4-3拉普拉斯变换解微分方程
- 格式:doc
- 大小:1.48 MB
- 文档页数:7
拉普拉斯变换方法解分数阶微分方程分数阶微积分是一种新兴领域,在近年来得到了越来越多的关注。
它是传统微积分的扩展,将传统的整数阶导数引入了非整数的情况。
在工程、物理、生物学等很多研究领域中,分数阶微积分有着广泛的应用。
因此解决分数阶微分方程成为了重要的课题之一。
本文将从拉普拉斯变换的角度出发,介绍使用该方法解决分数阶微分方程的基本思路和方法。
一、分数阶微分方程简介分数阶微分方程是指微分方程中包含分数阶导数的一类微分方程。
分数阶导数可以描述在非连续介质中的扩散、渐近行为以及超弹性函数等现象。
分数阶微分方程的形式一般为:$$ \begin{aligned} D^{\alpha}y(t)&=f(t)\\y(0)&=y_0,\ D^{\beta}y(t)|_{t=0}=y_1,\\beta\in[0,\alpha) \end{aligned} $$其中,$D^{\alpha}y(t)$为分数阶导数,$f(t)$为已知函数。
$y(0),\ D^{\beta}y(t)|_{t=0}$是初始条件,$y_0,y_1$为已知初值。
一般情况下,分数阶微分方程无法通过传统的解析方法求解,因此需要采用不同的数值方法和函数变换方法。
下文将介绍使用拉普拉斯变换来解决分数阶微分方程的方法。
二、拉普拉斯变换方法简介拉普拉斯变换方法是一种常用的函数变换方法,它将一个函数在实线上的时间域(t域)转化为复平面上的复变量域(s域)上的函数。
它的核心是拉普拉斯积分:$$ F(s)=\int_0^{\infty}f(t)e^{-st}dt,\s=x+jy\in R $$其中,$f(t)$为实函数,$e^{-st}$为复指数函数,$x,y$为实数。
当$y<0$时,$F(s)$是收敛的;当$y>0$时,$F(s)$是发散的。
通过拉普拉斯变换,可以将微分和积分转化为代数运算,进而可以更方便地解决微分方程等问题。
下面将介绍具体的解决分数阶微分方程的过程。
拉普拉斯变换与微分方程引言微分方程是数学中重要的一门学科,广泛应用于物理学、工程学等领域。
而拉普拉斯变换则是一种常用于解微分方程的工具,它能够将微分方程转化为代数方程,更便于求解。
本文将深入探讨拉普拉斯变换与微分方程的关系,以及如何利用拉普拉斯变换解微分方程。
拉普拉斯变换的定义拉普拉斯变换是一种由法国数学家拉普拉斯在19世纪提出的数学工具,用于将一个函数或信号在时间域上的表达转换为在复平面上的表达。
对于一个定义在半无穷区间上的函数f(t),它的拉普拉斯变换被定义为:+∞F(s)=∫e−stf(t)dt0−其中,s是复平面上的复变量,常被称为拉普拉斯变换变量。
拉普拉斯变换的性质拉普拉斯变换具有许多有用的性质,这些性质为解微分方程提供了便利。
以下是一些常见的拉普拉斯变换性质:线性性质如果f(t)和g(t)的拉普拉斯变换分别为F(s)和G(s),那么对于任意的实数a和b,af(t) + bg(t)的拉普拉斯变换为aF(s) + bG(s)。
平移性质如果f(t)的拉普拉斯变换为F(s),那么e^(-at)f(t)的拉普拉斯变换为F(s + a),其中a为正实数。
初值定理如果f(t)是一个连续函数,且存在极限lim(t->0) f(t) = L,那么L就是f(t)在t=0的初值,在拉普拉斯变换中,F(s) = L/s。
终值定理如果f(t)是一个连续函数,且存在极限lim(t->∞) f(t) = L,那么L就是f(t)在t趋向于无穷时的终值,在拉普拉斯变换中,lim(s->0) sF(s) = L。
拉普拉斯变换与微分方程的关系微分方程是描述自然现象中变化的数学方程,可以分为常微分方程和偏微分方程。
拉普拉斯变换可以通过转化微分方程为代数方程,从而更容易求解。
普通微分方程的解法对于给定的普通微分方程,我们可以通过Laplace变换将其转换为一个代数方程来求解。
具体的步骤如下:1.对于已知的微分方程,我们首先对方程的两边取拉普拉斯变换。
2–5 用拉普拉斯变换方法解微分方程拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。
这样就使方程求解问题大为简化。
拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。
有关拉普拉斯变换(简称拉氏变换)的公式见附录一。
应用拉氏变换法得到的解是线性微分方程的全解。
用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。
而应用拉氏变换就可省去这一步。
因为初始条件已自动地包含在微分方程的拉氏变换式之中了。
而且,如果所有初始条件都为零,那么求取微分方程的拉氏变换式就更为方便,只要简单地用复变量s 来代替微分方程中的dt d ,2s 代替22dtd ,…就可得到。
应用拉氏变换法解微分方程的步骤如下:(1)对线性微分方程中每一项进行拉氏变换,使微分方程变为复变量s 的代数方程(称为变换方程)(2)求解变换方程,得出系统输出变量的象函数表达式。
(3)将输出的象函数表达式展开成部分分式(部分分式展开法参见附录二)。
(4)对部分分式进行拉氏反变换(可查拉氏变换表),即得微分方程的全解。
举例说明【例2-7】 设RC 网络如图2-24所示,在开关K 闭合之前,电容C 上有初始电压)0(c u 。
试求将开关瞬时闭合后,电容的端电压c u (网络输出)。
解 开关K 瞬时闭合,相当于网络有阶跃电压0)(u t u c =·)(1t 输入。
故网络微分方程为⎪⎩⎪⎨⎧=+=⎰idt C u u Ri u c c r 1 消去中间变量i ,得网络微分方程为)(t u u dt du RCr c c =+ (2-44)对上式进行拉氏变换,得变换方程 )()()0()(s U s U RCu s RCsU r c c c =+- 将输入阶跃电压的拉氏变换式su s U r 0)(=代入上式,并整理得电容端电压的拉氏变换式)0()1()1()(0c c u RCs RC RCs s u s U +++= 可见等式右边由两部分组成,一部分由输入所决定,另一部分由初始值决定。
如何通过拉普拉斯变换求解微分方程的特解下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!引言微分方程在数学、物理和工程领域中有着广泛的应用。
拉斯变换解微分⽅程§2-3拉普拉斯变换及其应⽤时域的函数可以通过线性变换的⽅法在变换域中表⽰,变换域的表⽰有时更为简捷、⽅便。
例如控制理论中常⽤的拉普拉斯变换,简称拉⽒变换,就是其中的⼀种.⼀、拉⽒变换的定义已知时域函数,如果满⾜相应的收敛条件,可以定义其拉⽒变换为(2-45)式中,称为原函数,称为象函数,变量为复变量,表⽰为(2-46)因为是复⾃变量的函数,所以是复变函数。
有时,拉⽒变换还经常写为(2-47)拉⽒变换有其逆运算,称为拉⽒反变换,表⽰为(2-48)上式为复变函数积分,积分围线为由到的闭曲线。
⼆、常⽤信号的拉⽒变换系统分析中常⽤的时域信号有脉冲信号、阶跃信号、正弦信号等。
现复习⼀些基本时域信号拉⽒变换的求取。
(1)单位脉冲信号理想单位脉冲信号的数学表达式为(2-49) 且(2-50)所以(2-51) 说明:单位脉冲函数可以通过极限⽅法得到。
设单个⽅波脉冲如图2-13所⽰,脉冲的宽度为,脉冲的⾼度为,⾯积为1。
当保持⾯积不变,⽅波脉冲的宽度趋于⽆穷⼩时,⾼度趋于⽆穷⼤,单个⽅波脉冲演变成理想的单位脉冲函数。
在坐标图上经常将单位脉冲函数表⽰成单位⾼度的带有箭头的线段。
由单位脉冲函数的定义可知,其⾯积积分的上下限是从到的。
因此在求它的拉⽒变换时,拉⽒变换的积分下限也必须是。
由此,特别指明拉⽒变换定义式中的积分下限是,是有实际意义的。
所以,关于拉⽒变换的积分下限根据应⽤的实际情况有,,三种情况。
为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。
(2)单位阶跃信号单位阶跃信号的数学表⽰为(2-52)⼜经常写为 (2-53)由拉⽒变换的定义式,求得拉⽒变换为(2-54)因为阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉⽒变换,其积分下限规定为。
(3)单位斜坡信号单位斜坡信号的数学表⽰为(2-55)图2-15单位斜坡信号另外,为了表⽰信号的起始时刻,有时也经常写为 ( 2-56) 为了得到单位斜坡信号的拉⽒变换,利⽤分部积分公式得(2-57)(4)指数信号指数信号的数学表⽰为(2-58) 拉⽒变换为 (2-59)(5)正弦、余弦信号正弦、余弦信号的拉⽒变换可以利⽤指数信号的拉⽒变换求得。
拉普拉斯求解微分方程拉普拉斯变换是一种非常重要的数学工具,广泛应用于工程和科学领域。
在微分方程的求解中,拉普拉斯变换可以将微分方程转化为代数方程,从而简化求解过程。
本文将以拉普拉斯求解微分方程为主题,介绍拉普拉斯变换的原理和应用。
一、拉普拉斯变换的原理拉普拉斯变换是一种从时域到频域的变换方法,可以将一个函数从时域转化为复数域。
对于一个函数f(t),其拉普拉斯变换定义为:F(s) = L[f(t)] = ∫[0,∞] e^(-st) f(t) dt其中,s是复变量,t是时间变量,e^(-st)是拉普拉斯变换中的核函数。
通过拉普拉斯变换,我们可以将一个函数从时域转化为频域,从而可以更方便地进行分析和求解。
二、拉普拉斯变换的应用1. 求解微分方程拉普拉斯变换在求解微分方程时非常有用。
通过将微分方程转化为代数方程,可以简化求解过程。
例如,考虑一个线性常系数微分方程:a_n y^(n) + a_(n-1) y^(n-1) + ... + a_1 y' + a_0 y = f(t)其中,y是未知函数,f(t)是已知函数,a_n, a_(n-1), ..., a_1, a_0是常数。
我们可以对方程两边同时进行拉普拉斯变换,得到:a_n [s^n Y(s) - s^(n-1) y(0) - s^(n-2) y'(0) - ... - y^(n-1)(0)] + a_(n-1) [s^(n-1) Y(s) - s^(n-2) y(0) - ... - y^(n-2)(0)] + ... + a_1 [s Y(s) - y(0)] + a_0 Y(s) = F(s)其中,Y(s)是y(t)的拉普拉斯变换,y(0), y'(0), ..., y^(n-1)(0)是y(t)在t=0时的初始条件,F(s)是f(t)的拉普拉斯变换。
通过求解上述代数方程,可以得到Y(s),然后再进行拉普拉斯逆变换,即可得到y(t)的解。
精心整理目录引言 (1)1 拉普拉斯变换以及性质 (1)1.1拉普拉斯变换的定义 (1)1.2拉普拉斯变换的性质 (1)2 用拉普拉斯变换求解微分方程的一般步骤 (3)3 拉普拉斯变换在求解常微分方程中的应用 (3)3.1初值问题与边值问题 (3)3.2常系数与变系数常微分方程 (4)3.3含 函数的常微分方程 (5)3.4常微分方程组 (6)3.5拉普拉斯变换在求解非齐次微分方程特解中的应用 (6)3.6拉普拉斯变换在求解高阶微分方程中的推广 (9)4 拉普拉斯变换在求解偏微分方程中的应用 (10)4.1齐次与非齐次偏微分方程 (10)4.2有界与无界问题 (11)5 综合比较,归纳总结 (14)结束语 (15)参考文献 (15)英文摘要 (21)致谢 (16)拉普拉斯变换在求解微分方程中的应用物理系0801班学生岳艳林指导老师韩新华摘 要:拉普拉斯变换在求解微分方程中有非常重要的作用,本文首先介绍拉普拉斯变换的定义及性质;其次给出拉普拉斯变换求解微分方程的一般步骤;然后重点举例拉普拉斯变换在求解常微分方程(初值问题与边值问题、常系数与变系数常微分方程、含δ函数的常微分方程、常微分方程组、拉普拉斯变换在求解微分方程特解中的应用、拉普拉斯变换在求解高阶微分方程的推广)与典型偏微分方程(齐次与非齐次偏微分方程、有界与无界问题)中的应用举例;最后综合比较、归纳总结拉普拉斯变换在求解微分方程中的优势以及局限性。
关键词:拉普拉斯变换;拉普拉斯逆变换;常微分方程;偏微分方程;特解 引言傅里叶变换和拉普拉斯变换是常用的积分变换,但对函数进行傅里叶变换时必须满足狄里希利和在+∞<<∞-t 内绝对可积,但是在物理、无线电技术等实际应用中,许多以时间t 为自变量的函数通常在0t <时不需要考虑或者没有意义,像这样的函数不能取傅里叶变换。
为避免上述两个缺点,将函数进行适当改造,便产生了拉普拉斯变换[1]。
變換解微分方程 題過程:
分方程
題 02///=--y y y …..(*)
0)0(,1)0(/==y y 式等號兩邊做拉普拉斯變換
L
{=--}2///y y y L }0{ 性性質,得
L {}//y - L
{}/y -2 L {0}=y 2L {)}(t y -s y sy --)0()0(/L 2)0()}({-+f t y L 0)}({=t y
始條件,得L )}({t y 之代數方程
2s L )}({t y s -L 2)}({-t y L 1)}({-=s t y --------- (a)
數方程(a),得
簡
單
L 1-L ODE
L {})()(s t y 之代數方程或低階ODE
)(t y L {})()(s t y
L )}({t y 21
2---=s s s
上式兩邊做反拉普拉斯變換,得
=) L -1 {L {)(t y }}= L -1 ⎭⎬⎫⎩⎨⎧---212s s s
⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-11322131s s 及L {}
at e = a s -1 , 解為
=)t 31 L -1 ⎭⎬⎫⎩⎨⎧-21s + 32 L -1 ⎭⎬⎫⎩⎨⎧+11s
31=
+t e 2 32 t e - 題t y y 2sin //=+ , …..(**)
1)0(,2)0(/==y y
*)式等號兩邊做拉普拉斯變換
L {}
=+y y // L {}t 2sin 換的微分性質以及L 22}{sin a s a at +=
,得 L
{}y +--)0()0(/y sy L 42
}{2+=s y 入初始條件,得L )}({t y 之代數方程
)1+L {}y 42122+=--s s
--------- (b) 代數方程(b),得
{}y ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+++=+++++=4132113512)4)(1(6822222223s s s s s s s s s
在上式兩邊做反拉普拉斯變換,得初始值問題的解為
t t t 2sin 31sin 35cos 2-+ (由 L 22}{sin a s a at +=
,L 22}{cos a s s at += )
問題0)4(=-y y , …..(***)
0)0(,0)0(,1)0(,0)0(//////====y y y y
***)式等號兩邊做拉普拉斯變換
L
}{)4(y - L =)(y L 0)0(= 用拉普拉斯變換的微分性質,得
4s L -----)0()0()0()0(}{//////23y sy y s y s y L 0}{=y
入初始條件,得L )}({t y 之代數方程
)1(4-s L 0}{2=-s y --------- (c)
數方程(c),得
1211211}2242
++-=-=s s s s y
上式兩邊做反拉普拉斯變換,得初始值問題的解為
11)sinh sin 22t t t =+
(由L 22}{sin a s a at += 以及L )}{sinh 22a s a at -= m 方法的好處在於能直接解出答案而不必去猜特別解及求微分方程的一般解 連續, |)(t f | at Ke ≤, M t ≥∀, K ,a , M 為常數, 則
N n s F t f n ∈∀=),()}()(, …..(D)
)(dt t f t
歸納法)
時,
⎰∞-0)(dt t f e ds d st = =-⎰∞-0)()(dt t f t e st L )}(){(t f t -, 成立。
=k 時,(D)式成立 即 =)()(s L k L
)}(){(t f t k -成立 證n=k+1時,(D)式成立。
=)()()(s F
k /) = ⎰∞--0)()(dt t f t e ds d st ⎰∞---0)()()(dt t f t e t k st = L )}(){(1t f t k +-,
成立。
線性微分方程
0)(22///2=-++y p t ty y t , 方程(Bessel ’s equation of order p), (p 0≥) essel 方程
02/=+y t , t > 0…..(B)
以t ,
0///=++ty y ty
式等號兩邊做拉普拉斯變換,得
L {//ty }+ L {/y }+ L {ty }= 0
用上一個定理,得
ds d -
L }{//y + L }{/y 0)(/=-s F 用拉普拉斯變換的微分性質,得 ()()0)()0()()0()0()(//2=--+---s F y s sF y sy s F s ds d
代入初始條件,得可分離方程 (
)0)()(1/2=++s sF s F s 解上式,得
212)
1()(-+=s c s F 由二項式定理,上式可改寫
212)11()(-+=s s c s k k k s
C s c )1(2021∑∞=-= 12022)!2()!(2)1(+∞=∑-=k k k k
s k k c
⎪⎪⎪⎪⎪⎪⎭⎫--=⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛--⎪⎭⎫)!!2...6.4.22)12...(5.3.1)1(!)1(21...12121k k k k k k
邊做反拉普拉斯變換,由L 1!}{+=
n n s n t ,及取c =1,得0階之Bessel 方程之一解 =)L 1-=)}({s F ≡-∑∞=k k k t k 2022)!(2)
1(
)(0t J
一類的0階之Bessel 函數
he first kind of order 0)。
為
∑∞=+-+=122
210)!(2)1(ln )(n n n n n t n H t t J ,
n H n 1...2111+++=
會介紹解)(2t y 如何求得)
方程之一般解為)()()(2211t y c t y c t y += ⎥⎥⎦⎤-+++-≡∑∞=+12221021)!(2)1()()2ln )
(2
)()2ln (2
n n n n n n t H t J t r t y t y r ππ
階之Bessel 函數
he second kind of order 0),
=lim n →∞()57722.02ln ≅-n H
之一般解亦可表為
)(
)(
)(0
2
1
t
Y
c
t
J
c
t
y+
=。