不定积分的几何意义
- 格式:ppt
- 大小:2.61 MB
- 文档页数:60
经济数学——微积分 4不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题经济数学——积分二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间/内原函数・(primitive furwtion ) 例(sinx) =cosx sinx 是cos 兀的原函数.(inx) =— (X >0)XIn X 是1在区间((),+oo)内的原函数.X第一节五、定理原函数存在定理:如果函数八X)在区间内连续, 那么在区间^内存在可导函数F(x), 使Hxef,都有F\x) =f(x).简言之:连续函数一定有原函数.问题:(1)原函数是否唯一?(2)若不唯一它们之间有什么联系?1 f例(sinx) =cosx (sinx + C) =cosx(C为任意常数)经济数学一微积分关于原函数的说明:(1)(2)证说明F(x)+c是f (兀舶全部原粛或经济数学一微积分经济数学——微积分不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ・经济数学——微积分6=X% /. fx^dx =——十 C. J」6例2求f --------- dr.J 1 + X-/ J解•/ (arctanx)=,,I‘1 + 疋 心& =皿2被积函数『积分号积分变量寒积表达式F(x)例3某商品的边际成本为100-2x ,求总成本函数C(jc).解C(x) = J(100-2x)dx g = 1 OQx —兀2 + c IK™其中c为任意常数经济数学一微积分二、不定积分的几何意义函数八兀)的原函数的图形称为y(x)的积分曲线.显然,求不定积分得到一积分曲线族,在同一经济数学一微积分经济数学——微积分经济数学微积分基本积分表p*l=x“ zz> k"dx= — + C ・J “+1(“H -l)既然积分运算和微分运算是互逆的, 因此可以根据求导公式得出积分公式.经济数学一微积分(1) f kdx = kx + C 仏是常数); (2) (\“dx = J + C (〃H —1); J “+1(3)[竺"=In X +C;J jrr dx说明;X >0, => 一 = lnx + C,J Xx<0, [ln(-x )r= 1 (—*)' =丄,—X X n f — =ln(-x) + C,.订咚=In I X I +C, X J X实例“+1启示 能否根据求导公式得出积分公式?结论 基本积分表(4)(6)(7) f ------ -dx =arctanx4-C;J 1 + x"f t -------- dx = arcsin jc + C;JJ cos xdx =sinx + C;Jsin xdx =-cosx +C;r dr r r---- 2— = sec~ xdx =tanx +C; J cos X Jf = fcsc^ xdx =—cotx + C; J sin" X J经济数学一微积分(10)(11)(12)(13) J sec X tan xdx =secx + C;J CSC X cot xdx =—cscx +C; J/dx =gx +C;X= a +C;J Ina经济数学一議积分经济数学一微积分例4求积分5解 ^x^yfxAx — J x^dr飞+12经济数学一議积分四、不定积分的性质(1) Jl/(x)±g(x)jdx = J/(x)dx ± Jg(x)dx; r 证•・・J/(x)dx ± Jg(x)dxtt=J/(x)dx ± Jg(x)dx =/(x)±g(x).・・・等式成立.(此性质可推广到有限多个函数之和的情况)+ C=-x^+C.7经济数学一議积分J kf{x}Ax =町/(x )dx.(A:是常数,A: H0)求积分=3arctanx —2arcsinx + C经济数学一微积分r 1 + X + 工2•」X (1 + X*)「1+…L =厂(1+% J 兀(1 +工2) J 兀(1 +云)= arctanx + lnA +C.例6求积分WF—^dx +经济数学一微积分解KrS 訂甯斗 」Ar(l + jr) J 兀・(1 +兀・)J 刖 JE"----- arctanx + C< X经济数学一微积分例8求积分1 ------------- —dx.J 1 + cos 2x 解J 1 + ;心4 = j 1 + 2丄—严£土吨g + G说明:以上几例中的被积函数都需要进行 恒等变形,才能使用基本积分表.I 化积分为代做和的积分\ 例9 已知一曲线y = f(x)在点(x,/(x))处的 切线斜率为sec^x+sinx,且此曲线与 轴的交 点为(0,5),求此曲线的方程.例7求积分r 1+2兀2J 兀2(] + 尤2)1 + 2*2解•/— = sec2 X十sin x,dr二y = J^sec' X + sinx)dx=tanx —cosx H-C,j(0) = 5, /. C = 6、所求曲线方程为y = tan x — cosx + 6.经济数学一微积分五、小结原函数的概念:F\x) = f(x)不定积分的概念:J/U)dx = F(x) + C 基本积分表(1)〜(13) 求微分与求积分的互逆关系不定积分的性质经济数学一微积分经济数学——积分思考题1, X > 0 符号函数 /(x) = sgnx = 0, X =0—1, X < 0在(-co,+ 00)内是否存在原函数?为什么?经济数学——积分X + C, X >0X =0[―x+C,x <0 但F (兀)在工=0处不可微, 故假设错误所以/(X )在(-00, + 8)内不存在原函数.思考题解答不存在.假设有原函数F (x ) F (x ) = -ic,经济数学一微积分练习题、 填空题;1. 一个已知的连续函数,有个原函数,其中 任意两个的差是一个 2. 3・ /(•V )的______ 称为/(X)的不定积分! 把/(“)的一个原函数F(x)的图形叫做函数/(X )的 ______ ,它的方程是y = F(x),这样不定积 ,它的方程是 4.5. J f(x)dx 在几何上就表示 j = F(x) + C ; 由F (x) = /(x)可知,在积分曲线族j=F(x) + C (C 是任意常数)上横坐标相同的点处作切线,这 些切线彼此 的;若/(X )在某区间上 ____ ,则在该区间上/(X )的 原函数一定存在:经济数学一微积分 6. J xsfxdx = ___________ 7 f - .J 皿- -------------- 8. J (宀 3工 + 2)dx= _ 9. J(>/7 + l)(7P'-l)dv = 10. J-—dx =求下列不定积分:3x经济数学一微积分3. f cos* —drJ 25. J (1-占)厶石血a fF+SlirX.6.----- ; ---- sec* xQxJ x" + l, f cos 2x ■ 』J cos-X sin-s 一曲线通过点且在任一点处的切线的斜率等于该点横坐标的倒数,求该曲线的方程•经济数学一微积分 练习题答案一、1.无穷多,常数:2.全体原函数; 积分曲线,积分曲线族;4.平行;5.连续 2 色 2 ---x'+C ; 7, -------- x '+C ;53 3 -- +2x + C ; 3 22 - 2 -- + -x2--x2-x + C ; 3 5 3 —4 - 2 - 2\・x —一—3 53. 6. 9.10.3.5.X—arctanx + C;X + sin X _2 24(*+7)717 +6三s , = lnx+C・经济数学一微积分2. 2’” + C;In 2-In 34e-(cotx +tanx) + C ;6. tan* —arccatx + C.o。
不定积分概念及公式5.1不定积分的概念⼀.原函数的概念定义1:设)(x f 是定义在区间上的已知函数,若存在⼀个函数)(x F 对于该区间上的每⼀点都有:)()(x f x F ='或dx x f x dF )() (=。
则:)(x F 为)(x f 的⼀个原函数。
例:,3)(23x x ='则:3x 是23x 的⼀个原函数,另外由于 2323233)3(,3)1(,3)1(x x x x x x ='+='-='+,。
即:,3,1,1333+-+x x x 。
等等也都是23x 的原函数。
即:C x +3(C 常数)全为23x 的原函数。
所以,有下⾯定理。
定理:⼀个函数)(x f ,若有⼀个原函数)(x F ,则必有⽆穷多个。
⽽这写原函数只相差⼀个常数。
C x F +)(是)(x f 的全体原函数。
例:设x e x cos -是)(x f 的原函数,求:)(x f '。
解:由原函数概念可知,若x e x cos -是)(x f 的原函数则有 )(sin )cos (x f x e x e x x =+='-,所以 =')(x f )sin ('+x e x =x e x cos +⼆.不定积分的定义定义2。
设函数)(x F 为函数)(x f 的⼀个原函数,则)(x f 的全部原函数C x F +)((C 为任意常数)称为函数)(x f 的不定积分。
记作:?dx x f )(。
即:?dx x f )(C x F +=)(。
)(x f :被积函数,dx x f )(:被积表达式,x :积分变量,?:积分号,C :积分常数。
存在原函数的函数为:可积函数。
求已知函数的不定积分,只要求出它的⼀个原函数,再加⼀个C (任意常数)。
例:求积分dx x ?23解:233)(x x ='∴dx x ?23C x +=3例:求积分?xdx cos解: x x cos )(sin ='∴ ?dx cos C x +=sin例:求积分dx e x ?解: x x e e =')(∴ dx e x ?C e x +=例:求积分dx x1 解: (xx 1)ln =',)0(>x )0(,1)1(1])[ln(<=-?-='-x xx x dx x1C x +=ln 不定积分?(互逆)求导数。
第四章 不定积分前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及基本的积分方法.第1节 不定积分的概念与性质1.1 不定积分的概念在微分学中,我们讨论了求一个已知函数的导数(或微分)的问题,例如,变速直线运动中已知位移函数为()s s t =,则质点在时刻t 的瞬时速度表示为()v s t '=.实际上,在运动学中常常遇到相反的问题,即已知变速直线运动的质点在时刻t 的瞬时速度()v v t =,求出质点的位移函数()s s t =.即已知函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念.1。
1。
1原函数定义1 如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数.例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以sin x 是cos x 在(,)-∞+∞上的一个原函数.1(ln )'(0),x x x=>所以ln x 是1x在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢?这里我们给出一个充分条件.定理1 如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有()()'=F x f x .简言之,连续函数一定有原函数.由于初等函数在其定义区间上都是连续函数,所以初等函数在其定义区间上都有原函数.定理1的证明,将在后面章节给出。
关于原函数,不难得到下面的结论:若()()'=F x f x ,则对于任意常数C ,()+F x C 都是()f x 的原函数.也就是说,一个函数如果存在原函数,则有无穷多个.假设()F x 和()φx 都是()f x 的原函数,则[()()]0'-≡F x x φ,必有()()φ-F x x =C ,即一个函数的任意两个原函数之间相差一个常数.因此我们有如下的定理:定理2 若()F x 和()φx 都是()f x 的原函数,则()()-=F x x C φ(C 为任意常数). 若()()'=F x f x ,则()+F x C (C 为任意常数)表示()f x 的所有原函数.我们称集合{}()|F x C C +-∞<<+∞为()f x 的原函数族.由此,我们引入下面的定义.1。
不定积分和定积分的几何意义摘要:一、不定积分的几何意义1.不定积分的概念2.不定积分的几何意义与应用3.不定积分与定积分的联系与区别二、定积分的几何意义1.定积分的概念2.定积分的几何意义与应用3.定积分与不定积分的联系与区别三、实例分析与计算1.简单实例分析2.复杂实例分析3.实际问题求解正文:一、不定积分的几何意义1.不定积分的概念不定积分是一种数学运算,通常表示为∫f(x)dx,其中f(x)是关于x的函数,x的取值范围为(a,b)。
在不定积分中,我们关心的是函数f(x)在区间(a,b)上的“面积”。
2.不定积分的几何意义与应用不定积分在几何上的意义可以理解为曲线y=f(x)与x轴所围成的面积。
在实际应用中,不定积分广泛应用于物理、化学、经济学等领域,如求解速度、加速度、密度等问题。
3.不定积分与定积分的联系与区别不定积分与定积分有着密切的联系,它们都是对函数进行积分运算。
不同的是,不定积分关注的是曲线与x轴所围成的面积,而定积分关注的是曲线与坐标轴所围成的面积。
二、定积分的几何意义1.定积分的概念定积分是一种数学运算,通常表示为∫∫f(x,y)dydx,其中f(x,y)是关于x 和y的函数,x和y的取值范围为(a,b)和(c,d)。
在定积分中,我们关心的是函数f(x,y)在区域内的“体积”。
2.定积分的几何意义与应用定积分在几何上的意义可以理解为曲面z=f(x,y)与xy平面所围成的体积。
在实际应用中,定积分广泛应用于物理、力学、地理信息系统等领域,如求解流量、速度场、密度场等问题。
3.定积分与不定积分的联系与区别定积分与不定积分都是积分运算,它们之间存在着联系。
定积分是三维空间中的积分,通常关注的是曲面与坐标平面所围成的体积,而不定积分是二维空间中的积分,关注的是曲线与坐标轴所围成的面积。
三、实例分析与计算1.简单实例分析例如,求解函数f(x)=x^2在区间[0,2]上的定积分。
根据定积分的几何意义,我们可以将问题转化为求解曲线y=x^2与x轴所围成的面积。