六年级奥数不定方程
- 格式:docx
- 大小:13.01 KB
- 文档页数:4
六年级奥数不定方程Prepared on 21 November 2021第六讲不定方程【知识要点】1、许多数学家需要用方程或方程组来求解。
要想获得未知数的唯一解,能独立列出的方程个数必须与未知数的个数相等。
如果方程个数少于未知数的个数,则称之为不定方程或不定方程组,以为此时未知数一般有无数多个解,解是不确定的。
但如果结合具体问题,增加一些对解的限制条件,如只求自然数解等,这样的不定方程的解就只有有限个或唯一一个了。
必须注意,限制条件中,有些是明显的,有些则是隐藏的。
2、求不定方程的自然数解或正整数解,关键是充分利用整除特征,尝试找出第一解;对于其他的所有解,可通过解的规律,逐一罗列出来,并不困难。
【例题精讲】例1:求下列方程的整数解(x>0,y>0)。
(1)5x+10y=14;(2)11x+3y=89.【思路点拨】5和10有公因数5,而14没有公因数5,所以原方程无整数解;y=29-3211x,11x-2能被3整除且x<9。
模仿练习:(1)求满足方程5x+3y=40的自然数解。
(2)设A 和B 都是自然数,且满足11A +7B =7757,求A+B 的值。
例2:某单位职工到郊外植树,其中31的职工各带了一个孩子参加,男职工每人种13棵树,女职工每人种10棵,每个孩子种6棵树,他们共种了216棵树,那么其中有女职工多少人【思路点拨】设有女职工x 人,男职工y 人,那么有孩子3y x +人,这个条件说明3|x+y 。
模仿练习:某小学共有大、中、小宿舍12间,能住80人。
每间大宿舍能住8人,每间中宿舍能住7人,每间小宿舍能住5人。
问中、小宿舍共有多少间例3:有四个自然数A 、B 、C 、D ,它们的和不超过除以B 商5余5;A 除以C 商6余6;A 除以D 商7余7,这四个自然数的和是多少【思路点拨】A=5B+5=6C+6=7D+7,A 一定是5,6,7的公倍数。
模仿练习:有三张扑克牌,牌的数字各不相同,并且都小于10,把三张牌洗好后,分别发给甲、乙、丙三人,每人记下自己牌的数字,再重新洗牌、发牌、记数。
六年级奥数专题培优讲义——不定方程及解析知识点梳理:在列方程组解答应用题时,有两个未知数,就需要有两个方程。
有三个未知数,就需要有三个方程。
当未知数的个数多于方程的个数时,这样的方程称为不定方程,为纪念古希腊数学家丢番图,不定方程也称为丢番图方程。
不定方程在小学奥数乃至以后初高中数学的进一步学习中,有着举足轻重的地位。
而在小学阶段打下扎实的基础,无疑很重要。
不定方程是由于联立方程的条件“不足”而出现的,从一般情况来说,有无数多个解。
不过,我们要注意到它的“预定义”条件,比如未知项是自然数,比如在数位上的数码不仅是自然数,而且是一位数等等,甚至题干中直接给出限制条件,这样,就使得不定方程的解“定”下来了。
这种情况也不排除它的取值不止一种。
不定方程解的情况比较复杂,有时无法得出方程的解,有时又会出现多个解。
如果考虑到题中以一定条件所限制的范围,会有可能求出唯一的解或几种可能的解(而这类题的限制范围往往与整数的分拆有很大关系)。
解答这类方程,必须要对题中明显或隐含的条件加以判断、推理,才能正确求解。
【例1】★求方程2725=+y x 的正整数解。
【解析】因为2y 为偶数,27为奇数,所以5x 为奇数,即x 为奇数⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==15,63,111y x y x y x【小试牛刀】求方程4x +10y =34的正整数解【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得 2x +5y =17,5y 的个位是0或5两种情况,2x 是偶数,要想和为17,5y 的个位只能是5,y 为奇数即可;2x 典型例题的个位为2,所以x 的取值为1、6、11、16……x =1时,17-2x =15,y =3,x =6时,17-2x = 5,y =1,x =11时,17-2x =17 -22,无解所以方程有两组整数解为:16,31x x y y ==⎧⎧⎨⎨==⎩⎩ 【例2】★ 设A ,B 都是正整数,并且满足3317311=+B A ,求B A +的值。
六年级奥数 不定方程【知识要点】如果一个方程(组)的未知数的个数多于方程的个数,那么这个方程(组)就叫做不定方程(组)。
不定方程是数论中最古老的一个分支,它的研究在我国已延续了数千年,至今仍是令人感兴趣的课题。
不定方程的内容非常丰富,但在小学数学竞赛中,我们主要讨论二元一次不定方程,形如ax±by=c(a 、b 、c 为已知的整数)的方程,我们称为二元一次不定方程,又称丢番图方程,以纪念生于公元三世纪的希腊数学家丢番图,他写了一本关于这类方程的书。
一个不定方程一般总有无穷多组解,但小学阶段主要涉及整系数不定方程的整数解。
不定方程通常利用不等式及整除性来求解。
【典型例题】例1 一天,张明问李军的生日,李军说:“将我生日的月份数乘以31,生日的日期数乘以12,相加后得347。
”你知道李军的生日是几月几日吗?分析:如果设李军生日的月份数为x ,生日的日期数为y ,则原题实际上就是求不定方程31x+12y=347的正整数解。
解:设李军生日的月份数为x ,生日的日期数为y ,列方程:31x+12y=347变形后得: y=1231347x -………………………………………………………………(1) 即y=29-3x+1215-x ∵x 、y 为整数,且1≤x≤12,5x-1能被12整除∴x=5 把x=5代入(1),得所列方程的整数解为: 答:李军的生日是5月16日。
例 2 我国古代有一位著名的数学家张丘建,曾经提出并解决了“百钱买鸡”这个有名的数问题:“一百元买一百只鸡,公鸡五元钱一只,母鸡三元钱一只,小鸡一元钱三只,公鸡、母鸡、小鸡各买几只?”分析:该题共有三个未知数,若设买公鸡x 只,买母鸡y 只,买小鸡z 只,则可建方方程5x+3y+31×(100-x-y )=100 化简整理得:7x+4y=100由此有:1≤x≤7100 即1≤x≤14 注意到100和4y 都是4的倍数,而7和4互质,所以x 也应是4的倍数,x 就是三种可能:4、8、12。
第40讲不定方程一、知识要点当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。
如5x-3y =9就是不定方程。
这种方程的解是不确定的。
如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。
如5x-3y=9的解有:x=2.4 x=2.7 x=3.06 x=3.6y=1 y=1.5 y=2.1 y=3如果限定x、y的解是小于5的整数,那么解就只有x=3,Y=2这一组了。
因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。
解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。
解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。
对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。
解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。
二、精讲精练【例题1】求3x+4y=23的自然数解。
先将原方程变形,y=23-3x4。
可列表试验求解:所以方程3x+4y=23的自然数解为X=1 x=5 Y=5 y=2 练习11、求3x+2y=25的自然数解。
2、求4x+5y=37的自然数解。
3、求5x-3y=16的最小自然数解。
【例题2】求下列方程组的正整数解。
5x+7y+3z=253x-y-6z=2这是一个三元一次不定方程组。
解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。
5x+7y+3z=25 ①3x-y-6z=2 ②由①×2+②,得13x+13y=52X+y=4 ③把③式变形,得y=4-x。
因为x、y、z都是正整数,所以x只能取1、2、3.当x=1时,y=3当x=2时,y=2当x=3时,y=1把上面的结果再分别代入①或②,得x=1,y=3时,z无正整数解。
x=2,y=2时,z也无正整数解。
x=3时,y=1时,z=1.所以,原方程组的正整数解为 x=1y=1z=1求下面方程组的自然数解。
六年级奥数训练第11讲不定方程内容概述学会求二元一次不定方程与多元一次不定方程组的整数解,通常利用整除性、大小估计等方法进行分析;注意对多个未知数进行恰当的消元,化简方程.典型问题兴趣篇1.有两种不同规格的油桶若干个,大油桶能装8千克油,小油桶能装5千克油,44千克油恰好装满这些油桶.问:大、小油桶各几个?2.有150个乒乓球分装在大、小两种盒子里,大盒每盒装12个,小盒每盒装7个.问:需要大、小盒子各多少个才能恰好把这些球装完?3.小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫2声,波斯猫叫1声;若是晚上见面,小花狗叫2声,波斯猫叫3声,细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面,在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?4.庙里有若干个大和尚和若干个小和尚共七百多人,已知7个大和尚每天共吃41个馒头,19个小和尚每天共吃60个馒头,平均每个和尚每天恰好吃4个馒头.请问:庙里共有多少个和尚?1 5.某单位的职工到郊外植树,其中有男职工,也有女职工,并且有3的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.请问:其中有多少名男职工?6.新学期开始了,几个老师带着一些学生去搬全班的100本教科书.已知老师和学生共14人,每个老师能搬12本,每个男生能搬8本,每个女生能搬5本,恰好一次搬完,问:搬书的老师、男生、女生各有多少人?7.新发行的一套珍贵的纪念邮票共三种不同的面值:20分、40分和50分,其中面值20分的邮票售价5元,面值40分的邮票售价8元,面值50分的邮票售价9元.小明花了156元买回了总面值为8.3元的邮票,那么三种面值的邮票分别买了多少张?8.小萌在邮局寄了三种信,平信每封8分,航空信每封1角,挂号信每封2角,她共用了1元2角2分,那么小萌寄的这三种信的总和最少是多少封?9.有纸币60张,其中1分、1角、1元和10元各有若干张.请你判断:这些纸币的总面值能否恰好是100元?10.快餐店有三种汉堡,鱼肉汉堡每个7元,鸡肉汉堡每个9元,牛肉汉堡每个14元,小明去快餐店买汉堡.他付款100元,找回8元.请问:小明买了多少个鸡肉汉堡?拓展篇1.甲级铅笔7角一支,乙级铅笔3角一支,张明用5元钱买这两种铅笔,钱恰好花完,请问:张明共买了多少支铅笔?2.采购员去超市买鸡蛋.每个大盒里有23个鸡蛋,每个小盒里有16个鸡蛋(盒子不能拆开).采购员要恰好买500个鸡蛋,他一共要买多少盒?3.在第二次世界大战中,苏联军队每个步兵师有9000人,每个航空兵师有8000人.在一场战役中,苏军司令部从两个集团军抽调了相同数量的师参与战斗,一共有27.1万人.如果这两个集团军都是由步兵师和航空兵师组成,那么苏军参与战斗的有多少个步兵师,多少个航空兵师?4.甲、乙两个小队的同学去植树.甲小队有一人植树12棵,其余每人都植树13棵;乙小队有一人植树8棵,其余每人都植树10棵,已知两小队植树棵数相等,且每小队植树的棵数都是四百多棵.问:甲、乙两小队共有多少人?5.将一根长为380厘米的合金铝管截成若干根长为36厘米和24厘米两种型号的短管,加工损耗忽略不计,问:剩余部分的管子最少是多少厘米?6.某次数学比赛,用两种不同的方式判分.一种是答对1题给5分,不答给2分,答错不给分;另一种是先给40分,答对1题给3分,不答不给分,答错扣1分,某考生两种判分方法均得71分,请问:这次比赛共考了多少道题?7、我国古代数学家张丘建在《算经》一书中提出了“百鸡问题”:鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何?这个问题是说:每只公鸡价值5文钱,每只母鸡价值3文钱,每3只小鸡价值1文钱.要想用100文钱恰好买100只鸡,公鸡、母鸡和小鸡应该分别买多少只?8.小李去文具店买圆珠笔、铅笔和钢笔,每种笔都只能整盒买,不能单买.钢笔4支一盒,每盒5元;圆珠笔6支一盒,每盒6元;铅笔10支一盒,每盒7元.小李总共花了97元,买了90支笔.请问:三种笔分别买了多少盒?9、在新年联欢会上,某班组织了一场飞镖比赛.如图11-1,飞镖的靶子分为三块区域,分别对应17分、11分和4分.每人可以扔若干次飞镖,脱靶不得分,投中靶子就可以得到相应的分数.试问:如果比赛规定恰好投中100分才能获奖,要想获奖至少需要投中几个飞镖?如果规定恰好投中120分才能获奖,要想获奖至少需要投中几个飞镖?10、阿奇到商店买糖,巧克力糖13元一包,奶糖17元一包,水果糖7.8元一包,酥糖10.4元一包,最后他共花了360元,且每种糖都买了.请问:阿奇共买了多少包奶糖?11、小悦、冬冬去超市买水果.小悦买了2千克桔子、3千克苹果和4千克梨,共花了28.5元,冬冬买了3千克桔子、5千克苹果和7千克梨,共花了47.7元.结账的时候碰到老师,老师买了6千克桔子和3千克苹果,那么老师应该花了多少钱?12、红、蓝两种笔的单价都是整数元,并且红笔比蓝笔贵.小明买红笔、蓝笔各一支,共用了23元.小强打算用109元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把109元恰好用完.求红笔的单价.超越篇1、求不定方程35x+64y=1625的所有自然数解.2、一个水果批发市场运进苹果、梨和桃子各若干筐,共1355斤.其中苹果每筐60斤,每斤定价1.5元;梨每筐55斤,每斤定价1.5元;桃子每筐45斤,每斤定价1.8元.批发市场是以定价的70%购人这些水果的,如果全部售完,将获得638.1元的利润,请问:批发市场运进三种水果各多少筐?3、雨轩图书馆内有两人桌、三人桌和四人桌共五十多张,其中两人桌的数量为四人桌数量的2倍.这天除了某张桌子坐满外,其它两人桌每桌都只坐1人,三人桌每桌都只坐2人,四人桌每桌都只坐3人,且恰好平均每11人占用17个座位.请问:图书馆两人桌、三人桌、四人桌分别有多少张?4、采购员用一张万元支票去购物,买了若干个单价590元的A种商品和若干个单价670元的B种商品,其中B种商品多于A种商品,最后找回了几张100元钞票和不到10张10元钞票.如果把A、B两种商品的数量调换,找回的100元和10元的钞票张数正好也调换,那么这两种商品分别买了多少个?5、有甲、乙、丙、丁四种货物,若购买甲1件、乙5件、丙1件、丁3件共需195元;若购买甲2件、乙l件、丙4件、丁2件共需183元;若购买甲2件、乙6件、丙6件、丁5件共需375元.现在购买甲、乙、丙、丁各一件共需多少元?6、国庆节,公司发给唐师傅一张1000元的礼券,但只允许购买A、B、C、D、E五种商品,并且必须正好把礼券用完.已知这五种商品多少种不同的买法?7、现有一架天平和很多个13克和17克的砝码,用这些砝码,不能称出的最大整数克重量是多少?(砝码只能放在天平的一边)8、现有1.7升和4升的两个空桶和一个大桶里的100升汽油,用这两个空桶要倒出l升汽油,至少需要倒多少次?。
第八章不定方程知识要点如果方程(组)中未知数的个数多于方程的个数,此方程(组)称为不定方程(组)。
如x+y=10,1512x ay a-=⎧⎨+=⎩,。
不定方程(组)的解是不确定的。
一般地,如果没有给不定方程的制约条件,那么它就有无限多个解。
小学阶段主要涉及整系数不定方程的整数解。
关于参数方程,就是有时题中给的条件过少,就设一个未知数参与运算,这个参数不影响结果。
例1 (第五届“希望杯”邀请赛试题)一个两位数的中间加上一个0,得到的三位数比原两位数的8倍小1,原来的两位数是。
点拨根据题意,可由原来的两位数和变化后的三位数之间的数量关系列出方程。
解设原来的两位数是ab=10a+b,则新数是0a b=100a+b。
依题意得 100a+b+1=8(10a+b)即 20a+1=7b所以 a=71 20 b-因为a,b是整数,且1≤a≤9,0≤b≤9,所以 a=1,b=3即原来的两位数是13。
说明如果方程存在的解不止一个,则要逐一解出,并检验,千万不要漏掉或出现与题意相矛盾的解。
例2 (“迎春杯”邀请赛试题)某工厂为优秀职工发奖金,一等奖每人1800元,二等奖每人1200元,三等奖每人800元。
每种奖都有人领,共有15名优秀职工领取奖金的总数为16000元,获一、二、三等奖的职工各有多少人?点拨根据题意,一、二、三等奖人数之和等于15这一等量关系显而易见,而15名职工领取奖金的总和为16000元这一等量关系也给出,可列出方程。
解设一、二、三等奖依次有x人、y人、z人,则有1800x+1200y+800z=16000即 9x+6y+4z=80又x+y+z=15,将z=15-x-y代入上式,得9x+6y+60-4x-4y=80整理得 5x+2y=20又x,y,z是正整数,解得 x=2,y=5,z=15-x-y=8。
答:获一等奖的有2人,二等奖的有5人,三等奖的有8人。
例3 100头驴驮100袋物品,一头大驴驮3袋,一头中驴驮2袋,两头小驴驮1袋。
第40讲不定方程一、知识要点当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。
如5x-3y =9就是不定方程。
这种方程的解是不确定的。
如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。
如5x-3y=9的解有:x=2.4 x=2.7 x=3.06 x=3.6y=1 y=1.5 y=2.1 y=3如果限定x、y的解是小于5的整数,那么解就只有x=3,Y=2这一组了。
因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。
解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。
解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。
对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。
解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。
二、精讲精练【例题1】求3x+4y=23的自然数解。
先将原方程变形,y=23-3x4。
可列表试验求解:所以方程3x+4y=23的自然数解为X=1 x=5 Y=5 y=2 练习11、求3x+2y=25的自然数解。
2、求4x+5y=37的自然数解。
3、求5x-3y=16的最小自然数解。
【例题2】求下列方程组的正整数解。
5x+7y+3z=253x-y-6z=2这是一个三元一次不定方程组。
解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。
5x+7y+3z=25 ①3x-y-6z=2 ②由①×2+②,得13x+13y=52X+y=4 ③把③式变形,得y=4-x。
因为x、y、z都是正整数,所以x只能取1、2、3.当x=1时,y=3当x=2时,y=2当x=3时,y=1把上面的结果再分别代入①或②,得x=1,y=3时,z无正整数解。
x=2,y=2时,z也无正整数解。
x=3时,y=1时,z=1.所以,原方程组的正整数解为 x=1y=1z=1求下面方程组的自然数解。
第七讲不定方程前我们学习的方程一般都有唯一解,比如方程 3x 4 19只有一个解x 5,方程组x 2y 5只有一组解 2x 3y 8什么样的方程,解不唯一呢?举个简单的例子,二元一次方程唯一,因为每当y 取定一个数值时,x 就会有相应的取值和它对应,使方程成立,这样一来就会有无穷多组解.通常情况下,当未知数的个数大于方程个数时.,这个方程.(或 方程组).就会有无穷多个解.可是方程的解那么多, 究竟哪个才是正确的呢?应该说, 如果不加任何额外的限制条件, 这 无穷多个解都是正确的. 但在实际情况中,我们通常会限定方程的解必须是自然数,这样一来,往往就只有少数几个解能符合要求,甚至在某些情况下所有的解都不对.x 2y 5的解就不対刖•所以这杆的方程才 囚平处方程啊 x+y=10陕。
一个右程龙么含右两个木 如数啊”这样的力稈论町好 多桦1方程个数小于未知数个数怖方 程如叫不罡方4T.不定方程,顾名思义就是“不确定”的方程,这里的不确定主要体现在方程的解上.之本讲我们要学习的就是这样的一类方程(或方程组):它们所含未知数的个数往往求下列方程的自然数解:(1) x 2y 5 ;(2) 2x 3y 8 ;(4) 4x 5y 20 .本讲我们要学习的就是这样的一类方程(或方程组) :它们所含未知数的个数往往大于方程的个数, 而未知数本身又有一定的取值范围, 这个范围通常都是自然数——这 类方程就是“不定方程” .形如 ax by c ( a 、b 、c 为正整数)的方程是二元一次不定方程的标准形式.解 这样的方程, 最基本的方法就是枚举. 那怎样才能枚举出方程的全部自然数解呢?我们 下面结合例题来进行讲解.例1.甲级铅笔 7角一支,乙级铅笔 3角一支,张明用 5元钱买这两种铅笔, 钱恰好花完. 请 问:张明共买了多少支铅笔?「分析」设张明买了甲级铅笔 x 支,乙级铅笔y 支,可以列出不定方程:7x 3y 50, 其中x 和y 都是自然数.怎么求解呢?x 19 x 22 x 25、、y 4 y 2 y 0的不定方程的自然数解时,我们可以先找出一组解,之后其余的所有解都可由这一组解的次变化 a 得到(注意变化的方向相反, 一个增加, 另一个就得减少, 才能保证 ax by 的 大小不变)练习 1、(1)求 3x 5y 35的所有自然数解;(2)求11x 12y160 的所有自然数解.般地,如果m是ax nby xmax byc 的一组解,那么yn 这naam abbn abam bn c .另外,也是 ax by c 的一组解,理由相同.2x 这条性质有什么用呢?我们以求x 10一组自然数解x 10.应用上面的规律,y 10 然数),所得结果仍然是x 25都是 2x 3y y0增加 2,所得结果也是 b(当n a 时)也是3y 50的自然数解为例, 2x 3y 50的一组解, 所以y 50的自然数解.另外x 每次减少2x 是2x 3y 50的自然数解. 而且这样就已经求出了2x 是:因 b . ,(当 m b 时) a我们容易看出它有13 x 16 x 19 x 228 、 y 、 6 y 、 4 y 2 、 3(只要 x 还是自然数) ,y 每次 x 7x 4 x 1、、也都y12 y 14 y163y 50的自然数解,所以50 的所有自然数解,它们3y x 每次增加3, y 每次减少2 (只要y 还是自x x 16 y6 ax by c ( a 、b 、c 为正整数)7 x 10 x 13 、、 12 y 10 y 8 x 值每次变化 b , y 值每例2.采购员去超市买鸡蛋.每个大盒里有23 个鸡蛋,每个小盒里有16 个鸡蛋.采购员要恰好买500 个鸡蛋,他一共要买多少盒?「分析」采购员要买多少个大盒,多少个小盒?大盒个数与小盒个数之间有什么联系?练习2、点心店里卖大、小两种蛋糕.一个大蛋糕恰好够7 个人吃,一个小蛋糕恰好够4 个人吃,现在有100 个人要吃蛋糕,应该准备大、小蛋糕各多少个才不浪费?如果每个大蛋糕10 元,每个小蛋糕7 元,那么至少要花多少钱?前面的两道例题只要求方程的解是自然数即可,但有的问题除了要求“解必须是自然数”外,还会有一些其它的约束.下面我们就来看几道这样例题.例3.甲、乙两个小队去植树.甲小队有一人植树12 棵,其余每人植树13 棵;乙小队有一人植树8 棵,其余每人植树10 棵.已知两小队植树棵数相等,且每小队植树的棵数都是四百多棵.问:甲、乙两小队共有多少人?「分析」不妨设甲小队有X人,乙小队有y人•由“两小队植树棵数相等”,你能列出一个关于x与y的不定方程吗?所列出来的不定方程又该如何求解?练习3、天气炎热,高思学校购置了大、小空调若干.每台大空调每天耗电38 度,每台小空调每天耗电13 度.已知所有大空调日耗电量之和恰好比所有小空调日耗电量之和少 1 度.请问:单位里最少购进了多少台空调?例4.将一根长为380厘米的合金铝管截成若干根长为36厘米和24 厘米两种型号的短管,加工损耗忽略不计.问:剩余部分最少是多少厘米?「分析」不妨设已经截出了x根长36厘米的管子和y根长24厘米的管子.合金铝管如果刚好能够被用完,方程应该怎么列?列出来的方程有自然数解吗?练习4、酒店里有500 升女儿红,李一白每次路过这里就打走35 升,杜二甫每次路过这里就打走21 升.那么若干天后,酒店剩余的女儿红最少是多少升?二元一次不定方程只要找到一组自然数解,就能利用方程系数有规律地写出所有自然数解•而含有更多未知数的不定方程又当如何求解呢?例5.我国古代数学家张丘建在《算经》一书中提出了“百鸡问题”:鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何?这个问题是说:每只公鸡价值5文钱,每只母鸡价值3文钱,每3只小鸡价值1文钱•要想用100文钱恰好买100只鸡,公鸡、母鸡和小鸡应该分别买多少只?「分析」题中有几个未知量?由这些未知量你能列出几个方程?:;《张丘建算经》■- 张丘建,北魏清河(今山东邢台市清河县)人,中国古代数学家,著有《张丘建算.经》.该书的体例为问答式,条理精密、文辞古雅,是中国古代数学史上少有的杰作.;;《张丘建算经》现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,:各种等差数列问题的解决,某些不定方程问题的求解. 百鸡问题就是其中一个著名的不定方程问题.- 张丘建所处的年代是中国古代的南北朝时期•尽管当时的中国战火连年,朝代更迭::频繁,且一直处于分裂状态,但数学发展的脚步依然没有停下•与《张丘建算经》同时代的算经还有《孙子算经》和《夏侯阳算经》,而与张丘建本人同时代的数学家还有大>名鼎鼎的祖冲之.例6.卡莉娅到商店买糖,巧克力糖13元一包,奶糖17元一包,水果糖7.8元一包,酥糖10.4元一包,最后她共花了360元,且每种糖都买了•请问:卡莉娅买了多少包奶糖?「分析」题目中出现了四种糖果,我们不妨设巧克力糖、奶糖、水果糖和酥糖分别有x 包、y包、z包和w包,再由已知的单价、总价可以列出方程13x 17y 7.8z 10.4w 360 .这是一个四元一次方程,如果按通常的解法枚举出所有解,势必会有太多可能性需要讨论,过于繁琐•而且题目也没要我们求出所有解,只要我们求出奶糖的数量即可.那有没有办法不求其它糖果,只求奶糖的数量呢?练习6、求22x 26y 33z 65w 194的所有自然数解.气象学家Lorenz 提出一篇论文,名叫“一只蝴蝶拍一下翅膀会不会在德克萨斯州引起 龙卷风?”论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴 蝶效应」•就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点 数也不一定是相同的.Lorenz 为何要写这篇论文呢?这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑.平时,他只 需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下 一刻可能的气象数据,因此模拟出气象变化图.这一天,Lorenz 想更进一步了解某段纪录的后续变化, 他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果•当时,电脑处理数据资料的数度不快,在结果出来之 前,足够他喝杯咖啡并和友人闲聊一阵•在一小时后,结果出来了,不过令他目瞪口呆•结 果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两 笔资讯.而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别•所以长期的准确预测天气是不可能的.蝴蝶效应课 内 外 堂作业5x 2 y 4z 601. (1)求5x 7y 31的所有自然数解;(2)求5x 2y 4z 60的所有自然数解.x 2 y z 362. 在一次植树节的活动中,参加活动的男生每个人种11 棵树,女生每个人种7棵树,最后所有人一共种了100棵树,那么参加活动的一共有多少人?3. 一张纸上写有25个1.21 和25个1.3.现在要划去其中的一些数,使留下来的数的总和为20.08,那么应划去多少个 1.3?4. 樱木同学特别喜欢吃包子,每天早上都到学一食堂买包子吃.(1)第一天早上,樱木同学花了6元买了一些冬菜包和豆香包,两种包子他都买了.已知冬菜包每个7 角,豆香包每个 5 角,那么樱木同学一共买了多少个包子?(2)第二天早上,樱木同学去学一食堂的路上遇到了晴子.于是樱木邀请晴子一起去吃包子.到学一食堂后,两人除了吃冬菜包和豆香包以外还点了几串羊肉串.已知羊肉串每串1 .2元,最后一共花了18元,所点包子与羊肉串数量总和是25.那么两人最多吃了多少串羊肉串?5. 甲、乙、丙三个班向希望工程捐赠图书.已知甲班有1 人捐6册,有2人各捐7册,其余都各捐11 册;乙班有 1 人捐6册,3人各捐8册,其余各捐 1 0册;丙班有2人各捐4册,6人各捐7册,其余各捐9册.已知甲班捐书总数比乙班多28册,乙班比丙班多101 册,且每个班捐赠的册数都在400与600之间.各班各有多少人?第七讲不定方程例题:例题1. 答案:14 或10详解:由于方程两边除以 3 的余数相同, 7x 3y x mod3 , 50 2 mod3 ,所以x除以3余2 .又因为7x 50,所以x是不超过7的自然数,只能取2或5.当x 2时,y 50 2 7 3 12 , x y 14;当x 5 时, y 50 5 7 3 5 , x y 10.所以张明共买了14支或10支铅笔.例题2. 答案:26详解:设买了大盒鸡蛋x盒,小盒鸡蛋y盒,则23x 16y 500 .考虑方程两边除以16 的余数,得:7x除以16的余数是4.首先要求7x是4的倍数,所以x是4的倍数,验证x 4、8、12、……发现满足7x除以16的余数是4的最小x值是12,相应的y的值是14,即x 12.由于12 16 且14 23,所以方程没有其它自然数解,采购员一共y 14买了12 14 26 盒鸡蛋.例题3. 答案:76详解:设甲、乙两小队分别有x人和y人.则两队植树棵数分别为13x 1棵和10y 2棵.由分析得:10y 13x 1 .将y 0、1、2、……代入方程验证x是否是自然数,可以求出方程的y值最小的一组自然数解y 4,此时每队的植树棵数均为38棵.x3方程的所有其他的自然数解都可以由进行若干次的“y值增加13且同时x值增加10”得到(也就是方程的其他所有自然数解是y 17, y 30, y 43,……),每次“ yx 13 x 23 x 33值增加13且同时x值增加10”意味着每队植树棵数增加130棵,38棵要变为四百多棵,意味着要增加 3 次,符合要求的自然数解是y 43.所以甲队有33 人,乙队有x 3343 人,两队共有33 43 76 人.例题4. 答案:8详解:设已经截出了x根长36厘米的管子和y根长24厘米的管子,那么被截出的管子一共长36x 24y厘米.由36,24 12,得:36x 24y一定是12的倍数.而380不是12 的倍数,所以36x 24y 380是没有自然数解的!管子不可能刚好被用尽,那么最少会剩下多少厘米呢?由于36x 24y —定是12的倍数,小于 380且能被12整除的最大自然数是372,而36x 24y 372的自然数解是存在的,如X 1,也就是截出1根长36厘米的管子和y 1414根长24厘米的管子,能够使得截出的管子总长度达到最大值372厘米•所以剩余部分最少是380372 8厘米.x y z 100详解:设公鸡、母鸡和小鸡分别买了 x 只、y 只和z 只•依题意,得: 1•要5x 3y - z 100 3求这个方程的自然数解, 我们用“消元”的想法把它转化成二元一次不定方程求自然 数解的问题.我们选择“消去” z :将第二个方程乘以3,然后减去第一个方程, 得:例题6.答案:12详解:不妨设巧克力糖、奶糖、水果糖和酥糖分别有x 包、y 包、z 包和w 包,则13x 17y 7.8z 10.4w 360 .把系数都化成整数,得:65x 85 y 39z 52w 1800 .由于我们只关心奶糖的数量,我们将未知数y 分为一组,其余未知数分为另一组:65x39z 52w85y1800 .也就是 13 5x 3z 4w 85y1800 .令 u 5x 3z 4w ,则13u 85y 1800 .它的自然数解只有U 60,所以阿奇共买了 12包奶糖.y 12x 0x 4x 8x 12有自然数解是: y 25、 y 18、 y 11和 y 4 .所以我们有四种符合要求的买z 75 z 78 z 81 z 84 x y 4z 值分别为75、78、81、84都是自然数,于是原不定方程的所鸡方案:公鸡 0只,母鸡25只,小鸡75只;公鸡4只,母鸡18只,小鸡78只;公例题5.答案:有四种符合要求的买鸡方案:公鸡 母鸡18只,小鸡78只;公鸡8只,母鸡 小鸡84只 0只,母鸡25只,小鸡75只;公鸡4只, 11只,小鸡81只;公鸡12只,母鸡4只,14x 8y 200,即 7x 4y100,它的所有自然数解是x 0 x 4 x 8 、 、y25y 18y1112 .它们对应的鸡8只,母鸡 11只,小鸡81只;公鸡12只,母鸡4只,小鸡84只.练习:1. 答案: ( 1 )有三组解: x 0 ; x 5;x 1010;(2)有一组解:x8y 7 y 4y1 y6简答: ( 1)考虑方程两边除以 3 的余数; ( 2) 考虑方程两边除以11 的余数2.答案:有四种购买方案: 1 2个大蛋糕, 4个小蛋糕; 8个大蛋糕, 11 个小蛋糕; 4个大 蛋糕, 18 个小蛋糕; 0 个大蛋糕, 25 个小蛋糕;第一个方案最省钱,只要花12 10 4 7 148 元 简答:求不定方程 7x 4y 100的自然数解即可.3. 答案: 4 台简答: 38x 13y 1 的最小自然数解为x 1, 最少需要大空调 1 台,小空调 3 台y34. 答案:3简答: 注意 35x 21y 是7的倍数.x7 x 6x 55. 答案:( 1) 有三组解: y 1 、 y3 、 y5; (2) 1; 2; 6z2 x 1x简答: ( 1) 消去 x 可解;( 2)求 x yz 9的正整数解即可.16x12y 1 0z 1006 x 015 ; y 140 z 83的余数;(2)消去未知数y ,转化成二元一次不定方程.2. 答案: 12x4x 4,所以参加活动的共有 4 8 12 人. y83. 答案: 17作业:x x2 1. 答案:( 1 )x 2;( 2) yy3z 简答:( 1 )考虑方程两边除以简答:由 11x 7y 100 ,得:简答:设留下来的数中有x 个 1.21 和y 个 1.3,则 1.21x 1.3y 20.08.由于总和的百分位是8,说明x 8或18.仅当x 8相应的y 是整数,求得y 8,所以应该划去25 8 17 个 1.3.4. 答案:( 1) 10;(2) 7x5简答:( 1)设买了冬菜包x 个,豆香包y 个.由7x 5y 60,得:x 5,所以樱木同y5x24x17x10学一共买了5 5 10个包子;( 2)由7x 5y 12z 180,得:y0、y5、y10 x y z 25135z z zx3或y 15 ,所以羊肉串最多有7 串. z75. 答案:甲51 ;乙53;丙49 简答:设甲、乙、丙三个班分别有x 人、y 人、z 人,则由已知可得:20 11(x 3) 30 10(y 4) 28 11x 31 10y,即,所以可知x 是除以10 余 1 的数,y30 10(y 4) 50 9(z 8) 101 10y 89 9z是除以9余8的数.又因为每班捐书册数在400与600之间,所以x只能取51,此时才同时满足y是除以9余8的数,即为53,则z为49.x 1 x 4 x、、y 16 y 14 y 这就告诉我们,在求形如。
第六讲不定方程
【知识要点】
1、许多数学家需要用方程或方程组来求解。
要想获得未知数的唯一解,能独立列出的方程个数必须与未知数的个数相等。
如果方程个数少于未知数的个数,则称之为不定方程或不定方程组,以为此时未知数一般有无数多个解,解是不确定的。
但如果结合具体问题,增
加一些对解的限制条件,如只求自然数解等,这样的不定方程的解就只有有限个或唯一一个了。
必须注意,限制条件中,有些是明显的,有些则是隐藏的。
2、求不定方程的自然数解或正整数解,关键是充分利用整除特征,尝试找出第一解;对于其他的所有解,可通过解的规律,逐一罗列出来,并不困难。
【例题精讲】
例1:求下列方程的整数解(x>0,y>0)。
(1)5x+10y=14;
(2)11x+3y=89.
【思路点拨】
5 和10有公因数5,而14没有公因数5,所以原方程无整数解;y=29—血上,11x
3
—2能被3整除且x v 9。
模仿练习:(1)求满足方程5x+3y=40的自然数解。
(2)设A和B都是自然数,且满足△+旦二57,求A+B的值。
11 7 77
例2:某单位职工到郊外植树,其中1的职工各带了一个孩子参加,男职工每人种13棵树,
3
女职工每人种10棵,每个孩子种6棵树,他们共种了216棵树,那么其中有女职工多少人?
【思路点拨】
设有女职工x人,男职工y人,那么有孩子—人,这个条件说明3|x+y。
3
模仿练习:某小学共有大、中、小宿舍12间,能住80人。
每间大宿舍能住8人,每间中宿舍能住
7人,每间小宿舍能住5人。
问中、小宿舍共有多少间?
例3:有四个自然数A、B、C D,它们的和不超过400.A除以B商5余5;A除以C商6余
6;A除以D商7余7,这四个自然数的和是多少?
【思路点拨】
A=5B+5=6C+6=7D+7,A一定是5,6,7 的公倍数。
模仿练习:有三张扑克牌,牌的数字各不相同,并且都小于10,把三张牌洗好后,分别发
给甲、乙、丙三人,每人记下自己牌的数字,再重新洗牌、发牌、记数。
这样反复几次后,三人各自记录的数字和分别是13、15、23。
问这三张牌的数字是多少?例4:求解不定方程组5X 7y 9Z 52⑴的正整
数解。
3x 5y 7z 36(2)
【思路点拨】
消元,使方程组变成一个不定方程。
例5:王虎用100元买油菜籽、西红柿种子和萝卜籽共
100包。
油菜籽每包3元,西红柿
模仿练习:求下列不定方程组的自然数解: 3x 6y 2z 22 5x 8y 6z 28
种子每包4元,胡萝卜籽1元钱7包,他每种各买了多少包?
【思路点拨】
设买油菜籽x包,西红柿种子y包,则胡萝卜籽(100 —x —y)包。
3x+4y+10°—(x y) =100。
7
模仿练习:阳光小学在校园里新栽了樟树、梨树和桃树,每种树的棵树都是质数。
如果将
三种树的总棵树加4后除以10,则比樟树的10倍减去梨树的棵树后还少4棵。
问阳光小学新栽的樟树、梨树和桃树各多少棵?
【思路点拨】
1:小明2008年的年龄恰好等于他出生年的四个数字之和,则小明2008年有多大?
2: 一次数学竞赛后用31只铅笔给一、二、三等奖的学生发奖品,如果给一等奖每人6只,二等奖每人3只,三等奖每人2只,则正好发完;如果一等奖每人5只,二等奖每人4 只, 三等奖每人3只,则差6支。
那么获一、二、三等奖的学生各有多少人?
3: ab21是一个四位数,有四个阿拉伯数字a、b、1、2组成的其他23个四位数的和等于
90669,求a和b的值。
4:张老师用一张1万元支票为学校添置A、B两种物品,A、B物品的单价分别为590元和670元。
已知购买的B物品件数多于A物品件数,结果找回了几张100元和几张10元(10 元的不超过9张)。
有趣的是,若把购买的A种物品和B种物品的件数互换,则找回100元和10元的钞票张数也恰好互换。
问购买的A、B两种物品各有多少件?
5:动物园里猩猩比狒狒多,猴子比猩猩多。
一天,饲养员拿了10箱香蕉分给它们。
每只
猩猩比每只狒狒多分1根,每只猴子比每只猩猩多分1根。
分完后,只剩2根香蕉。
如果每箱香蕉数
量相同,都是40多个,而且猴子比狒狒多6只,猩猩只有16只。
那么,动物园里有多少只猴子?【课后作业】
1:求不定方程3x+4y=20的自然数解。
2:若自然数A B满足彳+旦=23 ,那么A+B等于多少?
13 4 26
5x 7v 3z 25 3:求不定方程组5x 7y 3z 25的正整数解。
3x y 6z 2
4:若干学生搬一堆砖。
若每人搬k块,且k为质数,则剩下20块未搬走;若每人搬9块,
则最后一个学生只搬了5块,那么这堆砖共有多少块?
5:王老师家的电话号码是七位数,将前四位数组成的数与后四位数组成的数相加得
9063 ;
将前三位组成的数与后四位组成的数相加得2529,王老师家的电话号码是多少?
2 5 7
6:有三个分子相同的最简假分数,化成带分数后为a-,b5,c7。
已知a、b、c都小于
3 6 8
10,a、b、c依次为几?。