第十二章 常系数微分方程组的解法
- 格式:ppt
- 大小:100.50 KB
- 文档页数:10
消元法求解常系数线性微分方程组下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!消元法求解常系数线性微分方程组导言在微积分和线性代数领域,线性微分方程组是一类重要的数学问题,它们在物理学、工程学以及其他科学领域中有着广泛的应用。
微分方程常系数与特解微分方程是数学中一个重要的概念,它描述了函数之间的关系。
其中,常系数微分方程是一类特殊的微分方程,其系数在整个方程中都是常数。
本文将介绍常系数微分方程的基本概念和求解方法,并讨论特解的概念和求解方法。
一、常系数微分方程的概念常系数微分方程是指方程中的系数都是常数的微分方程。
一般形式可以表示为:\[a_ny^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = f(x)\]其中,$y^{(n)}$表示$y$对$x$的$n$阶导数,$a_n, a_{n-1}, \dots , a_1, a_0$都是常数,$f(x)$是已知函数。
二、常系数微分方程的求解对于常系数微分方程,我们可以通过特征方程的方法求解。
首先,我们假设$y=e^{rx}$是方程的一个解,其中$r$是常数。
将$y=e^{rx}$代入微分方程,得到:\[a_nr^n e^{rx} + a_{n-1}r^{n-1} e^{rx} + \dots + a_1 re^{rx} + a_0 e^{rx} = f(x)\]由于$e^{rx}$的指数和系数都是常数,所以可以整理得到:\[(a_nr^n + a_{n-1}r^{n-1} + \dots + a_1 r + a_0) e^{rx} = f(x)\]由于$e^{rx}$是一个非零函数,所以上述方程成立的前提是:\[a_nr^n + a_{n-1}r^{n-1} + \dots + a_1 r + a_0 = 0\]这个方程称为特征方程。
解特征方程可以得到一系列的根$r_1, r_2, \dots, r_n$。
接下来,我们可以将这些根代入$y=e^{rx}$,得到方程的一组基本解,即:\[y_1=e^{r_1 x}, y_2 = e^{r_2 x}, \dots , y_n = e^{r_n x}\]这些基本解是方程的通解的一部分。
广东省佛山市高三毕业班语文综合测试(二)姓名:________ 班级:________ 成绩:________一、选择题 (共1题;共6分)1. (6分) (2020高三上·芜湖期末) 阅读下面的文字,完成下面小题。
宜兴手工紫砂陶技艺是指分布于江苏省宜兴市丁蜀镇的一种民间传统制陶技艺,迄今已有600年以上的历史。
紫砂陶制作技艺,每件紫砂陶制品都是以特产于宜兴的一种具有特殊团粒结构和双重气孔结构的紫砂泥料为原料,采用百种以上的自制工具,经过的步骤制作完成的。
用这种技艺制作的宜兴紫砂陶成品,大多是以茗壶为代表性物件,其制器物件拥有光器、筋纹器和花器等不同的造型。
紫砂器内外一般均不施釉,以纯天然质地和肌理为美。
作为上品茶具,(),因此紫砂器与中国传统的茶文化相契合,成为茶文化的重要组成部分。
代表性的陶刻是由诗文、金石、书画等艺术与紫砂制作技艺完美结合而成的,符合中华民族传统的审美标准,尤与文人阶层的审美情趣相___________。
但由于紫砂制陶的原料是一种稀缺矿产资源,目前已被过度开发和滥用,加之紫砂制陶精品越来越少,如何这一优秀的民间手工技艺已成为一个亟待解决的课题。
(1)依次填入文中横线上的词语,全都恰当的一项是()A . 独一无二繁冗融合传承B . 独占鳌头繁冗契合继承C . 独占鳌头繁复融合继承D . 独一无二繁复契合传承(2)下列填入文中括号内的语句,衔接最恰当的一项是()A . 有良好的透气性,能使人尽享茶之色香味B . 其良好的透气性能使人尽享茶之色香味C . 其透气性良好,茶之色香味能使人尽享D . 它能使人尽享茶之色香味,透气性良好(3)文中画线的句子有语病,下列修改最恰当的一项是()A . 宜兴紫砂陶用这种技艺制作的成品,大多是以茗壶为代表性物件,其制器物件拥有光器、筋纹器和花器等不同的造型。
B . 用这种技艺制作的宜兴紫砂陶成品,大多是以茗壶为代表性物件,其制器物件拥有光器、筋纹器和花器等不同的造型。
常系数线性微分方程- Introduction微积分学是数学的重要分支之一,常系数线性微分方程是微积分学的一个重要内容。
在工程、物理、化学、经济等学科中,常系数线性微分方程都有着重要的应用价值。
因此,本文将从数学基础、概念定义、解析方法、应用等方面,探讨常系数线性微分方程的相关知识。
- 数学基础为了理解常系数线性微分方程的概念和解析方法,我们需要先了解一些数学基础知识。
微互分学中的微分方程是一类关于未知函数及其导数的方程,它是一个重要的数学工具,用来描述一些自然、社会现象等。
一般来说,微分方程可分为常系数和变系数两类。
常系数是指微分方程中参数系数是常数,变系数是指微分方程中参数系数是函数。
在常系数线性微分方程中,方程的系数都是常数。
- 概念定义在微分方程中,有一个重要的类别称为“线性”。
所谓线性,指的是未知函数及其导数只出现一次,并且系数可以是常数、函数或常数和函数的乘积。
若未知函数y(x)的n阶导数出现在方程中,且系数都是常数,则称其为“n阶常系数线性微分方程”,简称“n阶常微分方程”。
n阶常微分方程的一般形式为:$$y^{(n)}+a_1y^{(n-1)}+a_2y^{(n-2)}+...+a_{n-1}y'+a_ny=f(x)$$其中,$a_1,a_2,...,a_n$均为常数,$f(x)$是已知函数。
- 解析方法n阶常微分方程的解法一般包括“常数变易”法、“齐次线性微分方程”法、“非齐次线性微分方程”法等。
其中,“齐次线性微分方程”法与“非齐次线性微分方程”法最为常用。
1. 齐次线性微分方程法齐次线性微分方程指的是非齐次线性微分方程中的$f(x)=0$。
在这种情况下,我们通常采用以下步骤来解方程:(1)找出$n$次齐次方程的通解$y_h(x)$;(2)设非齐次方程的特解为$y_p(x)$;(3)得出非齐次方程的通解$y(x)=y_h(x)+y_p(x)$。
2. 非齐次线性微分方程法非齐次线性微分方程指的是$f(x)≠0$。
常系数线性齐次微分方程组的矩阵
解法
常系数线性齐次微分方程组(LCCDE)是一类与定常差分方程组(LDE)类似的微分方程组,区别在于其中的系数是常数。
例如,LCCDE可以被表述为:
dy/dx + p_1(x)y + p_2(x)y' + ... + p_n(x)y^(n-1)=0
其中p_1(x),p_2(x),...,p_n(x)是常数。
矩阵解法是根据LCCDE来计算特解的一种解法,它基于Cramer规则对LCCDE给出解析解。
更具体地说,矩阵解法将LCCDE转换为一组线性方程组,采用矩阵乘法来求解此方程组,并将答案代入原微分方程组中,从而求得特解。
例如,考虑以下LCCDE:
dy/dx + 4y + 5y' + 6y''=0
我们可以将其转换为一组线性方程组:
a_0y+a_1y'+a_2y''=0 a_3y+a_4y'+a_5y''=0
a_6y+a_7y'+a_8y''=0
其中a_i (i=0,1,...,8)是常数,可以根据上面的LCCDE逐步求得。
然后,我们可以将上面的方程组转换为形如Ax=b的矩阵相乘方程,其中A是系数矩阵,x是未知向量,b是右端项向量。
矩阵相乘方程可以用Cramer规则计算得到解析解,然后将解代入原LCCDE,就可以求得特解。
用复变函数方法求解常系数线性微分方程组
复变函数法是求解常系数线性微分方程组的一种有效的数值解法。
它可以将常系数线性微分方程组转换为求解一个复变函数集合的纯算法问题,从而较容易求解它们。
复变函数法的基本思想是将所有微分方程均转换为复变函数的基本微分方程,使得问题的解可以以满足复变函数的形式存在。
因此,当我们处理常系数线性微分方程组时,可以将微分方程组表述为复变函数的集合,从而获得解的形式。
然后,可以采用拟合的方法计算所得复变函数的参数,以解决问题。
因此,复变函数法是常系数线性微分方程组的有效解决方案。
它可以以简单而有效的步骤解决问题,从而获得有效的近似解。
综上所述,复变函数法是一种高效的数值算法,可用于求解常系数线性微分方程组。
常系数线性微分方程的解法摘要:本文对常系数线性方程的各种解法进行分析和综合,举出了每个方法的例题,以便更好的掌握对常系数线性微分方程的求解. 关键词:特征根法;常数变易法;待定系数法Method for solving the system of differential equationwith Constant Coefficients LinearAbstract: Based on the linear equations with constant coefficients of analysisand synthesis method, the method of each sample name, in order to better grasp of the linear differential equation with constant coefficients of the solution.Key Words: Characteristic root ;Variation law ;The undetermined coefficientmethod前言:常系数性微分方程因形式简单,应用广泛,解的性质及结构已研究的十分清楚,在常微分方程中占有十分突出的地位。
它的求解是我们必须掌握的重要内容之一,只是由于各种教材涉及的解法较多,较杂,我们一般不易掌握,即使掌握了各种解法,在具体应用时应采用哪种方法比较适宜,我们往往感到困难。
本文通过对一般教材中涉及的常系数线性微分方程的主要解法进行分析和比较,让我们能更好的解常系数线性微分方程。
1.预备知识 复值函数与复值解如果对于区间a t b ≤≤中的每一实数t ,有复值()()()z t t i t ϕψ=+与它对应,其中()t ϕ和()t ψ是在区间a t b ≤≤上定义的实函数,i =是虚数单位,我们就说在区间a t b ≤≤上给定了一个复值函数()z t .如果实函数()t ϕ,()t ψ当t 趋于0t 时有极限,我们就称复值函数()z t 当t 趋于0t 时有极限,并且定义()()()0lim lim lim t t t t t t z t t i t ϕψ---=+.如果()()00lim t t z t z t -=,我们就称()z t 在0t 连续.显然,()z t 在0t 连续相当于()t ϕ,()t ψ在0t 连续.当()z t 在区间a t b ≤≤上每一点都连续时,就称()z t 在区间a tb ≤≤上连续.如果极限()()000limt t z t z t t t ---存在,就称()z t 在0t 有导数(可微).且记此极限为()0dz t dt或者()'0z t ,显然()z t 在0t 处有导数相当于()t ϕ,()t ψ在0t 处有导数,且()()()000dz t d t d t i dt dt dtϕψ=+. 如果()z t 在区间a t b ≤≤上每点都有导数,就称()z t 在区间a t b ≤≤上有导数.对于高阶导数可以类似地定义.设()1z t ,()2z t 是定义在a t b ≤≤上的可微函数,c 是复值常数,容易验证下列等式成立:()()()()1212dz t dz t dz t z t dt dt dt +=+⎡⎤⎣⎦,()()11dz t d cz t c dt dt⎡⎤=⎣⎦, ()()()()()()122211dz t dz t d z t z t z t z t dt dt dt⎡⎤•=•+⎣⎦. 在讨论常系数线性微分方程时,函数Kt e 将起着重要的作用,这里K 时复值常数.我们现在给出它的定义,并且讨论它的简单性质。
常系数线性微分方程的解法在微积分学中,常系数线性微分方程是一类重要的微分方程,其形式为:\[a_ny^{(n)}+a_{n-1}y^{(n-1)} + \cdots + a_1y' + a_0y = 0\]其中,\(y^{(n)}\) 表示 \(y\) 的 \(n\) 阶导数,\(a_n, a_{n-1}, \ldots, a_1, a_0\) 是常数系数。
解常系数线性微分方程有多种方法,下面将介绍其中两种常见的解法:特征根法和常数变易法。
一、特征根法特征根法是解常系数线性微分方程的一种常用方法。
它的基本思想是假设解具有指数形式:\[y = e^{rx}\]其中,\(r\) 是待定的常数。
代入微分方程得:\[a_nr^n e^{rx} + a_{n-1}r^{n-1}e^{rx} + \cdots + a_1re^{rx} +a_0e^{rx} = 0\]化简后得:\[e^{rx}(a_nr^n + a_{n-1}r^{n-1} + \cdots + a_1r + a_0) = 0\]由指数函数的性质可知,对于任意 \(x\),\(e^{rx} \neq 0\),因此上式成立等价于:\[a_nr^n + a_{n-1}r^{n-1} + \cdots + a_1r + a_0 = 0\]这个方程被称为特征方程。
解特征方程,求得所有的根 \(r_1, r_2, \ldots, r_n\)。
根据根的个数和重数,我们可以得到不同类型的解:1. 根为实数如果根 \(r\) 是实数,那么相应的解为:\[y = C_1e^{r_1x} + C_2e^{r_2x} + \cdots + C_ne^{r_nx}\]其中,\(C_1, C_2, \ldots, C_n\) 是待定常数。
2. 根为复数如果根 \(r\) 是复数,那么相应的解为:\[y = e^{\alpha x}(C_1\cos(\beta x) + C_2\sin(\beta x))\]其中,\(\alpha\) 和 \(\beta\) 是复数的实部和虚部,\(C_1\) 和 \(C_2\) 是待定常数。