高中数学知识要点重温之曲线与方程,圆的方程
- 格式:doc
- 大小:424.50 KB
- 文档页数:6
<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。
(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。
⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。
⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。
圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。
高考圆方程知识点总结高考是每个学生都经历的一场考试,对于数学科目,圆方程是一个重要的知识点。
掌握圆方程的相关知识,可以帮助学生在高考中取得好成绩。
本文将对高考圆方程涉及的知识点进行总结,帮助学生加深对该知识点的理解和掌握。
一、概念及性质:- 圆的定义:平面内到给定点距离恒等于给定长度的点的集合。
- 圆心和半径:圆心是到圆上任意一点的距离都相等的点,半径是圆心到圆上任意一点的距离。
- 圆的方程:圆的方程是指平面内满足给定条件的点的集合的方程形式。
圆的标准方程为(x - a)^2 + (y - b)^2 = r^2,其中(a, b)是圆心的坐标,r是半径的长度。
二、圆的方程的转化:- 完成平方:根据圆的标准方程,可以通过完成平方来将一般形式的方程转化为标准形式。
例如,对于方程x^2 + y^2 - 4x + 2y - 3 = 0,可以通过平方配方法将其转化为(x - 2)^2 + (y + 1)^2 = 10。
- 合并项:有时候,圆的方程中可能存在合并项的情况。
合并项指的是x和y的一次项系数不为1的情况。
通过将x和y的一次项系数提取出来,并进行平移、平方等操作,可以将合并项转化为标准方程。
三、圆与直线的位置关系:- 直线与圆相切:当直线与圆相切时,直线只与圆相交于一个点,且该点在圆上。
此时,直线的方程与圆的方程有特定的关系,可以通过解方程组来确定切点的坐标。
- 直线与圆相交:当直线与圆相交于两个不同的点时,可以通过解方程组来确定相交点的坐标。
此时,直线的方程与圆的方程有两个解。
四、圆与圆的位置关系:- 相交:当两个圆相交于两个不同的点时,可以通过解方程组来确定相交点的坐标。
此时,两个圆的方程可以构成一个方程组。
- 相切:当两个圆相切时,两个圆的圆心之间的距离等于两个圆的半径之和。
此时,两个圆的方程可以构成一个方程组。
- 相离:当两个圆没有共同的交点时,它们是相离的。
五、常见题型分析:- 已知圆的方程,求切点坐标等。
高一数学圆方程知识点圆方程是高中数学中的一个重要知识点,它在几何图形的研究中有着广泛的应用。
下面,我将为大家详细介绍高一数学圆方程的相关内容。
一、圆的一般方程在平面直角坐标系中,圆可以用一般方程表示,其一般方程为:(x-a)² + (y-b)² = r²,其中(a, b)表示圆心的坐标,r表示圆的半径。
二、圆的标准方程圆的标准方程是圆的一般方程的简化形式,标准方程为:x² +y² + Dx + Ey + F = 0。
其中,圆心的坐标为(-D/2, -E/2),半径的平方为R² = (D²+E²)/4-F。
三、与坐标轴平行的圆1. 与x轴平行的圆当圆的圆心位于原点时,圆的方程可以表示为x² + y² = r²。
当圆的圆心不位于原点时,可以用(x-a)² + y² = r²来表示。
2. 与y轴平行的圆当圆的圆心位于原点时,圆的方程可以表示为x² + y² = r²。
当圆的圆心不位于原点时,可以用x² + (y-b)² = r²来表示。
四、圆的切线方程圆的切线是与圆的边缘只有一个交点的直线。
求圆的切线方程的步骤如下:1. 求切点坐标设圆的方程为(x-a)² + (y-b)² = r²,已知切线的斜率为k。
通过方程联立,求解出切点坐标(x₁, y₁)。
2. 求切线方程根据切线的定义,切线方程可表示为y-y₁ = k(x-x₁)。
五、与直线的位置关系1. 直线与圆相交当直线与圆相交时,有三种可能的情况:相交于两点、相切于一点和不相交。
2. 直线与圆外切当直线与圆外切时,直线到圆心的距离等于圆的半径。
可以通过计算直线到圆心的距离来判断。
3. 直线与圆内切当直线与圆内切时,直线到圆心的距离小于圆的半径。
高二圆与方程的知识点总结圆与方程是高二数学学习中的重要知识点,掌握好这部分内容对于后续学习和解题都非常关键。
本文将对高二圆与方程的知识点进行总结,帮助同学们更好地理解和应用这些知识。
一、圆的基本性质1. 定义:平面上到定点距离相等的点的集合就是一个圆。
2. 圆的部分:圆心、半径和圆周。
3. 公式:- 圆心坐标公式:设圆心为(a,b),半径为r,则圆的方程为:(x-a)² + (y-b)² = r²。
- 圆的一般方程:将圆心坐标公式展开,整理得:x² + y² + Dx + Ey + F = 0。
(注:D、E、F为常数)二、直线与圆的位置关系1. 直线与圆相交的情况:- 相离:直线与圆没有交点。
- 相切:直线与圆有且仅有一个交点。
- 相交:直线与圆有两个交点。
2. 直线与圆的判别方法:- 写出直线方程和圆方程,将直线方程代入圆方程,解方程组即可得到交点或判别关系。
- 使用几何方法判别,如定理、推论等。
三、圆的方程与位置关系1. 一般方程的性质:- 如果D²+E² > 4F,则方程代表一个实心圆。
- 如果D²+E² = 4F,则方程代表一个过圆心的直线。
- 如果D²+E² < 4F,则方程代表一个过圆心的虚圆。
2. 圆的标准方程:- 圆的标准方程为:(x-h)² + (y-k)² = r²。
其中,(h, k)为圆心坐标,r为半径。
四、圆的切线与法线1. 切线与法线的定义:- 切线:圆上的一点到圆心的直线称为该点处的切线。
- 法线:垂直于切线的直线称为切线的法线。
2. 切线的斜率公式:- 设圆的方程为:x² + y² + Dx + Ey + F = 0,过圆上一点P(x₀, y₀)的切线方程为:xx₀ + yy₀ + (Dx₀+Ey₀) + F = 0。
高二上数学圆周曲线知识点圆周曲线是高中数学中一个重要的概念,我们在学习数学的过程中会接触到各种各样的曲线,而圆周曲线是其中之一。
本文将介绍高二上数学课程中关于圆周曲线的知识点。
1. 圆的方程圆的方程是我们研究圆周曲线的基础。
一般来说,圆的方程可以通过圆心坐标和半径来确定。
对于圆心坐标为(x0, y0)、半径为r 的圆,其方程可以表示为:(x - x0)² + (y - y0)² = r²2. 圆的标准方程当圆的圆心位于原点(O, O)时,我们可以得到圆的标准方程:x² + y² = r²这是圆的最简单的形式,我们可以通过它来研究圆周曲线的性质。
3. 圆的参数方程除了标准方程之外,我们还可以利用参数来表示圆周曲线。
圆的参数方程可以表示为:x = x0 + r * cosθy = y0 + r * sinθ其中,θ为参数,范围在[0, 2π]之间。
4. 圆的一般方程当圆的圆心不在原点时,我们可以得到圆的一般方程。
一般方程可以表示为:x² + y² + Dx + Ey + F = 0其中,D、E和F为常数。
5. 圆的切线和法线圆周曲线上的任意一点都有一个切线和一个法线。
切线是过曲线上某一点的直线,与曲线相切于该点;法线则垂直于切线,并通过曲线上的该点。
6. 圆的圆心角圆周曲线上两个相邻弧之间的夹角称为圆心角。
圆心角与对应的弧长有一定的关系,当我们知道圆心角的大小时,可以通过圆的半径来计算对应的弧长。
7. 圆的切线与圆心角当一条直线与圆相切时,我们可以用圆的半径和切线与该直线的交角来计算该直线与圆的切点的坐标。
总结:以上是高二上数学圆周曲线的知识点的介绍。
圆周曲线是数学中重要的一部分,它不仅在几何学中有广泛的应用,而且在物理学、计算机图形学等领域也扮演着重要的角色。
通过深入学习和理解这些知识点,我们能够更好地理解和应用圆周曲线相关的问题。
个性化教学辅导教案学科:数学 任课教师:叶雷 授课时间:2011 年 月 日(星期 ) : ~ : 姓名 年级性别教学课题 曲线与方程、圆的方程教学 目标 重点 难点 课前检查作业完成情况:优□ 良□ 中□ 差□ 建议_______________________________第 次课第 讲 曲线与方程、圆的方程知识点一:曲线与方程在直角坐标系中,当曲线C 和方程F(x ,y )=0满足如下关系时:①曲线C 上点的坐标都是方程F(x ,y)=0的解;②以方程F(x ,y )=0的解为坐标的点都在曲线C 上,则称曲线C 为方程F(x ,y )=0表示的曲线;方程F(x ,y )=0是曲线C 表示的方程.注:⑴如果曲线C 的方程是F (x ,y )=0,那么点P 0(x 0 ,y 0)在曲线C 上的充要条件是F (x 0 ,y 0)=0;⑵解析几何研究的内容就是给定曲线C ,如何求出它所对应的方程,并根据方程的理论研究曲线的几何性质。
其特征是以数解形, 坐标法是几何问题代数化的重要方法; ⑶求曲线方程的步骤:建、设、现(限)、代、化.【例1】 点),(62t t M 适合方程3x y =是点M 在曲线3x y =上的 ( )(A)充分条件 (B)必要条件 (C)充要条件 (D)什么条件也不是【例2】 曲线C 1:x y x =+22与C 2:y xy =2的交点数是( ) (A)1个 (B) 2个 (C)3个 (D)4个【例3】 已知定点)0,1(-A ,)0,1(B ,点M 与A 、B 两点所在直线的斜率之积等于4-,则点M 的轨迹方程 是 。
【例4】 已知圆422=+y x 和两点A (0,4),B (4,0)当点P 在圆上运动时,求ABC ∆的重心的轨迹方程.【例5】 如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆1O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得2PM PN =.试建立适当的坐标系,并求动点P 的轨迹方程.知识点二:圆的方程确定圆的方程需要有三个互相独立的条件。
高二数学 第2讲 圆与方程第一节 圆的方程知识点一 圆的标准方程222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径.要点诠释:(1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是222x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:222a b r +=(2)圆的标准方程222()()x a y b r -+-=⇔圆心为()a b ,,半径为r ,它显现了圆的几何特点. (3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.知识点二 点和圆的位置关系如果圆的标准方程为222()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有(1)若点()00M x y ,在圆上()()22200||CM r x a y b r ⇔=⇔-+-= (2)若点()00M x y ,在圆外()()22200||CM r x a y b r ⇔>⇔-+-> (3)若点()00M x y ,在圆内()()22200||CM r x a y b r ⇔<⇔-+-<知识点三 圆的一般方程当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为圆心,. 要点诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D E x y =-=-.它表示一个点(,)22D E--. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240D E F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆. 知识点四 几种特殊位置的圆的方程知识点五 用待定系数法求圆的方程的步骤求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是: (1)根据题意,选择标准方程或一般方程.(2)根据已知条件,建立关于a b r 、、或D E F 、、的方程组.(3)解方程组,求出a b r 、、或D E F 、、的值,并把它们代入所设的方程中去,就得到所求圆的方程.知识点六 轨迹方程求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量,x y 之间的方程.1.当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).2.求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等. 3.求轨迹方程的步骤:(1)建立适当的直角坐标系,用(,)x y 表示轨迹(曲线)上任一点M 的坐标; (2)列出关于,x y 的方程; (3)把方程化为最简形式;(4)除去方程中的瑕点(即不符合题意的点); (5)作答.【典型例题】 类型一 圆的标准方程[例1]求满足下列条件的各圆的方程: (1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上; (3)经过点()5,1P ,圆心在点()8,3C -.[变式1]圆心是(4,-1),且过点(5,2)的圆的标准方程是( )A .(x ―4)2+(y+1)2=10B .(x+4)2+(y―1)2=10C .(x ―4)2+(y+1)2=100D .22(4)(1)x y -++=[例2]求圆心在直线2x -y -3=0上,且过点(5,2)和(3,-2)的圆的方程.[例3]与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为[变式2]求圆心在直线y =-x 上,且过两点A (2,0),B (0,-4)的圆的方程.类型二 圆的一般方程[例1]下列方程能否表示圆?若能表示圆,求出圆心和半径.(1)2x 2+y 2-7y +5=0;(2)x 2-xy +y 2+6x +7y =0;(3)x 2+y 2-2x -4y +10=0;(4)2x 2+2y 2-5x =0.[变式1]下列方程各表示什么图形;①x 2+y 2-4x -2y +5=0;②x 2+y 2-2x +4y -4=0;③220x y ax ++=.[例2]已知直线x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0表示一个圆.(1)求t 的取值范围; (2)求这个圆的圆心和半径;(3)求该圆半径r 的最大值及此时圆的标准方程.[变式2]下判断方程ax 2+ay 2-4(a -1)x +4y =0(a ≠0)是否表示圆,若表示圆,写出圆心和半径长.[变式3]已知方程0916)41(2)3(22222=++-++-+m y m x m y x 表示一个圆.(1)求实数m 的取值范围; (2)*求圆心C 的轨迹方程.[变式4]方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是( ) A .2a <-或23a >B .203a -<<C .20a -<<D .223a -<< [例3]△ABC 的三个顶点分别为A (-1,5),B (-2,-2),C (5,5),求其外接圆的方程.[变式5]如图,等边△ABC 的边长为2,求这个三角形的外接圆的方程,并写出圆心坐标和半径长.类型三点与圆的位置关系[例]判断点M(6,9),N(3,3),Q(5,3)与圆(x-5)2+(y-6)2=10的位置关系.[变式]已知两点P1(3,8)和P2(5,4),求以线段P1P2为直径的圆的方程,并判断点M(5,3)、N(3,4)、P(3,5)是在此圆上、在圆内、还是在圆外?类型三轨迹方程[例1]已知一曲线是与两个定点O(0,0),A(3,0)距离的比为12的点的轨迹,求这条曲线的方程,并画出曲线.[变式1]如下图,过第一象限的定点C(a,b)作互相垂直的两直线CA、CB,分别交于x轴、y轴的正半轴于A、B两点,试求线段AB的中点M的轨迹方程.[例2]等腰△ABC的底边一个端点B(1,-3),顶点A(0,6),求另一个端点C的轨迹方程,并说明轨迹的形状.[例3]已知定点A(4,0),P点是圆x2+y2=4上一动点,Q点是AP的中点,求Q点的轨迹方程.[变式2]已知定点A(2,0),点Q是圆x2+y2=1上的动点,∠AOQ的平分线交AQ于M,当Q点在圆上移动时,求动点M的轨迹方程.【轨迹方程求法示题】1.(2016•平凉校级模拟)已知点G(5,4),圆C1:(x-1)2+(y-4)2=25,过点G的动直线l与圆C1相交于E、F两点,线段EF的中点为C.求点C的轨迹C2的方程;2.(2016•河北模拟)如图,已知P是以F1(1,0),以4为半径的圆上的动点,P与F2(1,0)所连线段的垂直平分线与线段PF1交于点M.求点M的轨迹C的方程;3.(2016•湖南校级模拟)已知点C(1,0),点A,B是⊙O:x2+y2=9上任意两个不同的点,且满足AC,设M为弦AB的中点.求点M的轨迹T的方程;⋅BC=-),4.(2016•自贡校级模拟)已知△ABC的两个顶点A,B的坐标分别是(0,3,(0,3且AC,BC所在直线的斜率之积等于m(m≠0).求顶点C的轨迹M的方程,并判断轨迹M 为何种曲线.5.(2016春•成都校级月考)设Q、G分别为△ABC的外心和重心,已知A(-1,0),B(1,0),QG∥AB.求点C的轨迹E.6.(2016•成都模拟)已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;(2)过点N(1,0)任意作相互垂直的两条直线l1,l2,分别交曲线C于不同的两点A,B和不同的两点D,E.设线段AB,DE的中点分别为P,Q.①求证:直线PQ过定点R,并求出定点R的坐标;②求|PQ|的最小值.7.(2015秋•遂宁期末)已知平面直角坐标系上一动点P(x,y)到点A(-2,0)的距离是点P到点B(1,0)的距离的2倍.(1)求点P的轨迹方程;(2)过点A的直线l与点P的轨迹C相交于E,F两点,点M(2,0),则是否存在直线l,使S△EFM取得最大值,若存在,求出此时l的方程,若不存在,请说明理由.第二节 直线与圆的位置关系知识点一 直线与圆的位置关系1.直线与圆的位置关系:(1)直线与圆相交,有两个公共点; (2)直线与圆相切,只有一个公共点; (3)直线与圆相离,没有公共点. 2.直线与圆的位置关系的判定:(1)代数法:判断直线l 与圆C 的方程组成的方程组是否有解.如果有解,直线l 与圆C 有公共点. 有两组实数解时,直线l 与圆C 相交; 有一组实数解时,直线l 与圆C 相切; 无实数解时,直线l 与圆C 相离. (2)几何法:由圆C 的圆心到直线l 的距离d 与圆的半径r 的关系判断: 当d r <时,直线l 与圆C 相交; 当d r =时,直线l 与圆C 相切; 当d r >时,直线l 与圆C 相离. 要点诠释:(1)当直线和圆相切时,求切线方程,一般要用到圆心到直线的距离等于半径,记住常见切线方程,可提高解题速度;求切线长,一般要用到切线长、圆的半径、圆外点与圆心连线构成的直角三角形,由勾股定理解得.(2)当直线和圆相交时,有关弦长的问题,要用到弦心距、半径和半弦构成的直角三角形,也是通过勾股定理解得,有时还用到垂径定理.(3)当直线和圆相离时,常讨论圆上的点到直线的距离问题,通常画图,利用数形结合来解决.知识点二 圆的切线方程的求法1.点M 在圆上,如图.法一:利用切线的斜率l k 与圆心和该点连线的斜率OM k 的乘积等于1-,即1OM l k k ⋅=-. 法二:圆心O 到直线l 的距离等于半径r .2.点()00,x y 在圆外,则设切线方程:00()y y k x x -=-,变成一般式:000kx y y kx -+-=,因为与圆相切,利用圆心到直线的距离等于半径,解出k .要点诠释:因为此时点在圆外,所以切线一定有两条,即方程一般是两个根,若方程只有一个根,则还有一条切线的斜率不存在,务必要把这条切线补上.常见圆的切线方程:(1)过圆222x y r +=上一点()00,P x y 的切线方程是200x x y y r +=;(2)过圆()()222x a y b r -+-=上一点()00,P x y 的切线方程是()()()()200x a x a y b y b r --+--=.知识点三 求直线被圆截得的弦长的方法1.应用圆中直角三角形:半径r ,圆心到直线的距离d ,弦长l 具有的关系2222l r d ⎛⎫=+ ⎪⎝⎭,这也是求弦长最常用的方法.2.利用交点坐标:若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间的距离公式计算弦长.3.利用弦长公式:设直线:l y kx b =+,与圆的两交点()()1122,,,x y x y ,将直线方程代入圆的方程,消元后利用根与系数关系得弦长:12|l x x =-.知识点四 圆与圆的位置关系1.圆与圆的位置关系:(1)圆与圆相交,有两个公共点;(2)圆与圆相切(内切或外切),有一个公共点; (3)圆与圆相离(内含或外离),没有公共点.2.圆与圆的位置关系的判定:(1)代数法:判断两圆的方程组成的方程组是否有解.有两组不同的实数解时,两圆相交; 有一组实数解时,两圆相切; 方程组无解时,两圆相离. (2)几何法:设1O 的半径为1r ,2O 的半径为2r ,两圆的圆心距为d . 当1212r r d r r -<<+时,两圆相交; 当12r r d +=时,两圆外切; 当12r r d +<时,两圆外离; 当12r r d -=时,两圆内切; 当12r r d ->时,两圆内含. 要点诠释:判定圆与圆的位置关系主要是利用几何法,通过比较两圆的圆心距和两圆的半径的关系来确定,这种方法运算量小.也可利用代数法,但是利用代数法解决时,一是运算量大,二是方程组仅有一解或无解时,两圆的位置关系不明确,还要比较两圆的圆心距和两圆半径的关系来确定.因此,在处理圆与圆的位置关系时,一般不用代数法.3.两圆公共弦长的求法有两种:方法一:将两圆的方程联立,解出两交点的坐标,利用两点间的距离公式求其长. 方法二:求出公共弦所在直线的方程,利用勾股定理解直角三角形,求出弦长. 4.两圆公切线的条数与两个圆都相切的直线叫做两圆的公切线,圆的公切线包括外公切线和内公切线两种. (1)两圆外离时,有2条外公切线和2条内公切线,共4条; (2)两圆外切时,有2条外公切线和1条内公切线,共3条; (3)两圆相交时,只有2条外公切线; (4)两圆内切时,只有1条外公切线; (5)两圆内含时,无公切线. 知识点五 圆系方程1.过直线0Ax By C ++=与圆220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=2.以(),a b 为圆心的同心圆系方程是:()()222(0)x a y b λλ-+-=≠;3.与圆220x y Dx Ey F ++++=同心的圆系方程是220x y Dx Ey λ++++=;4.过同一定点(),a b 的圆系方程是()()2212()()0x a y b x a y b λλ-+-+-+-=.【典型例题】类型一 直线与圆的位置关系[例1]已知直线y =2x +1和圆x 2+y 2=4,试判断直线和圆的位置关系.[例2]求实数m 的范围,使直线30x my -+=与圆22650x y x +-+=分别满足: (1)相交;(2)相切;(3)相离.[变式1]已知直线方程mx -y-m -1=0,圆的方程x 2+y 2-4x -2y +1=0.当m 为何值时,圆与直线 (1)有两个公共点; (2)只有一个公共点; (3)没有公共点.[变式2]已知直线:430--+=l kx y k 与曲线22:68210+--+=C x y x y . (1)求证:不论k 为何值,直线l 和曲线C 恒有两个交点;(2)求当直线l 被曲线C 所截的线段最短时此线段所在的直线的方程.类型二 切线问题[例]过点(7,1)P 作圆2225x y +=的切线,求切线的方程.[变式](1)求圆x 2+y 2=10的切线方程,使得它经过点M ; (2)求圆x 2+y 2=4的切线方程,使得它经过点Q (3,0).类型三 弦长问题[例1]直线l 经过点P (5,5)并且与圆C :x 2+y 2=25相交截得的弦长为l 的方程.[变式1]求经过点P (6,-4),且被定圆x 2+y 2=20截得弦长为的直线的方程.[例2]圆心C在直线l:x+2y=0上,圆C过点M(2,-3),且截直线m:x-y-1=0所得弦长为C 的方程.[例3]已知圆C1:x2+y2+2x-6y+1=0,圆C2:x2+y2-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长.[变式2]已知圆C1:x2+y2+2x+6y+9=0和圆C2:x2+y2−4x+2y−4=0.(1)判断两圆的位置关系;(2)求两圆的公共弦所在直线的方程;(3)求两圆公切线所在直线的方程.类型四 圆与圆的位置关系[例1]已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0,圆C 2:x 2+y 2+2x -2my +m 2-3=0,问:m 为何值时,(1)圆C 1和圆C 2相外切?(2)圆C 1与圆C 2内含?[变式1]当a 为何值时,圆C 1:x 2+y 2-2ax +4y +(a 2-5)=0和圆C 2:x 2+y 2+2x -2ay +(a 2-3)=0相交.[例2]若圆C 1的方程是x 2+y 2-4x -4y +7=0,圆C 2的方程为x 2+y 2-4x -10y +13=0,则两圆的公切线有_____条.[例3]坐标平面内有两个圆x 2+y 2=16和x 2+y 2-6x +8y +24=0,这两个圆的内公切线的方程是________.[变式2]圆C 1:x 2+y 2+2x +2y -2=0与圆C 2:x 2+y 2-6x +2y +6=0的公切线有且只有_____条. [变式3]两圆4)1()2(22=-+-y x 与9)2()1(22=-++y x 的公切线有( )条. A .1 B .2 C .3 D .4类型五 圆系问题[例1]求过直线2x +y +4=0和圆x 2+y 2+2x -4y +1=0的交点,且满足下列条件之一的圆的方程:(1)过原点;(2)有最小面积.[变式1]求过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点,且圆心在直线x -y -4=0上的圆的方程.[例2]已知曲线C :x 2+y 2+2kx +(4k +10)y +10k +20=0,其中k ≠-1,则C 过定点_____. [变式2]对于任意实数λ,曲线(1+λ)x 2+(1+λ)y 2+(6-4λ)x -16-6λ=0恒过定点_____.类型六 最值问题[例1]已知实数x 、y 满足方程x 2+y 2-4x +1=0,求:(1)yx的最大值;(2)y -x 的最小值;(3)22y x +.[例2]已知点P (x ,y )是圆(x -3)2+(y -3)2=4上任意一点,求点P 到直线2x +y +6=0的最大距离和最小距离.[变式1]已知实数x 、y 满足方程x 2+y 2-4x +1=0,求:(1)5-x y的最大值;(2)x y 2-的最小值;(3)22)3()1(++-y x .。
曲线与方程【学习目标】1.了解曲线与方程的对应关系;2.进一步体会数形结合的基本思想;3.掌握求曲线方程的基本方法(直接法),了解求曲线方程的其他方法(待定系数法、定义法、转化法、参数法等)【学习策略】借助于实例去体会曲线的方程和方程的曲线的意义;理解求曲线方程的实质,求曲线方程的关键在于把曲线上任一点所满足的几何条件(或其坐标满足的条件)转化为任一点坐标满足的等量关系,要注意方程中量x (或y )的取值范围.【要点梳理】要点一、曲线与方程概念的理解一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程,0f x y =()的实数解建立了如下的关系:(1)曲线C 上所有点的坐标都是方程,0f x y =()的解;(2)以方程,0f x y =()的解为坐标的点都在曲线C 上.那么,方程,0f x y =()叫做曲线C 的方程;曲线C 叫做方程,0f x y =()的曲线.要点诠释:(1)如果曲线C 的方程为,0f x y =(),那么点00(,)P x y 在曲线C 上的充要条件为00,0f x y =(); (2)曲线C 可看成是平面上满足一定条件的点的集合,而,0f x y =()正是这一定条件的解析表示.因此我们可以用集合的符号表示曲线C :{(,)|,0}C x y f x y ==().(3)曲线C 也称为满足条件,0f x y =()的点的轨迹.定义中的条件(1)叫轨迹纯粹性,即不满足方程,0f x y =()的解的点不在曲线C 上;条件(2)叫做轨迹的完备性,即符合条件的所有点都在曲线上.“纯粹性”和“完备性”是针对曲线C 是否为满足方程,0f x y =()的点的轨迹而言. (4)区别轨迹和轨迹方程两个不同的概念,轨迹是“形”,轨迹方程是“数”.要点二、坐标法与解析几何解析几何是在坐标系的基础上,用代数的方法研究几何问题的一门数学学科.解析几何的两个基本问题:1.根据已知条件,求出表示平面曲线的方程;2.通过方程,研究平面曲线的性质.根据曲线与方程的关系可知,曲线与方程是同一关系下的两种不同的表现形式.曲线的性质完全反映在它的方程上,而方程的的性质也完全反映在它的曲线上,这正好说明了几何问题与代数问题可以互相转化,这就是解析几何的基本思想方法,也就是数形结合,形与数达到了完美的统一.我们把这种借助坐标系研究几何图形的方法叫做坐标法,又称解析法.定义:在直角坐标系中,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标(x ,y )所满足的方程(,)0f x y =表示曲线,通过研究方程的性质间接地来研究曲线的性质.这就是坐标法.要点三、用直接法求曲线方程的步骤坐标法求曲线方程的一般步骤:①建立适当的直角坐标系,并设动点P(x,y).②写出动点P 满足的几何条件.③把几何条件坐标化,得方程F(x, y)=0.④化方程F(x, y)=0为最简形式,特殊情况,予以补充说明,删去增加的或者补上丢失的解。
高二圆的一般方程知识点圆是经典的几何概念之一,在高中数学中也是一个重要的内容。
高二阶段,我们学习了圆的一般方程,这是一个较为复杂的知识点,了解和掌握它对于解决相关问题具有重要意义。
本文将介绍高二圆的一般方程的相关知识点,包括定义、推导和应用等内容。
1. 圆的一般方程定义圆的一般方程是指通过圆心和半径的信息,建立起圆的方程式。
一般的,高二阶段我们常用的一般方程为:(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径。
2. 圆的一般方程的推导圆的一般方程的推导可基于圆的基本性质和几何定义进行。
下面以圆心在原点,半径为r的圆为例展开推导。
(1)设点(x,y)在圆上,根据圆的定义,该点到圆心的距离等于半径r,即√(x²+y²)=r。
(2)对上式两边进行平方,消去根号,得到x²+y²=r²。
在圆心不在原点的情况下,可通过平移坐标系将其转化为圆心在原点的情况,然后再进行推导。
3. 圆的一般方程的应用圆的一般方程可以应用于各种相关问题的解决。
(1)确定圆的几何特征:通过一般方程可以直接读出圆心的坐标和半径的长度,从而确定圆的几何特征。
(2)求解与圆的交点:将直线或其他曲线的方程代入圆的一般方程,可求出与圆相交的点的坐标。
(3)证明几何定理:通过圆的一般方程,可以进行一些几何定理的证明,如切线垂直半径定理等。
(4)解决实际问题:在实际问题中,我们常常需要利用圆的一般方程进行建模和求解,如地理、物理等领域。
4. 圆的一般方程的注意事项在利用圆的一般方程进行问题求解时,需要注意以下几点:(1)方程中的圆心坐标和半径长度必须准确无误,避免因数据错误导致结果错误。
(2)问题需求及解题思路要清晰明确,理解问题的条件和要求,确保正确建立方程。
(3)方程的解需要进行合理化简和推导,得到具体的坐标值或表达式。
5. 总结高二圆的一般方程知识点是高中数学中的一个重要内容。
根据曲线和圆环的方程知识点总结曲线和圆环的方程是数学中的重要概念之一。
通过方程,我们可以描述和分析曲线和圆环的性质和特征。
以下是关于曲线和圆环方程的一些知识点总结:1. 直线的方程:- 一般形式:Ax + By + C = 0- 斜率截距形式:y = mx + b2. 圆的方程:- 一般形式:(x - h)^2 + (y - k)^2 = r^2,其中 (h, k) 是圆心坐标,r 是半径- 参数方程形式:x = h + r * cosθ,y = k + r * sinθ3. 椭圆的方程:- 标准形式:(x - h)^2 / a^2 + (y - k)^2 / b^2 = 1,其中 (h, k) 是椭圆的中心坐标,a 和 b 是椭圆的半长轴和半短轴- 参数方程形式:x = h + a * cosθ,y = k + b * sinθ4. 双曲线的方程:- 标准形式:(x - h)^2 / a^2 - (y - k)^2 / b^2 = 1,其中 (h, k) 是双曲线的中心坐标,a 和 b 是双曲线的半长轴和半短轴- 参数方程形式:x = h + a * coshθ,y = k + b * sinhθ以上是关于曲线和圆环方程的一些重要知识点总结。
方程提供了描述和分析这些几何形状的便捷方式,通过理解和应用方程,我们可以更好地研究曲线和圆环的性质和特征。
根据曲线和圆环的方程知识点总结曲线和圆环的方程是数学中的重要概念之一。
通过方程,我们可以描述和分析曲线和圆环的性质和特征。
以下是关于曲线和圆环方程的一些知识点总结:1. 直线的方程:- 一般形式:Ax + By + C = 0- 斜率截距形式:y = mx + b2. 圆的方程:- 一般形式:(x - h)^2 + (y - k)^2 = r^2,其中 (h, k) 是圆心坐标,r 是半径- 参数方程形式:x = h + r * cosθ,y = k + r * sinθ3. 椭圆的方程:- 标准形式:(x - h)^2 / a^2 + (y - k)^2 / b^2 = 1,其中 (h, k) 是椭圆的中心坐标,a 和 b 是椭圆的半长轴和半短轴- 参数方程形式:x = h + a * cosθ,y = k + b * sinθ4. 双曲线的方程:- 标准形式:(x - h)^2 / a^2 - (y - k)^2 / b^2 = 1,其中 (h, k) 是双曲线的中心坐标,a 和 b 是双曲线的半长轴和半短轴- 参数方程形式:x = h + a * coshθ,y = k + b * sinhθ以上是关于曲线和圆环方程的一些重要知识点总结。
曲线与方程一般地,如果曲线C 与方程()0,=y x F 之间有以下两个关系:① 曲线C 上的点的坐标都是方程()0,=y x F 的解;② 以方程()0,=y x F 的解为坐标的点都是曲线C 上的点。
那么,我们把方程()0,=y x F 叫做曲线C 的方程,曲线C 叫做方程()0,=y x F的曲线。
圆的方程1、圆的定义:平面内到一个定点的距离等于定长(大于零)的点的轨迹是圆。
这个定点就是圆心、定长就是半径。
2、(1)圆的标准方程是()()222rb y a x =-+-其中:圆心()b a C ,,半径r(2)圆的一般方程022=++++F Ey Dx y x 其中:0422>-+F E D椭圆1、椭圆的定义:两定点1F 、2F ,动点M 满足122MF MF a +=(常数122a F F >),则动点M 的轨迹是椭圆。
问:122a F F =时如何? 问:122a F F <时如何?2、椭圆的性质双曲线1、 双曲线的定义:若定点1F 、2F ,122MF MF a -=(常数122a F F <),则动点M 的轨迹是双曲线。
又: (1)当122a F F =时如何? (2)当122a F F >时如何?再:关注?2、双曲线的性质:抛物线1.抛物线的定义:平面上与一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线。
其中:点F叫做抛物线的焦点;定直线l叫做抛物线的准线。
注:若点F在直线l上,则轨迹为过点F垂直于l的直线。
2.抛物线的标准方程的四种形式及其性质:注:p的几何意义。
(1)(2)(3)常见的基础题型1、判定曲线是否方程的曲线,方程是否曲线的方程:2、求圆、椭圆、双曲线、抛物线的标准方程(1)圆(2)椭圆、双曲线 (3)抛物线3、 知圆、椭圆、双曲线、抛物线的方程,写到标准:(1)圆:配方法(圆心、半径)(2)椭圆:122=+yx问1:焦点在x 轴?问2:焦点在y 轴?(3)双曲线:122=-y x问1:焦点在x 轴?问2:焦点在y轴?特别地:共渐进线的双曲线系?(4)抛物线:常见的综合性问题:1、求曲线方程的一般方法:(1)直接法(仅一个动点);特别:利用定义法省略化简(2)代入法(两个及以上动点)。
必修二数学圆与方程知识点总结必修二数学圆与方程知识点总结总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它可以提升我们发现问题的能力,因此十分有必须要写一份总结哦。
总结一般是怎么写的呢?下面是小编收集整理的必修二数学圆与方程知识点总结,希望对大家有所帮助。
必修二数学圆与方程知识点总结1圆的一般方程圆的标准方程是一个关于x和y的二次方程,将它展开并按x、y 的降幂排列,得:x+y—2ax—2by+a+b—R=0设D=—2a,E=—2b,F=a+b—R;则方程变成:x+y+Dx+Ey+F=0任意一个圆的方程都可写成上述形式。
把它和下述的一般形式的二元二次方程比较,可以看出它有这样的特点:(1)x2项和y2项的系数相等且不为0(在这里为1);(2)没有xy的乘积项。
Ax+Bxy+Cy+Dx+Ey+F=0圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为(x—a1)(x—a2)+(y—b1)(y—b2)=0 圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆x+y=r上一点M(a0,b0)的切线方程为a0·x+b0·y=r 在圆(x+y=r)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为a0·x+b0·y=r。
圆的性质有哪些1、圆是定点的距离等于定长的点的集合2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等。
圆是一种几何图形,指的是平面中到一个定点距离为定值的所有点的集合。
这个给定的点称为圆的圆心。
作为定值的距离称为圆的半径。
当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹就是一个圆。
圆的直径有无数条;圆的对称轴有无数条。
圆的直径是半径的2倍,圆的半径是直径的一半。
用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示。
高一数学复习考点知识专题讲解圆的标准方程学习目标 1.掌握圆的定义及标准方程. 2.会用待定系数法求圆的标准方程,能准确判断点与圆的位置关系.知识点一圆的标准方程(1)条件:圆心为C(a,b),半径长为r.(2)方程:(x-a)2+(y-b)2=r2.(3)特例:圆心为坐标原点,半径长为r的圆的方程是x2+y2=r2.知识点二点与圆的位置关系点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2的位置关系及判断方法位置关系利用距离判断利用方程判断点M在圆上|CM|=r (x0-a)2+(y0-b)2=r2点M在圆外|CM|>r (x0-a)2+(y0-b)2>r2点M在圆内|CM|<r (x0-a)2+(y0-b)2<r21.方程(x-a)2+(y-b)2=m2一定表示圆.(×)2.确定一个圆的几何要素是圆心和半径.(√)3.圆(x+1)2+(y+2)2=4的圆心坐标是(1,2),半径是4.(×)4.(0,0)在圆(x-1)2+(y-2)2=1上.(×)一、求圆的标准方程例1 (1)与y 轴相切,且圆心坐标为(-5,-3)的圆的标准方程为________________. 答案 (x +5)2+(y +3)2=25解析 ∵圆心坐标为(-5,-3),又与y 轴相切, ∴该圆的半径为5,∴该圆的标准方程为(x +5)2+(y +3)2=25.(2)以两点A (-3,-1)和B (5,5)为直径端点的圆的标准方程是__________________. 答案 (x -1)2+(y -2)2=25 解析 ∵AB 为直径, ∴AB 的中点(1,2)为圆心,12|AB |=12(5+3)2+(5+1)2=5为半径, ∴该圆的标准方程为(x -1)2+(y -2)2=25. 反思感悟 直接法求圆的标准方程的策略确定圆的标准方程只需确定圆心坐标和半径,常用到中点坐标公式、两点间距离公式,有时还用到平面几何知识,如“弦的中垂线必过圆心”“两条弦的中垂线的交点必为圆心”等. 跟踪训练1 求满足下列条件的圆的标准方程: (1)圆心是(4,0),且过点(2,2);(2)圆心在y 轴上,半径为5,且过点(3,-4). 解 (1)r 2=(2-4)2+(2-0)2=8, ∴圆的标准方程为(x -4)2+y 2=8. (2)设圆心为C (0,b ), 则(3-0)2+(-4-b )2=52, ∴b =0或b =-8,∴圆心为(0,0)或(0,-8), 又r =5,∴圆的标准方程为x 2+y 2=25或x 2+(y +8)2=25. 二、点与圆的位置关系例2 (1)点P (m 2,5)与圆x 2+y 2=24的位置关系是( ) A .点P 在圆内 B .点P 在圆外 C .点P 在圆上 D .不确定 答案 B解析 由(m 2)2+52=m 4+25>24, 得点P 在圆外.(2)已知点M (5a +1,a )在圆(x -1)2+y 2=26的内部,则a 的取值范围为________________. 答案 [0,1)解析 由题意知⎩⎨⎧a ≥0,(5a +1-1)2+(a )2<26,即⎩⎪⎨⎪⎧a ≥0,26a <26,解得0≤a <1. 反思感悟 判断点与圆位置关系的两种方法(1)几何法:主要利用点到圆心的距离与半径比较大小.(2)代数法:把点的坐标代入圆的标准方程,判断式子两边的大小,并作出判断.跟踪训练2 已知点A (1,2)和圆C :(x -a )2+(y +a )2=2a 2,试分别求满足下列条件的实数a 的取值范围:(1)点A 在圆的内部; (2)点A 在圆上; (3)点A 在圆的外部. 解 (1)因为点A 在圆的内部, 所以(1-a )2+(2+a )2<2a 2,且a 不为0,解得a <-2.5.(2)因为点A 在圆上,所以(1-a )2+(2+a )2=2a 2, 解得a =-2.5.(3)因为点A 在圆的外部,所以(1-a )2+(2+a )2>2a 2, 且a 不为0,解得a >-2.5且a ≠0.待定系数法与几何法求圆的标准方程典例 求经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上的圆的标准方程. 解 方法一(待定系数法)设圆的标准方程为(x -a )2+(y -b )2=r 2, 则有⎩⎪⎨⎪⎧a 2+b 2=r 2,(1-a )2+(1-b )2=r 2,2a +3b +1=0,解得⎩⎪⎨⎪⎧a =4,b =-3,r =5.∴圆的标准方程是(x -4)2+(y +3)2=25. 方法二 (几何法)由题意知OP 是圆的弦,其垂直平分线为x +y -1=0. ∵弦的垂直平分线过圆心,∴由⎩⎪⎨⎪⎧ 2x +3y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =4,y =-3,即圆心坐标为(4,-3), 半径为r =42+(-3)2=5.∴圆的标准方程是(x -4)2+(y +3)2=25.[素养提升](1)待定系数法求圆的标准方程的一般步骤(2)几何法即是利用平面几何知识,求出圆心和半径,然后写出圆的标准方程.(3)像本例,理解运算对象,探究运算思路,求得运算结果.充分体现数学运算的数学核心素养.1.若某圆的标准方程为(x-1)2+(y+5)2=3,则此圆的圆心和半径长分别为()A.(-1,5),3B.(1,-5), 3C.(-1,5),3 D.(1,-5),3答案 B2.圆心为(1,-2),半径为3的圆的方程是()A.(x+1)2+(y-2)2=9B.(x-1)2+(y+2)2=3C.(x+1)2+(y-2)2=3D.(x-1)2+(y+2)2=9答案 D解析由圆的标准方程得(x-1)2+(y+2)2=9.3.点P(1,3)与圆x2+y2=24的位置关系是()A.在圆外B.在圆内C.在圆上D.不确定答案 B4.圆心在y轴上,半径为1,且过点(1,2)的圆的标准方程是()A.x2+(y-2)2=1 B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1答案 A解析方法一(直接法)设圆的圆心为C(0,b),则(0-1)2+(b-2)2=1,∴b=2,∴圆的标准方程是x2+(y-2)2=1.方法二(数形结合法)作图(如图),根据点(1,2)到圆心的距离为1易知,圆心为(0,2),故圆的标准方程是x2+(y-2)2=1.5.若点P(5a+1,12a)在圆(x-1)2+y2=1的外部,则a的取值范围为__________.答案a>113或a<-113解析∵P在圆外,∴(5a+1-1)2+(12a)2>1,169a2>1,a2>1169,∴a>113或a<-1 13.1.知识清单:(1)圆的标准方程.(2)点和圆的位置关系.2.方法归纳:直接法、几何法、待定系数法.3.常见误区:几何法求圆的方程出现漏解情况.1.圆心为(3,1),半径为5的圆的标准方程是() A.(x+3)2+(y+1)2=5C .(x -3)2+(y -1)2=5D .(x -3)2+(y -1)2=25 答案 D2.圆(x -3)2+(y +2)2=13的周长是( ) A.13π B .213π C .2π D .23π 答案 B解析 由圆的标准方程可知,其半径为13,周长为213π.3.已知点A (3,-2),B (-5,4),以线段AB 为直径的圆的标准方程是( ) A .(x -1)2+(y +1)2=25 B .(x +1)2+(y -1)2=25 C .(x -1)2+(y +1)2=100 D .(x +1)2+(y -1)2=100 答案 B解析 由题意得圆心坐标为(-1,1),半径r =12|AB |=12(3+5)2+(-2-4)2=5,所以圆的标准方程是(x +1)2+(y -1)2=25.故选B.4.若点A (a +1,3)在圆C :(x -a )2+(y -1)2=m 外,则实数m 的取值范围是( ) A .(0,+∞) B .(-∞,5) C .(0,5) D .[0,5] 答案 C解析 由题意,得(a +1-a )2+(3-1)2>m ,即m <5,又易知m >0,所以0<m <5,故选C.5.已知一圆的圆心为点A (2,-3),一条直径的端点分别在x 轴和y 轴上,则圆的标准方程为( ) A .(x +2)2+(y -3)2=13 B .(x -2)2+(y +3)2=13 C .(x -2)2+(y +3)2=52答案 B解析 如图,结合圆的性质可知,原点在圆上,圆的半径为r =(2-0)2+(-3-0)2=13. 故所求圆的标准方程为 (x -2)2+(y +3)2=13.6.若点P (-1,3)在圆x 2+y 2=m 2上,则实数m =________. 答案 ±2解析 ∵P 点在圆x 2+y 2=m 2上, ∴(-1)2+(3)2=4=m 2, ∴m =±2.7.圆(x -3)2+(y +1)2=1关于直线x +y -3=0对称的圆的标准方程是________________. 答案 (x -4)2+y 2=1解析 设圆心A (3,-1)关于直线x +y -3=0对称的点B 的坐标为(a ,b ), 则⎩⎪⎨⎪⎧b +1a -3·(-1)=-1,a +32+b -12-3=0,解得⎩⎪⎨⎪⎧a =4,b =0,故所求圆的标准方程为(x -4)2+y 2=1.8.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以点C 为圆心,5为半径的圆的标准方程是________________.解析 将直线方程整理为(x +1)a -(x +y -1)=0, 可知直线恒过点(-1,2),从而所求圆的标准方程为(x +1)2+(y -2)2=5.9.已知圆C 过点A (3,1),B (5,3),圆心在直线y =x 上,求圆C 的标准方程. 解 设圆心C (a ,a ),半径为r ,则⎩⎪⎨⎪⎧(a -3)2+(a -1)2=r 2,(a -5)2+(a -3)2=r 2, 解得⎩⎪⎨⎪⎧a =3,r =2,∴圆C 的标准方程为(x -3)2+(y -3)2=4. 10.已知点A (-1,2)和B (3,4).求: (1)线段AB 的垂直平分线l 的方程; (2)以线段AB 为直径的圆的标准方程. 解 由题意得线段AB 的中点C 的坐标为(1,3). (1)∵A (-1,2),B (3,4), ∴直线AB 的斜率k AB =4-23-(-1)=12.∵直线l 垂直于直线AB , ∴直线l 的斜率k l =-1k AB =-2,∴直线l 的方程为y -3=-2(x -1), 即2x +y -5=0. (2)∵A (-1,2),B (3,4),∴|AB |=(3+1)2+(4-2)2=20=25, ∴以线段AB 为直径的圆的半径r =12|AB |= 5.又圆心为C (1,3),∴所求圆的标准方程为(x-1)2+(y-3)2=5.11.已知圆心在x轴上的圆C经过A(3,1),B(1,5)两点,则C的标准方程为()A.(x+4)2+y2=50 B.(x+4)2+y2=25C.(x-4)2+y2=50 D.(x-4)2+y2=25答案 A解析根据题意,设圆的圆心C的坐标为(m,0),若圆C经过A(3,1),B(1,5)两点,则有(3-m)2+1=(m-1)2+25,解得m=-4,即圆心C为(-4,0),则圆的半径r=|CA|=(3+4)2+1=50,则圆C的标准方程为(x+4)2+y2=50,故选A.12.已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程为()A.x+y-2=0 B.x-y+2=0C.x+y-3=0 D.x-y+3=0答案 D解析圆x2+(y-3)2=4的圆心坐标为(0,3).因为直线l与直线x+y+1=0垂直,所以直线l的斜率k=1.由点斜式得直线l的方程是y-3=x-0,化简得x-y+3=0.13.已知直线(3+2λ)x+(3λ-2)y+5-λ=0恒过定点P,则与圆C:(x-2)2+(y+3)2=16有公共的圆心且过点P的圆的标准方程为()A.(x-2)2+(y+3)2=36B.(x-2)2+(y+3)2=25C.(x-2)2+(y+3)2=18D.(x-2)2+(y+3)2=9答案 B解析 由(3+2λ)x +(3λ-2)y +5-λ=0,得(2x +3y -1)λ+(3x -2y +5)=0,则⎩⎪⎨⎪⎧ 2x +3y -1=0,3x -2y +5=0,解得⎩⎪⎨⎪⎧x =-1,y =1,即P (-1,1). ∵圆C :(x -2)2+(y +3)2=16的圆心坐标是(2,-3),∴|PC |=(-1-2)2+(1+3)2=5,∴所求圆的标准方程为(x -2)2+(y +3)2=25,故选B.14.已知点P (x ,y )在圆x 2+y 2=1上,则(x -1)2+(y -1)2的最大值为__________.答案 1+ 2解析 (x -1)2+(y -1)2的几何意义是圆上的点P (x ,y )到点(1,1)的距离,因此最大值为2+1.15.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的标准方程为______________. 答案x 2+(y +1)2=1解析 由已知圆(x -1)2+y 2=1,设其圆心为C 1,则圆C 1的圆心坐标为(1,0),半径长r 1=1.设圆心C 1(1,0)关于直线y =-x 对称的点的坐标为(a ,b ),即圆心C 的坐标为(a ,b ),则⎩⎨⎧b a -1·(-1)=-1,-a +12=b 2,解得⎩⎪⎨⎪⎧a =0,b =-1. 所以圆C 的标准方程为x 2+(y +1)2=1.16.已知圆C 1:(x +3)2+(y -1)2=4,直线l :14x +8y -31=0,求圆C 1关于直线l 对称的圆C 2的标准方程.解 设圆C 2的圆心坐标为(m ,n ).因为直线l 的斜率k =-74,圆C 1:(x +3)2+(y -1)2=4的圆心坐标为(-3,1),半径r =2, 所以,由对称性知⎩⎪⎨⎪⎧ n -1m +3=47,14×-3+m 2+8×1+n 2-31=0,解得⎩⎪⎨⎪⎧ m =4,n =5.所以圆C 2的标准方程为(x -4)2+(y -5)2=4.。
解析几何中的圆与曲线方程在解析几何中,圆与曲线方程是研究图形性质和解题的基础。
本文将详细介绍圆与曲线方程的定义、性质以及应用,以帮助读者更好地理解和应用解析几何中的相关知识。
一、圆的方程圆是平面上所有离圆心距离都相等的点的集合。
在解析几何中,圆的方程可以用不同的形式表示,如一般式、标准式和参数方程等。
1. 一般式圆的一般式方程为:(x-a)^2 + (y-b)^2 = r^2其中,(a, b)为圆心坐标,r为半径长度。
这种形式的方程可以描述任意位置和大小的圆。
2. 标准式圆的标准式方程为:x^2 + y^2 + Dx + Ey + F = 0其中,D、E、F为常数,且满足D^2 + E^2 - 4F > 0。
这种形式的方程适用于求解圆心在坐标原点的情况,常用于圆与其他图形的交点求解。
3. 参数方程圆的参数方程描述了圆上所有点的坐标变化关系。
以极坐标为例,圆的参数方程为:x = a + r*cosθy = b + r*sinθ其中,(a, b)为圆心坐标,r为半径长度,θ为角度。
这种形式的方程常用于描述圆的运动轨迹。
二、曲线方程解析几何中的曲线方程可分为二次曲线、三次曲线等不同类型。
下面将以二次曲线为例介绍曲线方程的常见形式。
1. 椭圆方程椭圆是平面上所有到两个给定点的距离之和等于常数的点的集合。
椭圆的标准方程为:(x/a)^2 + (y/b)^2 = 1其中,(0, 0)为椭圆中心的坐标,a、b为椭圆在x轴和y轴上的半轴长度。
该方程描述的是以坐标原点为中心的椭圆。
2. 双曲线方程双曲线是平面上所有到两个给定点的距离之差等于常数的点的集合。
双曲线的标准方程为:(x/a)^2 - (y/b)^2 = 1或(x/a)^2 - (y/b)^2 = -1其中,a、b为双曲线在x轴和y轴上的半轴长度。
该方程描述的是以坐标原点为中心的双曲线。
3. 抛物线方程抛物线是平面上所有到一个给定点的距离等于到一条给定直线距离的点的集合。
高一圆的方程知识点总结高一数学是学生们迈向高中学习的重要阶段,其中圆的方程是数学中的一个重要知识点。
在这篇文章中,我将对高一圆的方程知识点进行总结和归纳,帮助学生们更好地理解和掌握这个知识点。
一、基本概念在讨论圆的方程之前,首先需要明确一些基本概念。
圆是由平面上离给定点(圆心)距离相等的所有点组成的图形。
圆心坐标为(h,k),半径为r。
可以表示为(x-h)² + (y-k)² = r²。
在这个方程中,圆心的坐标为(h,k),半径为r。
二、标准方程标准方程是描述圆的方程形式,表示为(x-a)² + (y-b)² = r²。
在标准方程中,圆心的坐标为(a,b),半径为r。
三、参数方程除了标准方程外,还可以使用参数方程来描述圆的方程。
参数方程可以表示为x = a + r\*cosθ,y = b + r\*sinθ。
其中,(a,b)是圆心的坐标,r是半径,θ是角度。
四、判定与性质1. 两点确定一条直径:如果两个点在圆上并且不在同一条直径上,那么这两个点就确定了一个圆。
2. 垂直平分线:圆上的任意两点与圆心连线的垂直平分线上的所有点都在圆上。
3. 弦:一个圆上的弦是两个点确定的线段。
弦通过圆心时,为直径。
4. 弧:一个圆上的弧是圆上的一段弧线。
其中,一段大于半圆的弧叫做大弧,小于半圆的弧叫做小弧。
5. 弧长:弧长等于弧所对的圆心角所对的圆周与圆周长度的比值。
可以表示为L = 2πr(θ/360°)。
6. 扇形面积:扇形面积等于扇形所对的圆心角所对的圆周与圆的面积的比值。
可以表示为A = 1/2r²(θ/360°)。
7. 切割线:若直线与圆相切,则称该直线为切割线。
相切于一个圆上相同弧上的两条切线互为互补角。
五、应用问题除了基本概念和性质,高一的圆的方程还涉及到一些应用问题。
1. 判断点的位置:给定一个点,判断该点是否在圆内、圆上或圆外。
曲线方程圆标准方程在数学中,圆是一种非常基础且重要的几何图形,它在我们生活和学习中都有着广泛的应用。
而描述圆的方程,也是我们学习数学的重要内容之一。
在本文中,我们将重点讨论曲线方程圆的标准方程,希望能够为大家对这一知识点有更清晰的认识。
首先,让我们来回顾一下圆的定义。
圆是平面上到一个定点距离等于定长的点的集合。
这个定点称为圆心,定长称为半径。
而圆的标准方程就是用数学语言来描述圆的方程,它能够清晰地表达出圆的位置、大小等信息。
圆的标准方程一般形式为:(x h)² + (y k)² = r²。
其中(h, k)为圆心的坐标,r为圆的半径。
在这个标准方程中,我们可以清晰地看到圆心的坐标和半径的信息。
通过这个方程,我们可以很方便地确定一个圆的位置和大小。
接下来,我们将通过几个具体的例子来说明如何利用这个标准方程来描述圆。
例1,已知圆心坐标为(3, 4),半径为5,求圆的标准方程。
根据标准方程的一般形式,代入圆心坐标和半径的信息,得到方程为:(x 3)² + (y 4)² = 25。
例2,已知圆的标准方程为(x + 2)² + (y 1)² = 16,求圆的圆心坐标和半径。
通过比较标准方程和一般形式,可以得到圆心坐标为(-2, 1),半径为4。
通过以上两个例子,我们可以看到,利用圆的标准方程,我们可以方便地求解圆的各种信息,包括圆心坐标、半径等。
这对于解决各种与圆相关的问题非常有帮助。
除了上述的基本应用外,圆的标准方程还可以在解决一些复杂的几何问题时发挥重要作用。
比如在解决圆与直线、圆与圆的相交问题时,标准方程能够帮助我们方便地进行计算和推导,从而得到问题的解答。
综上所述,曲线方程圆的标准方程是描述圆的位置和大小的重要工具,它能够帮助我们清晰地了解圆的各种信息,并在解决与圆相关的问题时发挥重要作用。
希望本文的介绍能够帮助大家更好地理解和应用圆的标准方程。
x y O B A M高中数学知识要点重温之曲线与方程,圆的方程江苏 郑邦锁1.曲线C 的方程为:f(x,y)=0⇔曲线C 上任意一点P 〔x 0,y 0〕的坐标满足方程f(x,y)=0,即f 〔x 0,y 0〕=0;且以f(x,y)=0的任意一组解〔x 0,y 0〕为坐标的点P 〔x 0,y 0〕在曲线C 上。
依据该定义:点在曲线上即知点的坐标满足曲线方程;求证点在曲线上也只需证点的坐标满足曲线方程。
求动点P(x,y)的轨迹方程即求点P 的坐标(x,y)满足的方程〔等式〕。
求动点轨迹方程的步骤:①建系,写〔设〕出相关点的坐标、线的方程,动点坐标一样设为(x,y),②分析动点满足的条件,并用等式描述这些条件,③化简,④验证:满足条件的点的坐标差不多上方程的解,且以方程的解为坐标的点都满足条件。
[举例1] 方程04)1(22=-+-+y x y x 所表示的曲线是: 〔 〕A B C D 解析:原方程等价于:⎩⎨⎧≥+=--40122y x y x ,或422=+y x ; 其中当01=--y x 需422-+y x 有意义,等式才成立,即422≥+y x ,现在它表示直线01=--y x 上不在圆422=+y x 内的部分,这是极易出错的一个环节。
选D 。
[举例2] 点A 〔-1,0〕,B 〔2,0〕,动点M 满足2∠MAB=∠MBA ,求点M 的轨迹方程。
解析:如何表达动点M 满足的条件2∠MAB=∠MBA是解决此题的关键。
用动点M 的坐标表达2∠MAB=∠MBA 的最正确载体是直线MA 、MB 的斜率。
设M 〔x ,y 〕,∠MAB=α,那么∠MBA=2α,它们是直线 MA 、MB 的倾角依旧倾角的补角,与点M 在x 轴的上方 依旧下方有关;以下讨论:① 假设点M 在x 轴的上方, ,0),90,0(00>∈y α现在,直线MA 的倾角为α,MB 的倾角为π-2α,,2)2tan(,1tan -=-+==∴x y x y k MA απα 〔2090≠α〕 ,2tan )2tan(ααπ-=- ,)1(112222+-+•=--∴x y x yx y得: 1322=-y x ,∵1,>∴>x MB MA . 当2090=α时, α=450,MAB ∆为等腰直角三角形,现在点M 的坐标为(2,3),它满足上述方程. ②当点M 在x 轴的下方时, y <0,同理可得点M 的轨迹方程为)1(1322≥=-x y x , ③当点M 在线段AB 上时,也满足2∠MAB=∠MBA,现在y=0(-1<x<2). 综上所求点的轨迹方程为)21(0)1(1322<<-=≥=-x y x y x 或. [巩固1]右图的曲线是以原点为圆心,1为半径的圆的一部分,那么它的方程是A .〔21y x -+〕·〔21x y -+〕=0B .〔21y x --〕·〔21x y --〕=0C .〔21y x -+〕·〔21x y --〕=0D .〔21y x --〕·〔21x y -+〕=0[巩固2]点R 〔-3,0〕,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足·PM =,2PM +3=,当点P 移动时,求M 点的轨迹方程。
[迁移]正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 是棱AB 的中点,点P 是平面ABCD 上的一动点,且点P 到直线A 1D 1的距离两倍的平方比到点M 的距离的平方大4,那么点P 的轨迹为: A .圆 B .椭圆 C .双曲线 D .抛物线2.圆的标准方程刻画了圆的位置特点〔圆心与半径〕,圆的一样方程反映了圆的代数特点〔二元二次方程Ax 2+By 2+Cxy+Dx+Ey+F=0⇔A=B ≠0,C=0,且D 2+E 2-4AF>0〕。
判定点P 〔x 0,y 0〕与⊙M :(x-a)2+(y-b)2= r 2的位置关系,用|PM|与r 的大小,即:|PM|>r ⇔(x 0-a)2+(y 0-b)2> r 2⇔P 在⊙M 外;|PM|<r ⇔(x 0-a)2+(y 0-b)2< r 2⇔P 在⊙M 内;|PM|=r ⇔(x 0-a)2+(y 0-b)2= r 2⇔P 在⊙M 上。
过两个定点A 、B 的圆,圆心在线段AB 的中垂线上。
[举例1]一圆通过A 〔4,2〕,B 〔-1,3〕两点,且在两坐标轴上的四个截距之和为2,那么圆的方程为 。
解析:研究圆在坐标轴上的截距,宜用一样方程〔因为与圆心、半径没有直截了当联系〕,设圆的方程为x 2+y 2+Dx+Ey+F=0,∵圆过点A 、B ,∴4D+2E+F+20=0 ①,-D+3E+F+10=0 ②,圆在x 轴上的截距即圆与x 轴交点的横坐标,当y=0时,x 2+Dx+F=0,x 1+x 2=-D圆在y 轴上的截距即圆与y 轴交点的纵坐标,当x=0时,y 2+Ey+F=0,y 1+y 2=-E由题意知:-D-E=2 ③,解①②③得D=-2,E=0,F=-12。
[举例2]假设存在实数k 使得直线l :kx-y-k+2=0与圆C :x 2+2ax+y 2-a+2=0无公共点,那么实数a 的取值范畴是: 。
解析:此题看似直线远的位置关系咨询题,事实上不然。
注意到直线l 对任意的实数k 恒过定点M 〔1,2〕,要存在实数k 使得直线l 与⊙C 相离,当且仅当M 点在圆外;方程x 2+2ax+y 2-a+2=0变形为:(x+a)2+y 2= a 2+a -2, M 点在⊙C 外⇔(1+a)2+4>a 2+a -2>0,解得:-7<a<-2或a>1. 注:此题中a 2+a -2>0是极易疏漏的一个潜在要求。
[巩固1]过点A 〔3,-2〕,B 〔2,1〕且圆心在直线x-2y-3=0上的圆的方程是 。
[巩固2]定点M(x 0,y 0)在第一象限,过M 点的两圆与坐标轴相切,它们的半径分不为r 1, r 2,那么r 1r 2= 。
[迁移] 关于曲线42:1C x y +=给出以下讲法:①关于直线0y =对称;②关于直线0x =对称;③关于点(0,0)对称;④关于直线y x =对称;⑤是封闭图形,面积小于π;⑥是封闭图形,面积大于π;那么其中正确讲法的序号是3.涉及直线与圆的位置关系的咨询题,宜用圆心到直线的距离d 来研究。
d =r 〔r 为圆的半径〕⇔直线与圆相切;过圆x 2+y 2=r 2上一点M (x 0,y 0)的切线方程为x 0x+y 0y=r 2;过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,那么两切点A 、B 连线的直线方程为x 0x+y 0y=r 2。
过⊙A 外一点P 作圆的切线PQ 〔Q 为切点〕,那么|PQ|=22||r PA -。
d <r ⇔直线与圆相交,弦长|AB|=222d r -;过直线A x +B y +C =0与圆:F Ey Dx y x ++++22=0的交点的圆系方程:F Ey Dx y x ++++22+λ〔A x +B y +C 〕=0 。
d >r ⇔直线与圆相离,圆周上的点到直线距离的最小值为d -r ,最大值为d +r 。
[举例1] 从直线x -y+3=0上的点向圆1)2()2(22=+++y x 引切线,那么切线长的最小值是 A.223 B.214 C.423 D. 223-1 解析:圆1)2()2(22=+++y x 的圆心A 〔-2,-2〕,直线x -y+3=0上任一点P ,过引圆的切线PQ 〔Q 为切点〕,那么|PQ|=1||2-PA ,当且仅当|PA|最小时|PQ|最小,易见|PA|的最小值即A 到直线x -y+3=0的距离,为223,现在|PQ|=214,选B 。
[举例2] 能够使得圆222410x y x y +-++=上恰有两个点到直线20x y c ++=距离等于1的c 的一个值为:A .2 C .3 D .解析:此题假如设圆上一点的坐标,用点到直线的距离公式得到一个方程,进而研究方程解的个数,将是专门苦恼的。
注意到圆心M 〔1,-2〕,半径r =2,结合图形容易明白,当且仅当M 到直线l :20x y c ++=的距离d ∈〔1,3〕时,⊙M 上恰有两个点到直线l 的距离等于1,由d =5||c ∈〔1,3〕得:)53,5()5,53(⋃--∈c ,选C 。
[巩固1] 假设直线(1+a)x +y +1=0与圆x 2+y 2-2x =0相切,那么a 的值为 〔 〕 〔A 〕1,-1 〔B 〕2,-2 〔C 〕1 〔D 〕-1[巩固2]直线l 1:y=kx +1与圆C :x 2+y 2+2kx+2my=0的两个交点A 、B 关于直线l 2:x+y=0对称,那么CB CA ⋅= 。
[迁移]实数x ,y 满足24,012222--=+--+x y y x y x 则的取值范畴为 〔 〕A .),34[+∞ B .]34,0[ C .]34,(--∞ D .)0,34[- 4.判定两圆的位置关系用圆心距与它们半径和、差的大小。
⊙M 、⊙N 的半径分不为1r 、2r , |MN|>1r +2r ⇔外离,|MN|=1r +2r ⇔外切,|1r -2r |<|MN|<1r +2r ⇔相交,现在,假设⊙M :011122=++++F y E x D y x ,⊙N :022222=++++F y E x D y x ,过两圆交点的圆〔系〕的方程为:11122F y E x D y x +++++λ〔22222F y E x D y x ++++〕=0〔⊙N 除外〕。
专门地:当λ= -1时,该方程表示两圆的公共弦。
连心线垂直平分公共弦。
|MN|=|1r -2r |⇔内切,|MN|<|1r -2r |⇔内含。
[举例1]两圆O 1:x 2+y 2=16,O 2:(x-1)2+(y+2)2=9,两圆公共弦交直线O 1O 2于M 点,那么O 1分有向线段MO 2所成的比λ= 〔 〕A .56B .65C .-56D .-65 解析:直线O 1 O 2:y= -2x ,两圆公共弦:x-2y=6,因此有:M 〔56,512-〕,有定比分点坐标公式不难得到λ的值,选C 。
[举例2] 假设,}1)2(|),{(},16|),{(2222B B A a y x y x B y x y x A =-≤-+=≤+= 且那么a 的取值范畴是 〔 〕A .1≤aB .5≥aC .51≤≤aD .5≤a解析:集合A 、B 分不表示两个圆面〔a=1时集B 表示一个点〕,A ∩B=B ⇔B ⊂A ,即两圆内含;有两圆圆心分不为原点和〔0,2〕,半径分不为4和1-a ,因此有:2≤4-1-a ,解得:51≤≤a ,选C 。