常系数线性微分方程的拉普拉斯(Laplace)变换解法
- 格式:pdf
- 大小:72.64 KB
- 文档页数:3
第十一章 拉普拉斯变换在高等数学中,为了把复杂的计算转化为较简单的计算,往往采用变换的方法。
拉普拉斯变换(简称拉斯变换)就是其中的一种。
拉斯变换是分析和求解常系数线性微分方程的常用方法。
用变拉普拉斯换分析和综合线性系统(如线性电路)的运动过程在工程上有着广泛的应用。
本章将扼要地介绍拉氏变换的基本概念、主要性质、拉氏逆变换及拉氏变换的简单应用。
第一节 变拉普拉斯换的概念定义 设函数)(t f 当0≥t 时有定义,且广义积分⎰+∞-0)(dt e t f st在s 的某一区域内收敛,则由此积分确定的参数为s 的函数dt e t f s F st -∞⎰=0)()(叫做函数)(t f 的变拉普拉斯换,记作)]([)(t f L s F =函数F (s ) 也可叫做)(t f 的像函数。
若F (s )是)(t f 的拉)(t f 是F (s )的拉氏逆变换(或叫做()s F 的像原函数),记作)]([)(1s f L t f -=在拉氏变换中,只要求)(t f 在),0[+∞内有定义即可。
为了研究方便,以后总假定在)0,(-∞内,)(t f ≡0。
另外,拉氏变换中的参数s 是在复数域中取值的,但我们只讨论s 是实数的情况,所得结论也适用于s 是复数的情况。
例1 求指数函数at e t f =)((a a ,0≥是常数)的拉氏变换。
解 由拉氏变换定义有 :dt e dt e e e L t a s st at at ⎰⎰+∞--+∞-==0)(0][此积分在s >a 时收敛,有⎰∞+---=)(1as dt e t a s 所以)(1][a s as e L at >-=例2 求单位阶梯函数⎩⎨⎧≥<=0,100)(t t t u , 的拉氏变换。
解()[]⎰+∞-=0dt e t u L st此积分在0>s 时收敛,且有⎰∞+->=)0(1s sdt e st 所以 ()[])01>=s st u L ( 例3 求at t f =)((a 为常数)的拉氏变换。
第十二章 拉普拉斯变换及逆变换拉普拉斯(Laplace)变换就是分析与求解常系数线性微分方程得一种简便得方法,而且在自动控制系统得分析与综合中也起着重要得作用。
我们经常应用拉普拉斯变换进行电路得复频域分析。
本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)得基本概念、主要性质、逆变换以及它在解常系数线性微分方程中得应用。
第一节 拉普拉斯变换在代数中,直接计算328.957812028.6⨯⨯=N 53)164.1(⨯就是很复杂得,而引用对数后,可先把上式变换为164.1lg 53)20lg 28.9lg 5781(lg 3128.6lg lg ++-+=N然后通过查常用对数表与反对数表,就可算得原来要求得数N 。
这就是一种把复杂运算转化为简单运算得做法,而拉氏变换则就是另一种化繁为简得做法。
一、拉氏变换得基本概念定义12、1 设函数()f t 当0t ≥时有定义,若广义积分()pt f t e dt +∞-⎰在P 得某一区域内收敛,则此积分就确定了一个参量为P 得函数,记作()F P ,即dte tf P F pt ⎰∞+-=)()( (12、1)称(12、1)式为函数()f t 得拉氏变换式,用记号[()]()L f t F P =表示。
函数()F P 称为()f t 得拉氏变换(Laplace) (或称为()f t 得象函数)。
函数()f t 称为()F P 得拉氏逆变换(或称为()F P 象原函数),记作)()]([1t f P F L =-,即)]([)(1P F L t f -=。
关于拉氏变换得定义,在这里做两点说明:(1)在定义中,只要求()f t 在0t ≥时有定义。
为了研究拉氏变换性质得方便,以后总假定在0t <时,()0f t =。
(2)在较为深入得讨论中,拉氏变换式中得参数P 就是在复数范围内取值。
为了方便起见,本章我们把P 作为实数来讨论,这并不影响对拉氏变换性质得研究与应用。
拉普拉斯拉斯变换可用于求解常系数线性微分方程,是研究线性系统的一种有效而重要的工具。
拉普拉斯拉斯变换是一种积分变换,它把时域中的常系数线性微分方程变换为复频域中的常系数线性代数方程。
因此,进行计算比较简单,这正是拉普拉斯拉斯变换(简称:拉氏变换)法的优点所在。
拉普拉斯拉斯变换的定义一个定义在区间的函数,其拉氏变换定义为L[f(t)]=F(s)=式中:s=б+jω为复数,有时称变量S为复频域。
应用拉普拉斯拉斯变换进行电路分析有称为电路的复频域分析,有时称为运算法F(s)又称为f(t)的象函数,而f(t)称为F(s)的原函数。
通常用“L[ ]”表示对方括号内的函数作拉氏变换。
拉普拉斯变换的基本性质本节将介绍拉氏变换的一些基本性质,利用这些基本性质,可以很容易的求得一些较复杂的原函数的象函数,同时,这些基本性质对于分析线性非时变网络也是非常必要的。
一、唯一性定义在区间的时间函数与其拉氏变换存在一一对应关系。
根据可以唯一的确定其拉氏变换;反之,根据,可以唯一的确定时间函数。
唯一性是拉氏变换非常重要的性质,正是这个性质,才是我们有可能将时域中的问题变换为复频域中的问题进行求解,并使在复频域中求得的结果有可能再返回到时域中去。
唯一性的证明从略。
二、线性性质若和是两个任意的时间函数,其拉氏变换分别为和,和是两个任意常数,则有证根据拉氏变换的定义可根据拉氏变换的定义可得例求的拉氏变换。
解三、时域导数性质(微分性质)例应用时域导数性质求的象函数。
四、时域积分性质(积分规则)例:求单位斜坡函数及的象函数。
五、时域平移性质(延迟性质)作业:书后习题1、2、3、4。
课后记事:注意板书层次,因为内容很多,不要太乱。
常用时间函数的象函数一览表,见教材221页。
8-2、8-3拉普拉斯反变换和运算电路图(4学时)(教材第221页)教学目的:具有单根、复根、重根三种情况下用部分分式及分解定理求待定系数法,运算电路图的画法。
教学重点:具有单根、复根时求待定系数法,熟练掌握反变换的求法,熟练掌握运算电路图的画法。
用拉普拉斯变换求解微分方程的过程引言:微分方程是描述自然界中各种变化规律的数学工具,它在物理学、工程学、经济学等领域有着广泛的应用。
而求解微分方程是解决实际问题的关键步骤之一。
本文将介绍一种常用的求解微分方程的方法——拉普拉斯变换。
一、什么是拉普拉斯变换:拉普拉斯变换是一种重要的数学工具,它可以将一个函数转换为一个复变量的函数。
通过拉普拉斯变换,我们可以将微分方程转化为代数方程,从而更容易求解。
二、拉普拉斯变换的定义:设函数f(t)在区间[0,∞)上有定义,若存在一个常数s0,使得积分F(s)=∫[0,∞) e^(-st) f(t)dt在复平面上收敛,则称F(s)为函数f(t)的拉普拉斯变换,记作F(s)=L{f(t)}。
三、拉普拉斯变换的性质:1. 线性性质:L{af(t)+bg(t)}=aF(s)+bG(s),其中a、b为常数。
2. 平移性质:L{f(t-a)}=e^(-as)F(s),其中a为常数。
3. 尺度变换性质:L{f(at)}=1/aF(s),其中a为常数。
4. 初值定理:lim(s→∞) sF(s)=f(0+),其中f(0+)为f(t)在t=0+时的右极限。
5. 终值定理:lim(s→0) sF(s)=f(∞),其中f(∞)为f(t)在t→∞时的极限。
四、用拉普拉斯变换求解微分方程的步骤:1. 对给定的微分方程进行拉普拉斯变换,将微分方程转化为代数方程。
2. 解代数方程得到F(s)。
3. 利用拉普拉斯变换表,找到F(s)对应的原函数f(t)。
4. 根据原函数f(t)的表达式,得到微分方程的解。
五、拉普拉斯变换的应用:通过拉普拉斯变换,我们可以求解各种类型的微分方程,包括常微分方程和偏微分方程。
在控制系统、电路分析、信号处理等领域,拉普拉斯变换都有着广泛的应用。
例如,在电路分析中,我们可以通过拉普拉斯变换求解电路的响应,从而得到电路的稳定性和性能。
结论:拉普拉斯变换是一种重要的数学工具,它可以将微分方程转化为代数方程,从而更容易求解。