振动与模态分析的主要概念!
- 格式:docx
- 大小:17.77 KB
- 文档页数:3
振动分析1. 引言振动分析是一种研究和分析物体振动行为的方法。
振动是指物体在固有频率下的周期性运动。
振动分析可以应用于各个领域,如工程、物理学、机械等,以帮助我们理解和掌握物体的振动特性。
本文将介绍振动分析的基本概念、方法和应用。
2. 振动分析方法2.1 自由振动自由振动是指物体在无外力作用下以自身固有频率振动的现象。
自由振动可以用简谐振动模型来描述。
简谐振动是指物体在恢复力作用下按正弦或余弦函数的规律周期性振动。
2.2 强迫振动强迫振动是指物体在外力作用下振动的现象。
外力作用会改变物体原来的振动特性,使振动频率改变。
强迫振动可以通过叠加法和复合振动模型来描述。
2.3 阻尼振动阻尼振动是指物体在有耗散力的情况下振动的现象。
耗散力会使振动逐渐减弱,最终停止。
阻尼振动可以通过阻尼振动模型来描述。
2.4 频域分析频域分析是指将振动信号转换到频域进行分析的方法。
频域分析可以通过傅里叶变换将时域信号转换成频谱图,以研究振动信号中的频率成分和幅度。
频域分析常用于诊断和解决振动问题。
2.5 时域分析时域分析是指在时间轴上分析振动信号的方法。
时域分析可以通过绘制波形图、自相关函数和互相关函数来分析振动信号中的时间特性。
时域分析常用于振动信号的处理和特征提取。
2.6 模态分析模态分析是指通过确定物体的振动模态和固有频率来分析其振动特性的方法。
模态分析可以通过模态测试和有限元法进行,以确定物体的振动模态和模态参数。
模态分析可以帮助我们了解和设计物体的振动特性。
3. 振动分析应用振动分析在各个领域都有广泛的应用。
以下是一些常见的振动分析应用:3.1 结构健康监测振动分析可以用于结构健康监测,以检测和评估结构的损伤和变形情况。
例如在桥梁和建筑物中安装振动传感器,通过实时监测结构的振动信号,可以及时发现和诊断可能存在的结构问题。
3.2 故障诊断振动分析可以用于故障诊断,以检测和诊断机械设备的故障和异常情况。
通过分析机械设备的振动信号,可以判断是否存在轴承故障、不平衡、松动等问题,从而进行及时维修和更换。
振动模态分析与建模技术在结构工程中的运用结构工程是在土木工程学科的基础上发展起来的一门工程学科,它主要研究建筑物、桥梁、管道等结构物的设计、施工和维护。
随着结构工程的发展,振动模态分析以及建模技术也逐渐得到了广泛的应用。
本文将介绍振动模态分析以及建模技术在结构工程中的运用,并探讨其在优化设计和结构安全方面的作用。
一、振动模态分析振动模态分析是指通过对结构物的振动特性进行分析来确定结构物的固有频率、振型、振动位移等参数的技术。
振动模态分析主要通过计算机模拟进行,可以帮助工程师们深入了解结构物的振动特性并进行优化设计。
1. 振动模态分析的原理振动模态分析的核心原理是结构物的振动理论。
结构物振动的基本形式分为自由振动和受迫振动。
自由振动是指当没有外界干扰时,结构物发生的振动。
受迫振动是指当外界施加作用力时,结构物发生的振动。
在振动模态分析中,主要研究的是自由振动,也就是不受外界干扰情况下结构物的振动特性。
2. 振动模态分析的应用振动模态分析在结构工程中的应用非常广泛,常用于以下方面:(1)确定结构物的振动固有频率结构物的振动固有频率是指结构物自由振动时的共振频率。
通过振动模态分析,可以确定结构物的振动固有频率,从而确定结构物的共振状态。
(2)确定结构物振动位移结构物振动分为水平振动和竖直振动。
在振动模态分析中,可以通过计算机模拟确定结构物在不同振动模态下的振动位移,从而确定结构物在共振状态下的结构变形情况。
(3)确定结构物的振型振型指结构物在振动过程中呈现的振动形态。
在振动模态分析中,可以通过计算机模拟来确定结构物不同振动模态下所呈现的振型,从而确定结构物的振动性能和稳定状态。
二、建模技术建模技术是一种利用计算机技术模拟结构物运行情况的技术。
建模技术主要应用于结构物的优化设计和检测,通过模拟技术可以帮助工程师更好的掌握结构物的运行状态,从而保障工程的安全运行。
1. 建模技术的原理建模技术的主要原理是结构物的建模,通过将结构物的各种参数输入计算机进行模拟,以便工程师们可以了解结构物的运行情况。
振动工程中的模态分析方法振动工程是应用力学和机械工程学原理研究物体在振动状态下的特性与行为的学科,它在航空、航天、汽车、电子、建筑、机械、石化等行业得到广泛应用。
模态分析是振动工程的一项基本技术,在振动分析和振动控制中发挥着重要作用。
模态分析是通过形态分解的方法,将振动系统振型分解成若干个自然振动模态,并进一步确定每个自然振动模态的基本参数,包括振动频率、振动模态形态和振型振动幅度等参数。
模态分析技术可以分析结构的动态特性,描述结构在振动状态下的特点与本质,并评估结构的振动性能。
模态分析技术的基本原理是运用振动学的知识研究振动系统的特性与行为。
振动系统的特性与行为是由质量、刚度和阻尼等参数决定的,它们在系统自由振荡的过程中,呈现出一定的规律和变化。
模态分析技术通过对结构的振动响应进行分析,求出结构的振动模态形态和振动特性参数,以揭示结构的动态特性。
在模态分析中,网络分析法是一种较常用的分析方法。
网络分析法是基于多输入多输出的振动分析方法,其基本原理是通过构建动力学方程组,求解方程组的特征值和特征向量,得到结构的振动模态和振动特性参数。
在进行模态分析时,需要采用一定的振动测试手段和技术设备,如振动传感器、数据采集仪和振动分析软件等。
振动传感器可以检测出物体的振动情况,并将振动信号转化为电信号,传输到数据采集仪进行采集。
数据采集仪可以对振动信号进行采集、存储和处理,并将处理后的数据传输到振动分析软件中进行分析。
振动分析软件可以对振动信号进行谱分析、滤波处理、频域分析和时域分析等,并对振动信号进行模态分解,求出结构的自然振动模态和振动特性参数。
模态分析技术在振动工程中得到广泛应用,可以对结构的动态特性进行研究和分析,评估结构的振动性能,进一步指导结构设计和优化。
同时,模态分析技术也是现代振动控制技术的基础,可以为振动控制系统的设计和实现提供理论和技术支持。
总之,模态分析技术是振动工程领域中一项重要的技术,可以揭示结构的动态特性和振动特性参数,评估结构的振动性能,指导结构的设计和优化,并为振动控制系统的设计和实现提供理论和技术支持。
多自由度系统的振动模态分析振动是物体在受到外界作用力或受到初始扰动后产生的周期性运动。
在工程领域中,多自由度系统的振动模态分析是一项重要的研究内容。
本文将介绍多自由度系统的振动模态分析的基本原理和方法。
一、多自由度系统的定义多自由度系统是指由多个相互连接的质点组成的系统。
每个质点都可以在三个坐标方向上自由运动,因此系统的自由度就是质点的个数乘以每个质点的自由度。
多自由度系统的振动模态分析可以帮助我们了解系统的固有振动特性,为工程设计和结构优化提供依据。
二、振动模态的概念振动模态是指多自由度系统在固有频率下的振动形态。
每个固有频率对应一个振动模态,振动模态的数量等于系统的自由度。
振动模态分析可以帮助我们确定系统在不同频率下的振动特性,从而预测系统的响应和寻找可能的共振点。
三、振动模态分析的方法1. 模态分析方法模态分析是一种通过数学方法求解系统的固有频率和振动模态的方法。
常用的模态分析方法包括有限元法、模态超级位置法等。
有限元法是一种基于离散化的方法,将系统分割成有限个小单元,通过求解每个单元的振动特性,最终得到整个系统的振动模态。
模态超级位置法是一种基于物理原理的方法,通过测量系统在不同频率下的振动响应,推导出系统的振动模态。
2. 模态参数的计算模态参数是指描述振动模态特性的参数,包括固有频率、振型、振幅等。
模态参数的计算可以通过实验测量和数值模拟两种方法。
实验测量是通过激励系统,测量系统在不同频率下的振动响应,并通过信号处理和频谱分析等方法计算出模态参数。
数值模拟是通过建立系统的数学模型,利用计算机仿真软件求解系统的振动模态。
四、振动模态分析的应用振动模态分析在工程领域有广泛的应用。
首先,振动模态分析可以帮助工程师了解系统的固有振动特性,从而优化设计和改善结构。
其次,振动模态分析可以用于故障诊断和预测,通过对系统的振动模态进行监测和分析,可以判断系统是否存在异常或潜在故障。
此外,振动模态分析还可以应用于声学工程、航天工程、汽车工程等领域。
机械系统动力学特性的模态分析机械系统动力学是研究物体在受到外力作用下的运动规律和机械系统动态特性的学科。
其中,模态分析是一种重要的方法,用于研究机械系统的固有振动特性。
本文将介绍机械系统动力学特性的模态分析方法及其应用。
一、模态分析的基本概念模态分析是研究机械系统振动模态的一种方法。
模态是指机械系统在自由振动状态下的振动形式和频率。
模态分析通过分析机械系统的初始条件、约束条件和外力等因素,确定机械系统的固有频率和振型,并进一步得到机械系统的振荡特性。
二、模态分析的基本步骤模态分析一般包括以下几个步骤:1. 系统建模:根据实际情况,将机械系统抽象为数学模型,包括质量、刚度、阻尼等参数。
2. 求解特征值问题:通过求解系统的特征值问题,得到系统的固有频率和振型。
3. 模态验算:将得到的固有频率和振型代入原始方程,验证其是否满足振动方程。
4. 模态分析:通过对系统的振动模态进行进一步分析,得到系统的动态响应和振动特性。
三、模态分析的应用模态分析在机械工程领域有广泛的应用。
主要包括以下几个方面:1. 结构优化设计:通过模态分析,可以评估机械系统的固有频率和振型,判断系统是否存在共振现象或其他异常振动情况,为结构设计提供依据。
2. 动力学特性分析:通过模态分析,可以了解机械系统的振动特性,包括固有频率、阻尼特性和模态质量等指标,为系统的动力学性能评估和优化提供依据。
3. 故障诊断与预测:模态分析可以用于机械系统的故障诊断和预测。
通过对机械系统振动模态的变化进行监测和分析,可以判断系统是否存在故障,并提前发现潜在的故障。
4. 振动控制技术:通过模态分析,可以了解机械系统振动的特征,并采取相应的振动控制措施。
比如调节系统的阻尼、改变系统的刚度等,来减小系统的振动幅度,提高系统的稳定性和工作性能。
四、模态分析存在的问题与挑战模态分析作为一种成熟的技术方法,仍然面临一些问题和挑战。
例如,模态分析需要对机械系统进行精确的建模,包括质量、刚度和阻尼等参数的准确度和全面性。
杆件系统的自由振动频率与模态分析引言:杆件系统是一种常见的结构形式,广泛应用于建筑、桥梁、机械等领域。
在设计和分析杆件系统时,了解其自由振动频率和模态分析是非常重要的。
本文将介绍杆件系统的自由振动频率与模态分析的基本原理和方法。
一、自由振动频率自由振动频率是指杆件系统在没有外部激励的情况下,由初始位移或初始速度引起的振动。
杆件系统的自由振动频率与其结构的刚度、质量和几何形状等因素有关。
1. 结构刚度杆件系统的刚度决定了其自由振动频率的大小。
刚度越大,自由振动频率越高。
刚度可以通过杆件的截面积、材料的弹性模量和杆件的长度等参数来描述。
2. 结构质量杆件系统的质量也会影响其自由振动频率。
质量越大,自由振动频率越低。
质量可以通过杆件的密度和体积来描述。
3. 几何形状杆件系统的几何形状也会对其自由振动频率产生影响。
例如,杆件的长度、截面形状和连接方式等因素都会影响自由振动频率的大小。
二、模态分析模态分析是一种研究杆件系统振动特性的方法,通过计算和分析杆件系统的模态参数,可以了解其在不同模态下的振动特性。
1. 模态参数模态参数包括自由振动频率、振型和模态质量等。
自由振动频率是模态分析的核心参数,可以通过数值计算或实验测试获得。
振型描述了杆件系统在不同模态下的振动形态,可以通过数值模拟或实验观测得到。
模态质量描述了杆件系统在不同模态下的质量分布情况,可以通过数值计算或实验测试获得。
2. 模态分析方法模态分析可以通过数值方法或实验方法进行。
数值方法主要包括有限元法和模态超级位置法等。
有限元法是一种常用的数值方法,通过将杆件系统离散成有限个单元,利用数值计算求解杆件系统的模态参数。
模态超级位置法是一种基于振动测量的实验方法,通过在杆件系统上布置加速度传感器,测量杆件系统在不同模态下的振动响应,进而得到模态参数。
三、应用与意义了解杆件系统的自由振动频率和模态分析对于结构设计和工程应用具有重要意义。
1. 结构设计在结构设计过程中,通过自由振动频率和模态分析可以了解杆件系统的振动特性,从而选择合适的结构参数,避免共振和破坏性振动的发生。
机械结构的振动测试与模态分析机械结构的振动是指在运动或工作过程中,由于受到外界激励或内部失稳因素的影响而出现的周期性或非周期性的振动现象。
振动不仅会影响机械结构的正常运行,还可能导致结构疲劳、损坏,甚至产生严重事故。
因此,了解机械结构的振动特性,进行振动测试和模态分析,对于结构设计、改进和维护具有重要意义。
1. 振动测试振动测试是通过实验手段对机械结构的振动特性进行测量和分析的过程。
常见的振动测试手段包括加速度传感器、速度传感器、位移传感器等。
通过这些传感器,可以测量到结构在不同频率范围内的振动加速度、振动速度和振动位移等参数。
振动测试不仅可以定量地描述结构的振动特性,还可以研究振动的传播路径、频谱特性和共振现象等。
2. 模态分析模态分析是对机械结构的振动特性进行分析和研究的过程。
模态分析的目的是确定结构的振动模态,即结构的固有频率、振型和阻尼等参数。
通过模态分析,可以了解机械结构在不同频率下的振动特性,并确定结构中可能存在的共振点和振动节点。
同时,模态分析还可以帮助设计师优化结构的设计,减小结构的振动幅值,提高结构的工作效率和可靠性。
3. 应用案例以汽车底盘为例,进行振动测试和模态分析的应用。
在汽车行驶过程中,底盘承受着来自路面的冲击和车辆运动的振动。
通过振动测试,可以测量到底盘在不同行驶速度下的振动加速度和振动速度等参数。
通过模态分析,可以确定底盘的固有频率和振型,判断底盘是否在某些特定频率下容易出现共振现象。
根据振动测试和模态分析的结果,可以对底盘的结构进行优化,提高底盘的刚度和减小噪声,提高驾驶的舒适性和汽车的安全性能。
4. 振动测试与模态分析的意义振动测试与模态分析对于机械结构的设计、改进和维护具有重要意义。
通过振动测试,可以了解机械结构在不同工况下的振动特性,及时发现结构的振动异常和故障等。
通过模态分析,可以确定结构的固有频率和振型,为结构的优化设计提供依据。
同时,振动测试与模态分析还可以帮助工程师评估结构的可靠性和耐久性,减小结构的振动幅值,提高结构的工作效率和可靠性。
结构振动分析中的模态分析方法结构振动是指建筑、桥梁、机器等各类工程结构在受到外部激励或自身运动时所发生的振动现象。
为了有效地研究和应对这些结构振动问题,需要运用先进的分析技术来分析结构的振动特性,其中最常用的方法之一就是模态分析。
一、模态分析的基本原理模态分析是研究结构振动的一种分析方法,它是通过计算结构在不同的固有频率下的振动模态来描述结构振动特性的方法。
在模态分析中,首先需要使用有限元方法建立结构的数学模型,然后通过解析数学模型的特征方程,得到结构在不同频率下的振型,即模态,及其对应的振幅和相位差等振动参数。
根据这些振动参数,可以得到结构各个部分的振动响应,并进一步分析结构的振动特性,包括结构在不同频率下的最大振幅、结构振动的稳定性、结构间的耦合特性等。
二、模态分析的主要应用模态分析是结构振动分析中应用最为广泛的方法之一,其主要应用场景包括以下几个方面:1、确定结构的固有频率和振型。
通过模态分析,可以准确地计算结构的固有频率和振型。
这些固有频率和振型的计算结果可用于评估结构在不同激励下的响应特性,以便优化结构设计和制定合理的振动控制措施。
2、分析结构的动态响应。
模态分析可以用来预测结构在外部激励下的动态响应,包括结构的动态位移、速度、加速度等。
这些响应特性的预测结果对于工程结构的安全性评估和振动噪声控制等方面具有重要的意义。
3、评估结构的稳定性。
模态分析可以用于评估结构在振动中的稳定性。
通过计算结构在不同频率下的稳定性,可以有效地分析工程结构的稳定性问题,以便制定相应的振动控制措施。
4、进行结构损伤诊断。
工程结构的残损或破坏会导致结构频率的变化和振动模态的变化。
通过模态分析,可以检测并诊断工程结构的残损或破坏情况,为结构维修和保养提供重要的依据。
三、模态分析的计算方法在计算模态分析的过程中,需要先确定结构的数学模型,包括结构的几何形状、材料特性和载荷情况等。
根据这些数据,可以采用有限元方法求解结构的特征方程,然后求解特征方程得到结构的固有频率和振型。
振动力学模态分析振动力学模态分析是指对结构进行振动试验或数值模拟计算,得到结构在不同频率下的振型和振幅,以及相应的固有频率、阻尼比等参数。
通过模态分析可以了解结构的动态特性,为结构设计和优化提供依据。
一、模态分析基本概念1. 模态模态是指一个系统在某一固有频率下的振型。
在模态分析中,每一个固有频率都对应着一个独特的振型,称为该系统的一个模态。
2. 固有频率固有频率是指一个系统在自由振动时所具有的特定频率。
它只与系统本身的质量、刚度和几何形状等因素有关,而与外界作用力无关。
3. 阻尼比阻尼比是指结构在自由振动过程中能量损失的程度。
它是实际阻尼与临界阻尼之比,通常用百分数表示。
二、模态分析方法1. 实验方法实验方法是通过对结构进行加速度传感器等测量设备布置,采集不同点位加速度数据,并经过滤波处理后计算出各个固有频率和相应的振型。
实验方法对于大型结构和复杂结构有很好的适用性,但需要耗费大量时间和人力物力。
2. 数值模拟方法数值模拟方法是通过有限元分析等计算手段,计算出结构在不同频率下的振型和固有频率等参数。
数值模拟方法具有计算速度快、成本低、可重复性好等优点,但需要对结构进行准确的建模和较为准确的材料参数。
三、模态分析应用1. 结构设计在结构设计过程中,通过模态分析可以了解结构在不同频率下的振动特性,避免设计中出现共振现象,并优化结构刚度和质量分布等参数。
2. 故障诊断通过对机械设备进行模态分析,可以检测出设备存在的故障类型及其严重程度。
例如,当设备出现轴承故障时,会引起系统固有频率发生变化,产生新的振型。
3. 振动控制通过对系统进行模态分析并针对其固有频率进行控制,在一定程度上能够降低系统振动幅值,并减少由此带来的噪声和振动损伤。
四、模态分析注意事项1. 选择合适的模型在进行模态分析前,需要对结构进行准确的建模。
模型的准确性对于分析结果的精度有很大影响,因此需要根据具体情况选择合适的建模方法和参数。
机械振动分析与控制技术一、机械振动的概念机械振动是指机械运动中的震动,是工程中常见的现象,也是制约机器性能,降低机器寿命的重要因素之一。
机械振动可以分为自由振动和强迫振动两类。
其中自由振动指系统在没有外界作用下的振动动态行为,而强迫振动指系统受到外界力作用下的振动动态行为。
二、机械振动分析技术为了有效地控制机械振动,需要先对机械振动进行分析。
目前机械振动分析技术主要包括模态分析和频率响应分析两种方法。
1. 模态分析模态分析适用于求解机械系统在自由振动情况下的振动特性。
其基本思想是将机械系统振动问题转化为比较简单的数学问题,把机械系统振动的自由度分离开来,分别研究各自的振动特性。
通过分离出每个自由度对应的频率,可以对机械系统进行振动特性的分析和计算。
2. 频率响应分析频率响应分析适用于求解机械系统在强迫振动情况下的振动特性。
其基本思想是通过将机械系统与激励力作为一个整体进行分析,来求解机械系统在不同频率下的响应特性。
通过分析激励力与机械系统的响应,得到机械系统在不同频率下的振动特性,进而对机械系统的振动进行控制和调节。
三、机械振动控制技术为了有效地控制机械振动,可以采用机械振动控制技术。
目前机械振动控制技术主要包括被动控制和主动控制两种方法。
1. 被动控制被动控制是指通过机械结构的变化,改变机械系统的振动特性,从而达到控制振动的目的。
被动控制可以采用材料的选择,结构参数的调整等方式进行控制。
在实际应用中,被动控制主要应用于需要长期控制的机械系统。
2. 主动控制主动控制是指根据系统反馈信息,通过激励系统的某个部分,改变机械系统的振动特性,从而达到控制振动的目的。
主动控制可以采用精密传感器,控制算法,控制器等设备进行。
四、机械振动的应用机械振动分析和控制技术的应用广泛,可用于飞机发动机、高速列车、钢铁、火电、核电等行业。
这些领域的机械系统都对振动控制有着极高的需求,因此机械振动分析和控制技术在这些领域中得到了广泛的应用。
振动与模态分析的主要概念!
一、振动的基本问题
•已知激励(动载荷)和结构参数,求解结构的振动响应(由输入和系统的参数,求输出)这称为振动正问题。
基于结构动力学分析理论,求结构动力学响应。
•已知激励和振动响应,求结构参数。
这个问题称为振动问题的第一类反问题或系统辨识(系统识别)问题。
•已知结构参数和振动响应,求激励。
这个问题称为振动问题的第二类反问题——(动态)载荷识别问题。
二、描述振动系统的模型
•物理参数模型:质量、刚度、阻尼为特征参数的模型。
•模态参数模型:一类以模态频率、模态振型、衰减系数为特征参数,一类以模态质量、模态刚度、模态阻尼、模态矢量(留数)为特征参数。
•非参数模型:频率响应函数(传递函数)、脉冲响应函数都可以反映了振动结构的特性,称为非参数模型。
上述三种模型是等价的。
从系统的物理参数模型(质量、刚度、阻尼)可以得到模态参数模型(模态、频率、衰减系数或模态质量、模态刚度、模态阻尼、模态矢量),进而得到非参数模型(频响函数或脉冲响应函数)。
以上是振动理论的基本内容,也是系统识别的理论基础。
三、振动结构的系统识别
•物理参数识别:结构的物理模型为基础,物理参数为识别目标。
是进行结构动力学修改的基础。
•模态参数识别:以模态参数模型为基础,模态参数作为识别目标。
优点:模态参数从整体上反映结构的固有振动特性,需识别的参数少,
模态参数识别是系统识别的基本要求,是物理参数识别的基础,也是模态分析的主要任务。
•非参数识别:根据结构的振动所受激励和响应,确定结构的频响函数(或传递函数),或者系统的脉冲响应函数(频响函数与脉冲响应函数构成傅里叶变换对)。
四、模态分析概念
•狭义定义:以结构振动理论为基础,以模态参数识别为目标的分析方法,称为模态分析。
•广义定义:模态分析是研究结构物理参数模型、模态参数模型和非参数模型的关系,并通过一定手段确定这些系统模型的理论及其应用的一门学科。
五、模态分析过程
根据具体的方法和手段,模态分析分为理论模态分析和实验模态分析。
•理论模态分析:即模态分析的理论过程。
理论模态分析是以线性振动理论为基础,研究激励、结构、响应三者的关系,即通过结构的物理参数模型获得模态参数模型,进而导出非参数模型。
•实验模态分析:即模态分析的实验过程,是理论模态分析的逆过程。
首先通过结构的振动实验,测得激励和响应的时间历程,运用信号处理技术求得频率响应函数(传递函数),或脉冲响应函数,即获得非参数模型,然后运用参数识别方法,求得系统模态参数,最后,如果需要进一步求得结构物理参数。
实验模态分析是综合运用线性振动理论、动力学测试原理与方法、数字信号处理和参数识别等手段,进行结构参数识别的过程。
即通过结构的非参数模型识别出模态参数模型,进而确定物理参数模型。
流程如图
六、模态参数识别的分类方法
•按参数模型的不同分类:模态参数识别分为频域参数识别时域参
数识别。
•按响应信号数目分类:局部识别和整体识别。
•按激励和响应的数目分类:SISO识别,SIMO识别,MIMO识别。
SISO识别又属于局部识别;SIMO和MIMO属于整体识别。
SISO 识别中,按对结构模态密集程度不同,又分为单模态识别和多模态识别。
•按模态参数识别手段分类:图解识别法,共振峰值法,分量分析法,矢端图分析法,计算机识别法。
•按发展阶段分类为:SISO识别(70年代初期),SIMO识别(70年代后期),MIMO识别(80年代)。
七、模态分析中采用的阻尼模型
常用的阻尼有粘性比例阻尼(线性阻尼模型)、一般粘性阻尼、结构比例阻尼(线性阻尼)、结构阻尼四种模型。
•实模态分析:无阻尼系统和比例阻尼系统,模态矢量都是实矢量,这种结构称为实模态系统。
•复模态分析:结构阻尼系统和一般粘性阻尼系统的模态矢量都是复矢量,这种结构称为复模态系统。
来源网络。