,可表示为a≥0D.是负数,可表示为<0【答案】A【考点】不等式及其性质【解析】【解答】解:A、根据列不等式的意义,可知x的3倍不小于y的,可表示为3x≥y,故符合题意;B、由“m的与n的和是非负数”,表示为+n≥0,故不符合题意;C、根据非负数的性质,可知a≥0,故不符合题意;D、根据是负数,表示为<0,故不符合题意.故答案为:A.【分析】A 先表示x的3倍与y的,再根据“不小于”即“大于或等于” 列出不等式即可,再作出判断即可。
B 先表示m的与n的和(最后求的是和)是“是非负数”即正数和0,列出不等式,再注册判断。
C “ 非负数”即正数和0,D3、(2分)已知是方程组的解,则a+b+c的值是()A. 3B. 2C. 1D. 无法确定【答案】A【考点】三元一次方程组解法及应用【解析】【解答】解:将代入方程得,①+②+③得4(a+b+c)=12,∴a+b+c=3,故答案为:A.【分析】将x、y、z的值代入方程组中,再观察方程组中各未知数的系数特点:相同字母的系数之和都为4,因此由(①+②+③)÷4,就可求得a+b+c的值。
2018-2019学年度七年级第二学期期中考试数学试卷一、单项选择题(40分)1.下列命题中:①3±是-9的平方根;②()25-的算术平方根是5;③2-是一个负数;④ 全体实数和数轴上的点一一对应。
正确的个数是A.1B.2C.3D.42.若y x 、为实数,且满足063=+-++y x x ,则2018⎪⎪⎭⎫ ⎝⎛y x 的值是A.3B.-3C.1D.-13.在实数:⋯-1313313331.07125514159.33、、、π、、(每相邻两个1之间依次多一个3),无理数有A.1个B.2个C.3个D.4个4.加上下列单项式,仍不能使142+x 成为完全平方式的是A.44xB.x 4C.x 4-D.x 25.已知bm am >,则下列结论中正确的是A.b a >B.b a <C.mb m a > D.22bm am ≥ 6.若不等式6432+≥-x a x 的解集是4-≤x ,则a 的值是 A.34 B.22 C.-3 D.07.如果()()262-+=-+x b x ax x ,那么b a -的值为A.2B.-2C.3D.-38.若042=-+y x ,则224-∙x y 的值等于A.4B.6C.-4D.89.如果()222b a A b ab a -=+++,那么A 等于 A.ab 3- B.ab - C.0 D.ab10.将一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②中阴影部分的 面积(用b a 、的代数式表示)是A.22b a -B.abC.b a -D.()2b a - 二、填空题(20分) 11.253⎪⎭⎫ ⎝⎛-的平方根是______________. 12.比较大小:52____23.13.日前中科院突破了炭纳米点近红外波段发光效率低的难题,首次硏制岀具有高效近红外吸收/发光特性的新型纳米发光材料,具有尺寸小(小于20纳米)、无毒、发光性能好、原料广泛等优点,引起国内外广泛关注。
2018-2019学年山东省临沂市七年级(下)期中测试卷数学一、选择题(每小题3分,共42)1.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.52.下列各式中,正确的是()A.±=± B.±=C.±=± D.=±3.若|3﹣a|+=0,则a+b的值是()A.2 B.1 C.0 D.﹣14.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间5.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个 B.2个 C.3个 D.4个6.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A.B.C.D.7.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°8.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4)B.(3,4) C.(﹣4,3)D.(4,3)9.在平面直角坐标系中,将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)10.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0)D.无法确定12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°13.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136° D.138°14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是()A.110°B.120°C.140° D.150°二、填空题(每小题3分,共18分)15.把命题“同角的余角相等”改写成“如果…那么…”的形式.16.3﹣的相反数是,绝对值是.17.若一个正数的平方根是2a﹣3与5﹣a,则这个正数是.18.点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P 的坐标是.19.直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB 的长度:AB7cm.(填>或者<或者=或者≤或者≥).20.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为米.三、解答题(共60分)21.(1)计算:(﹣2)2×+||+×(﹣1)2016(2)解方程:3(x﹣2)2=27.22.完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=()∠ABE=()∴∠ADF=∠ABE∴∥()∴∠FDE=∠DEB.()23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′、)(4)求△ABC的面积.24.如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B 两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?25.如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.26.如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.2018-2019学年山东省临沂市七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42)1.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.5【考点】26:无理数.【分析】根据无理数的定义及常见的无理数的形式即可判定.【解答】解:在下列各数:3.1415926、、0.2、、、、中,根据无理数的定义可得,无理数有、两个.故选A.2.下列各式中,正确的是()A.±=± B.±=C.±=± D.=±【考点】22:算术平方根.【分析】根据平方根的定义得到±=±,即可对各选项进行判断.【解答】解:因为±=±,所以A选项正确;B、C、D选项都错误.故选A.3.若|3﹣a|+=0,则a+b的值是()A.2 B.1 C.0 D.﹣1【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式求出a、b的值,计算即可.【解答】解:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选:B.4.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【考点】2B:估算无理数的大小.【分析】估算出的范围,即可确定出所求式子的范围.【解答】解:∵16<21<25,∴4<<5,即2<﹣2<3,则﹣2的值在2到3之间,故选B5.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个 B.2个 C.3个 D.4个【考点】O1:命题与定理.【分析】正确的命题叫真命题,错误的命题叫做假命题,据此逐项判断即可.【解答】解:∵若a>0,b>0,则a+b>0,∴选项①符合题意;∵若a≠b,且|a|=|b|时,a2=b2,∴选项②不符合题意;∵两点之间,线段最短,∴选项③符合题意;∵同位角相等,两直线平行,∴选项④符合题意,∴真命题的个数是3个:①、③、④.故选:C.6.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A .B .C .D .【考点】Q1:生活中的平移现象.【分析】根据图形平移的性质对各选项进行逐一分析即可.【解答】解:A 、由图中所示的图案通过旋转而成,故本选项错误;B 、由图中所示的图案通过翻折而成,故本选项错误C 、由图中所示的图案通过旋转而成,故本选项错误;D 、由图中所示的图案通过平移而成,故本选项正确.故选D .7.如图,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100°【考点】IH :方向角. 【分析】本题考查了方向角有关的知识,若需要和出发时的方向一致,在C 点的方向应调整为向右80度.【解答】解:60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选:A .8.已知点P 位于y 轴右侧,距y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 坐标是( )A .(﹣3,4)B .(3,4)C .(﹣4,3)D .(4,3)【考点】D1:点的坐标.【分析】根据题意,P 点应在第一象限,横、纵坐标为正,再根据P 点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.9.在平面直角坐标系中,将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】让B的横坐标加5,纵坐标减3即可得到所求点A的坐标.【解答】解:∵将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A (x,y)重合,∴所求点A的横坐标为:﹣3+5=2,纵坐标为2﹣3=﹣1,∴所求点的坐标为(2,﹣1).故选D.10.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【考点】D3:坐标确定位置.【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0)D.无法确定【考点】D5:坐标与图形性质;K3:三角形的面积.【分析】根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x轴上,说明AP=5,已知点A的坐标,可求P点坐标.【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C.12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠D=∠1=34°,由垂直的定义得到∠DEC=90°,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.13.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136° D.138°【考点】JA:平行线的性质.【分析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是()A.110°B.120°C.140° D.150°【考点】PB:翻折变换(折叠问题).【分析】由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC﹣∠EFG.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图b中∠GFC=180°﹣2∠EFG=140°,在图c中∠CFE=∠GFC﹣∠EFG=120°,故选B.二、填空题(每小题3分,共18分)15.把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.【考点】O1:命题与定理.【分析】命题有题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.16.3﹣的相反数是﹣3,绝对值是﹣3.【考点】28:实数的性质.【分析】根据只有符号不同的两数叫做互为相反数解答;根据负数的绝对值等于它的相反数解答.【解答】解:3﹣的相反数是﹣3,绝对值是﹣3.故答案为:﹣3;﹣3.17.若一个正数的平方根是2a﹣3与5﹣a,则这个正数是49.【考点】21:平方根.【分析】根据平方根的定义得到2a﹣3与5﹣a互为相反数,列出关于a的方程,求出方程的解得到a的值,即可确定出这个正数.【解答】解:根据题意得:2a﹣3+5﹣a=0,解得:a=﹣2,则这个正数为49.故答案为:4918.点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是(﹣,).【考点】D1:点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度列方程求出a的值,再求解即可.【解答】解:∵点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,∴﹣2a+1﹣3a=4,解得a=﹣,∴2a=2×(﹣)=﹣,1﹣3a=1﹣3×(﹣)=1+=,所以,点P的坐标为(﹣,).故答案为(﹣,).19.直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB 的长度:AB≥7cm.(填>或者<或者=或者≤或者≥).【考点】J4:垂线段最短;J5:点到直线的距离.【分析】利用“从直线外一点到这条直线上各点所连的线段中,垂线段最短”可以作出判断.【解答】解:A到直线m的距离是7cm,根据点到直线距离的定义,7cm表示垂线段的长度,根据垂线段最短,其它线段的长度大于或等于7cm,故答案填:≥.20.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为98米.【考点】Q1:生活中的平移现象.【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,∴图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故答案为:98.三、解答题(共60分)21.(1)计算:(﹣2)2×+||+×(﹣1)2016(2)解方程:3(x﹣2)2=27.【考点】2C:实数的运算.【分析】(1)原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.【解答】解:(1)原式=2+2+=4+;(2)方程整理得:(x﹣2)2=9,开方得:x﹣2=±3,解得:x=5或x=﹣1.22.完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=∠ABC(两直线平行,同位角相等)∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=∠ADE(角平分线定义)∠ABE=∠ABC(角平分线定义)∴∠ADF=∠ABE∴DF∥BE(同位角相等,两直线平行)∴∠FDE=∠DEB.(两直线平行,内错角相等)【考点】JB:平行线的判定与性质.【分析】根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=∠ADE,∠ABE=∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.【解答】解:理由是:∵DE∥BC(已知),∴∠ADE=∠ABC(两直线平行,同位角相等),∵DF、BE分别平分ADE、∠ABC,∴∠ADF=∠ADE(角平分线定义),∠ABE=∠ABC(角平分线定义),∴∠ADF=∠ABE,∴DF∥BE(同位角相等,两直线平行),∴∠FDE=∠DEB(两直线平行,内错角相等),故答案为:∠ABC,两直线平行,同位角相等;∠ADE,角平分线定义;∠ABC,角平分线定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等.23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(1、1)、B′(3、5)、C′0、4)(4)求△ABC的面积.【考点】Q4:作图﹣平移变换.【分析】(1)根据图可直接写出答案;(2)根据平移的方向作图即可;(3)根据所画的图形写出坐标即可;(4)利用长方形的面积减去四周三角形的面积可得答案.【解答】解:(1)A(2,﹣1),B(4,3);(2)如图所示:(3)A′(1,1),B′(3,5),C′(0,4);(4)△ABC的面积:3×4﹣×1×3﹣×2×4﹣×1×3=5.24.如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B 两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?【考点】IH:方向角;J5:点到直线的距离.【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【解答】解:(1)由两地南北方向平行,根据内错角相等,可知B地所修公路的走向是南偏西46°;(2)∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣46°﹣44°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=12千米.25.如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.【考点】J9:平行线的判定.【分析】(1)证明∠1=∠CDB,利用同位角相等,两直线平行即可证得;(2)平行,根据平行线的性质可以证得∠A=∠CBE,然后利用平行线的判定方法即可证得;(3)∠EBC=∠CBD,根据平行线的性质即可证得.【解答】解:(1)平行.理由如下:∵∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义),∴∠1=∠CDB,∴AE∥FC(同位角相等两直线平行);(2)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等),又∵∠A=∠C,∴∠A=∠CBE,∴AD∥BC(同位角相等,两直线平行);(3)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB,∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD,∴∠EBC=∠CBD,∴BC平分∠DBE.26.如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【考点】JA:平行线的性质.【分析】(1)首先过点P作PE∥AB,由AB∥CD,可得PE∥AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠B,∠2=∠D,则可求得∠BPD=∠B+∠D.(2)由AB∥CD,根据两直线平行,内错角相等与三角形外角的性质,即可求得∠BPD与∠B、∠D的关系.【解答】解:(1)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(2)如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠P,∴∠D=∠B+∠P,即∠BPD=∠D﹣∠B;如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD,∴∠1=∠B,∵∠1=∠D+∠P,∴∠B=∠D+∠P,即∠BPD=∠B﹣∠D.。
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置上)1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是()A.B.C.D.2.下列计算正确的是()A.(a2)3=a6B.a2•a3=a6C.(ab)2=ab2D.a6÷a2=a33.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.4.如图,直线a,b被直线c,d所截,若∠1=80°,∠2=100°,∠3=85°,则∠4度数是()A.80°B.85°C.95°D.100°5.下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.4cm、7cm、3cm B.7cm、3cm、8cmC.5cm、6cm、7cm D.2cm、4cm、5cm6.若(x+y)2=9,(x﹣y)2=5,则xy的值为()A.﹣1B.1C.﹣4D.47.若a x=6,a y=4,则a2x﹣y的值为()A.8B.9C.32D.408.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠CGE.其中正确的结论有()个.A.1B.2C.3D.4二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:=.10.某种生物细胞的直径约为0.00038米,用科学记数法表示为米.11.若(x+1)(x﹣3)=x2+mx﹣3,则m值是.12.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.13.已知等腰三角形的一条边等于4,另一条边等于9,那么这个三角形的第三边是.14.如图所示,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是米.15.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=度.16.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=°.17.已知a2﹣a﹣3=0,那么a2(a﹣4)的值是.18.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒20°的速度沿顺时针方向旋转一周,在旋转的过程中,在第秒时,边CD恰好与边AB平行.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(1)(2)(2a2)2•a4﹣(﹣5a4)220.分解因式:(1)5x2﹣10xy+5y2;(2)4(a﹣b)2﹣(a+b)221.先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.22.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在右图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )23.一个长方体的高是8cm ,它的底面是边长为3cm 的正方形.如果底面正方形的边长增加acm ,那么它的体积增加多少?24.已知:DE ⊥AO 于E ,BO ⊥AO ,∠CFB =∠EDO ,试说明:CF ∥DO .25.如图,∠A =50°,∠BDC =70°,DE ∥BC ,交AB 于点E ,BD 是△ABC 的角平分线.求∠DEB 的度数.26.(1)①比较4m 与m 2+4的大小:(用“>”、“<”或“=”填充)当m =3时,m 2+4 4m ;当m =2时,m 2+4 4m ;当m =﹣3时,m 2+4 4m . ②观察并归纳①中的规律,无论m 取什么值,m 2+4 4m (用“>”、“<”、“≥”或“≤”),并说明理由.(2)利用上题的结论回答:试比较x 2+2与2x 2+4x +6的大小关系,并说明理由.27.阅读与思考:整式乘法与因式分解是方向相反的变形.由(x +p )(x +q )=x 2+(p +q )x +pq 得,x 2+(p +q )x +pq =(x +p )(x +q );利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题:(1)分解因式:x2+7x+12=;(2)分解因式:(x2﹣3)2+(x2﹣3)﹣2;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能的值是.28.已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置上)1.【分析】根据图形平移与翻折变换的性质解答即可.【解答】解:由图可知,ABC利用图形的翻折变换得到,D利用图形的平移得到.故选:D.【点评】本题考查的是利用平移设计图案,熟知图形平移不变性的性质是解答此题的关键.2.【分析】依据幂的乘方、同底数幂的乘法、积的乘方以及同底数幂的除法法则计算即可.【解答】解:A、(a2)3=a6,故A正确;B、a2•a3=a5,故B错误;C、(ab)2=a2b2,故C错误;D、a6÷a2=a4,故D错误.故选:A.【点评】本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方以及同底数幂的除法法则的应用,熟练掌握相关法则是解题的关键.3.【分析】先确定两角之间的位置关系,再根据平行线的判定来确定是否平行,以及哪两条直线平行.【解答】解:A、∠1和∠2的是对顶角,不能判断AB∥CD,此选项不正确;B、∠1和∠2的对顶角是同位角,又相等,所以AB∥CD,此选项正确;C、∠1和∠2的是内错角,又相等,故AD∥BC,不是AB∥CD,此选项错误;D、∠1和∠2互为同旁内角,同旁内角相等两直线不平行,此选项错误.故选:B.【点评】本题考查了平行线的判定,解题的关键是熟练掌握3线8角之间的位置关系.4.【分析】先根据题意得出a∥b,再由平行线的性质即可得出结论.【解答】解:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴a∥b.∵∠3=85°,故选:B.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.5.【分析】根据三角形的任意两边之和大于第三边,对各选项分析判断后利用排除法求解.【解答】解:A、4+3=7,不能组成三角形,故本选项正确;B、7+3>8,能组成三角形,故本选项错误;C、5+6>7,能组成三角形,故本选项错误;D、4+2>5,能组成三角形,故本选项错误.故选:A.【点评】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.6.【分析】(x+y)2=9减去(x﹣y)2=5,然后用平方差公式计算即可.【解答】解:(x+y)2﹣(x﹣y)2=4,∴[(x+y)+(x﹣y)][(x+y)﹣(x﹣y)]=4.∴2x•2y=4.∴4xy=4.∴xy=1.故选:B.【点评】本题主要考查的是完全平方公式或平方差公式的应用,熟练掌握公式是解题的关键.7.【分析】根据幂的乘方法则、同底数幂的除法法则计算即可.【解答】解:a2x﹣y=(a x)2÷a y=36÷4=9,故选:B.【点评】本题考查的是同底数幂的除法,掌握同底数幂的除法法则:底数不变,指数相减是解题的关键.8.【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【解答】解:①∵EG∥BC,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故①正确;②∵∠CEG=∠ACB,而∠GEC与∠GCE不一定相等,∴CA不一定平分∠BCG,故②错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故③正确;④∵∠ABC+∠ACB=90°,∵CD平分∠ACB,BE平分∠ABC,∴∠EBC=∠ABC,∠DCB=∠ACB,∴∠DFB=∠EBC+∠DCB=(∠ABC+∠ACB)=45°,∵∠CGE=90°,∴∠DFB=∠CGE,故④正确.故选:C.【点评】本题主要考查的是三角形内角和定理、平行线的性质,熟知直角三角形的两锐角互余是解答此题的关键.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.【分析】直接利用积的乘方运算法则计算得出答案.【解答】解:原式=n4.故答案为:n4.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00038=3.8×10﹣4.故答案为:3.8×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】先根据多项式乘以多项式展开,即可得出答案.【解答】解:(x+1)(x﹣3)=x2﹣2x﹣3,∵(x+1)(x﹣3)=x2+mx﹣3,∴m=﹣2,故答案为:﹣2.【点评】本题考查了多项式乘以多项式法则,能根据多项式乘以多项式法则展开是解此题的关键12.【分析】根据多边形的内角和公式(n﹣2)•180°,外角和等于360°列出方程求解即可.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=360°,解得n=6.故答案为:6.【点评】本题考查了多边形的内角和公式与外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.13.【分析】因为等腰三角形的两边分别为4和9,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【解答】解:当4为底时,其它两边都为9,4、9、9可以构成三角形;当4为腰时,其它两边为4和9,因为4+4=8<9,所以不能构成三角形.故答案为:9.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.【分析】多边形的外角和为360°,每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×12=180米.故答案是:180.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.15.【分析】根据三角形内角和定理以及角平分线性质,先求出∠D、∠A的等式,推出∠A=2∠D,最后代入求出即可.【解答】解:∵∠ACE=∠A+∠ABC,∴∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,又BD平分∠ABC,CD平分∠ACE,∴∠ABD=∠DBE,∠ACD=∠ECD,∴∠A=2(∠DCE﹣∠DBC),∠D=∠DCE﹣∠DBC,∴∠A=2∠D,∵∠A=50°,∴∠D=25°.故答案为:25.【点评】此题考查三角形内角和定理以及角平分线性质的综合运用,解此题的关键是求出∠A=2∠D.16.【分析】由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.【解答】解:由折叠可得∠3=180°﹣2∠2=180°﹣110°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=110°,故答案为:110.【点评】此题主要考查了翻折变换和平行线的性质,关键是掌握两直线平行,同旁内角互补.17.【分析】直接利用已知变形,进而代入原式求出答案.【解答】解:∵a2﹣a﹣3=0,∴a2=a+3,a2﹣a=3∴a2(a﹣4)=(a+3)(a﹣4)=a2﹣a﹣12=3﹣12=﹣9.故答案为:﹣9.【点评】此题主要考查了单项式乘以多项式,正确将原式变形是解题关键.18.【分析】讨论:如图1,△COD绕点O顺时针旋转得到△C′OD′,C′D′交OB于E,了;一平行线的判定,当∠OEC′=∠B=40°时,C′D′∥AB,则根据三角形外角性质计算出∠C′OC=100°,从而可计算出此时△COD绕点O顺时针旋转100°得到△C′OD′所需时间;如图2,△COD绕点O顺时针旋转得到△C″OD″,C″D″交直线OB于F,利用平行线的判定得当∠OFC″=∠B=40°时,C″D″∥AB,根据三角形内角和计算出∠C″OC=80°,则△COD 绕点O顺时针旋280°得到△C″OD″,然后计算此时旋转的时间.【解答】解:如图1,△COD绕点O顺时针旋转得到△C′OD′,C′D′交OB于E,则∠C′OD′=∠COD=90°,∠OC′D=∠C=60°,当∠OEC′=∠B=40°时,C′D′∥AB,∴∠C′OC=∠OEC′+∠OC′E=40°+60°=100°,∴△COD绕点O顺时针旋转100°得到△C′OD′所需时间为=5(秒);如图2,△COD绕点O顺时针旋转得到△C″OD″,C″D″交直线OB于F,则∠C″OD″=∠COD=90°,∠OC″D=∠C=60°,当∠OFC″=∠B=40°时,C″D″∥AB,∴∠C″OC=180°﹣∠OFC″+∠OC′F=180°﹣40°﹣60°=80°,而360°﹣80°=280°,∴△COD绕点O顺时针旋280°得到△C″OD″所需时间为=14(秒);综上所述,在旋转的过程中,在第5秒或14秒时,边CD恰好与边AB平行.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行线的判定.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质、积的乘方运算分别化简得出答案;(2)直接利用积的乘方运算法则以及合并同类项法则计算得出答案.【解答】解:(1)原式=2﹣1+[2×(﹣)]2017×2=2﹣1﹣2=﹣1;(2)原式=4a4•a4﹣25a8=﹣21a8.【点评】此题主要考查了实数运算以及积的乘方运算,正确掌握运算法则是解题关键.20.【分析】(1)先提取公因式5,再利用完全平方公式分解可得;(2)利用平方差公式分解后整理可得.【解答】解:(1)原式=(x2﹣2xy+y2)=5(x﹣y)2;(2)原式=[2(a﹣b)+a+b][2(a﹣b)﹣(a﹣b)]=(3a﹣b)(a﹣3b).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.21.【分析】根据整式的运算法则即可求出答案.【解答】解:∵x=3,y=﹣2,∴原式=x2+6xy+9y2﹣(x2﹣9y2)=6xy+18y2=6×3×(﹣2)+18×(﹣2)2=﹣36+18×4=36【点评】本题整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【分析】(1)分别将点A、B、C向左平移2格,再向上平移4格,得到点A'、B'、C',然后顺次连接;(2)过点C作CD⊥AB的延长线于点D;(3)利用平行线的性质过点A作出BC的平行线进而得出符合题意的点.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD即为所求;(3)如图所示:能使S△PBC =S△ABC的格点P的个数有4个.故答案为:4.【点评】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P点位置是解题关键.23.【分析】长方体变化后的高为8cm,底面边长为(3+a)cm,根据长方体的体积公式进行计算即可.【解答】解:它的体积增加了:8(3+a)2﹣8×32=72+48a+8a2﹣72=8a2+48a.答:它的体积增加8a2+48a.【点评】本题考查了完全平方公式,分别用整式表示两个长方体的体积,再求差,即可得到体积增加的值.24.【分析】根据平行线的判定和性质解答即可.【解答】解:∵DE⊥AO于E,BO⊥AO,∴DE∥OB,∴∠EDO=∠DOF,∵∠CFB=∠EDO,∴∠CFB=∠DOF,∴CF∥DO.【点评】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等.25.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DBE,再根据角平分线的定义求出∠ABC,然后根据两直线平行,同旁内角互补求解即可.【解答】解:∵∠A=50°,∠BDC=70°,∴∠DBE=∠BDC﹣∠A=70°﹣50°=20°,∵BD是△ABC的角平分线,∴∠ABC=2∠DBE=2×20°=40°,∵DE∥BC,∴∠DEB=180°﹣∠ABC=180°﹣40°=140°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.26.【分析】(1)①当m=3时,当m=2时,当m=﹣3时,分别代入计算,再进行比较即可;②根据(m2+4)﹣4m=(m﹣2)2≥0,即可得出答案;(2)根据(2x2+4x+6)﹣(x2+2)=(x+2)2≥0,即可得出答案.【解答】解:(1)①当m=3时,4m=12,m2+4=13,则4m<m2+4,当m=2时,4m=8,m2+4=8,则4m=m2+4,当m=﹣3时,4m=﹣12,m2+4=13,则4m<m2+4,故答案为;>;=;>;②∵(m2+4)﹣4m=(m﹣2)2≥0,∴无论取什么值,总有4m≤m2+4;故答案是:≥;(2)∵(2x2+4x+6)﹣(x2+2)=x2+4x+4=(x+2)2≥0∴x2+2≤2x2+4x+6.【点评】此题考查了不等式的性质,用到的知识点是不等式的性质、完全平方公式、非负数的性质,关键是根据两个式子的差比较出数的大小.27.【分析】(1)利用十字相乘法分解因式即可;(2)将x2﹣3看作整体,利用十字相乘法分解,再利用平方差公式分解可得.(3)找出所求满足题意p的值即可.【解答】解:(1)x2+7x+12=(x+3)(x+4),故答案为:(x+3)(x+4);(2)原式=(x2﹣3﹣1)(x2﹣3+2)=(x2﹣4)(x2﹣1)=(x+2)(x﹣2)(x+1)(x﹣1);(3)若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是﹣8+1=﹣7;﹣1+8=7;﹣2+4=2;﹣4+2=﹣2,故答案为:±7,±2.【点评】此题考查了因式分解﹣十字相乘法,弄清题中的分解因式方法是解本题的关键.28.【分析】(1)根据AC∥BD,可得∠DAE=∠D,再根据∠C=∠D,即可得到∠DAE=∠C,进而判定AD∥BC;(2)根据∠CGB是△ADG是外角,即可得到∠CGB=∠D+∠DAE,再根据△BCG中,∠CGB+∠C=90°,即可得到∠D+∠DAE+∠C=90°,进而得出2∠C+∠DAE=90°;(3)设∠DAE=α,则∠DFE=8α,∠AFD=180°﹣8α,根据DF∥BC,即可得到∠C=∠AFD =180°﹣8α,再根据2∠C+∠DAE=90°,即可得到2(180°﹣8α)+α=90°,求得α的值,即可运用三角形内角和定理得到∠BAD的度数.【解答】解:(1)如图1,∵AC∥BD,∴∠DAE=∠D,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)∠EAD+2∠C=90°.证明:如图2,设CE与BD交点为G,∵∠CGB是△ADG是外角,∴∠CGB=∠D+∠DAE,∵BD⊥BC,∴∠CBD=90°,∴△BCG中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵∠D=∠C,∴2∠C+∠DAE=90°;(3)如图3,设∠DAE=α,则∠DFE=8α,∵∠DFE+∠AFD=180°,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵2∠C+∠DAE=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8α=36°=∠ADB,又∵∠C=∠BDA,∠BAC=∠BAD,∴∠ABC=∠ABD=∠CBD=45°,∴△ABD中,∠BAD=180°﹣45°﹣36°=99°.【点评】本题主要考查了平行线的判定与性质以及三角形内角和定理的运用,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.。
OABCD临沂市2018-2019学年七年级下期中数学试卷(时间:120分钟总分:120 分)题号一二三总分得分1.下列各图中,∠1与∠2是对顶角的是:()2. 在平面直角坐标系中,点P(-3,2015)在:()A.第一象限 B.第二象限C.第三象限D.第四象限3.4的平方根是()A.2B. -2C. ±2D.164、如图1,直线AB、CD相交于点O,已知∠AOC+∠BOD=90°,则∠BOC=()A.90°B.145°°C.125°D.135°5. 下列图形中,正确画出AC边上的高的是().6. 如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中可以看作由“基本图案”经过平移得到的是()7、如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2) B.(3,1)C.(2,2) D.(-2,2)8. 如下图,若m∥n,∠1=105º,则∠2=()A.55º B.60º C .65º D .75ºA.B.C.D.21m9. 下列各数中,不是无理数的是 ( )A.7B. 0.5C. 2πD. 0.151151115…)个之间依次多两个115( 10. 如图所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于点P ,若∠A=50°,则 ∠BPC 等于( )A 、90°B 、130°C 、100°D 、150°二、填空(每小题3分,共15分)11.把命题“两直线平行,同位角相等”写成“如果....那么....” 的形式 。
12. 38-=( ), 3的平方根是 ; 271的立方根是 ,13. 点A (-1,2)关于y 轴的对称点坐标是A ’____________ 。
山东省临沂市平邑县2018-2019学年度七年级(下)期中数学试卷
第Ⅰ卷(选择题 共36分) 2019.04
注意事项:
1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净
后。
再选涂其它答案,不能答在试卷上。
1.
4的平方根是 A. 2 B. 2- C. 2± D. 16
± 2. 点P (2,-3)在 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3.下列等式正确的是
A.
712=± B. 4=
4.3
π
0),其中无理数有 A. 2个
5.
a ,小数部分为 C. 2 D. 3
6. ⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离 A. 1个 B. 2个 C. 3个 D. 4个
7. 在如图所示的四种沿AB 进行折叠的方法中,不一定能判断纸带两条边a 、b 互相平行的是
A. 如图1,展开后测得∠1=∠2
B. 如图2,展开后测得∠1=∠2且∠3=∠4
C. 如图3,测得∠1=∠2
D. 在图④中,展开后测得∠1+∠2=180° 8. 若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为
A. (3,0)
B. (3,0)或(−3,0)
C. (0,3)
D. (0,3)或(0,−3)
A. 50°
B. 60°
C. 70°
D. 80°
10. 如果a是x的一个平方根,那么x的算术平方根是 A.a B. -a C. |a| D. ±a
11. 如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为 A. 30° B. 150° C. 120° D. 100°
12. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是
A.(2018,1)
B.(2018,0)
C.(2018,2)
D.(2019,0)
第Ⅱ卷(非选择题共84分)
二、填空题(每小题3分,满分24分)
13. 把命题“对顶角相等”改写成“如果…那么…”的形式:.
14.
三、解答题(满分60分)。