第四章一元一次方程
- 格式:doc
- 大小:514.50 KB
- 文档页数:22
4.2一元一次方程及其解法教案设计第4章一元一次方程七年级上册苏科版(2024)【教材分析和学情分析】教材分析:第四章“一元一次方程”是初中数学的基础内容,主要介绍了方程的基本概念、方程的解、等式的性质以及如何解一元一次方程。
这一章的学习,旨在通过实际问题的解决,让学生理解并掌握一元一次方程的模型,培养他们的逻辑思维能力和问题解决能力。
教材中通过丰富的实例和习题,帮助学生从实际问题中抽象出数学问题,再通过解决数学问题,反哺解决实际问题,形成数学思维。
学情分析:1. 学生基础:七年级的学生已经学习了基本的算术运算,对数的概念有一定的理解,但可能对如何用数学模型解决实际问题还比较陌生。
此外,他们的抽象思维能力和逻辑推理能力还在发展阶段。
2. 学习兴趣:初中的学生对新鲜事物充满好奇,如果能将一元一次方程与生活实际相结合,设计一些趣味性的教学活动,可以激发他们的学习兴趣。
3. 学习习惯:部分学生可能还习惯于被动接受知识,缺乏主动探究和自我解决问题的习惯,需要教师引导他们主动参与到学习过程中。
4. 学习困难:一些学生可能在理解等式的性质和运用这些性质解方程时遇到困难,需要教师耐心引导,通过实例演示和反复练习帮助他们掌握。
【教学目标】1. 知识与技能:学生应能理解一元一次方程的定义,掌握其标准形式,并能识别和列出实际问题的一元一次方程。
2. 过程与方法:通过实例,让学生经历从实际问题抽象出一元一次方程的过程,掌握解一元一次方程的基本步骤,培养他们的抽象思维和问题解决能力。
3. 情感态度与价值观:培养学生对数学的兴趣,体验数学与生活的紧密联系,提高他们的学习积极性和自信心。
【教学重难点】1. 重点:理解一元一次方程的定义,能正确列出和解一元一次方程。
2. 难点:将实际问题转化为一元一次方程,理解解方程的过程。
【教学过程】1. 导入新课:通过生活中的实例,如“小明有10元钱,他买了一本书花了5元,他还剩下多少钱?”引入方程的概念,让学生初步感知方程是用来表示等量关系的数学工具。
苏科版七年级数学上册第四章 一元一次方程知识点归纳一、一元一次方程的概念:只含有一个未知数(元)且未知数的指数是1(次)的方程叫做一元一次方程。
一般形式:ax+b=0(a≠0)注意:未知数在分母中时,它的次数不能看成是1次。
如x x=+31,它不是一元一次方程。
二、解一元一次方程方程的解:能使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
等式的性质:(1)等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;(2)等式两边都乘或除以同一个不等于0的数,所得结果仍是等式。
移项移项:方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫做移项。
移项的依据:(1)移项实际上就是对方程两边进行同时加减,根据是等式的性质1;(2)系数化为1实际上就是对方程两边同时乘除,根据是等式的性质2。
移项的作用:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并。
注意:移项时要跨越“=”号,移过的项一定要变号。
解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、未知数的系数化为1。
注意:去分母时不可漏乘不含分母的项。
分数线有括号的作用,去掉分母后,若分子是多项式,要加括号。
解下列方程:(1)x x 2434-=-;(2))9(76)20(34x x x x --=--;(3)3136521--=+-+x x x ;(4)35.0102.02.01.0=+--x x用方程解决问题列一元一次方程解应用题的基本步骤:审清题意、设未知数(元)、列出方程、解方程、写出答案。
关键在于抓住问题中的有关数量的相等关系,列出方程。
解决问题的策略:利用表格和示意图帮助分析实际问题中的数量关系实际问题的常见类型:行程问题:路程=时间×速度,时间=速度路程,速度=时间路程 (单位:路程——米、千米;时间——秒、分、时;速度——米/秒、米/分、千米/小时) 工程问题:工作总量=工作时间×工作效率,工作总量=各部分工作量的和利润问题:利润=售价-进价,利润率=进价利润,售价=标价×(1-折扣) 等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;锻造前的体积=锻造后的体积利息问题:本息和=本金+利息;利息=本金×利率。
2023-2024学年苏科版数学七年级上册章节知识讲练知识点01:一元一次方程的概念1.方程:叫做方程.2.一元一次方程:只含有(元),未知数的次数都是,这样的方程叫做一元一次方程.知识要点:判断是否为一元一次方程,应看是否满足:①只含有一个未知数的次数为;②未知数所在的式子是,即分母中不含未知数.3.方程的解:叫做这个方程的解.4.解方程:叫做解方程.知识点02:等式的性质与去括号法则1.等式的性质:等式的性质1:,结果仍相等.等式的性质2:,结果仍相等.2.合并法则:合并时,把系数 保持不变. 3.去括号法则:(1)括号外的因数是 ,去括号后各项的符号与原括号内相应各项的符号相同. (2)括号外的因数是 ,去括号后各项的符号与原括号内相应各项的符号相反.知识点03:一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的(2)去括号:依据 ,先去小括号,再去中括号,最后去大括号. (3)移项:把含有未知数的项移到方程一边, 移到方程另一边.(4)合并:逆用 ,分别合并含有未知数的项及常数项,把方程化为 (a ≠0)的形式.(5)系数化为1: 得到方程的解bx a=(a ≠0). (6)检验:把方程的解代入原方程,若 相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点04:用一元一次方程解决实际问题的常见类型1.行程问题:路程= ×时间2.和差倍分问题:增长量=原有量×3.利润问题:商品利润=商品售价-4.工程问题:工作量=工作效率× ,各部分劳动量之和=5.银行存贷款问题:本息和=本金+利息,利息=本金× ×6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•惠山区校级期末)关于x 的方程kx =2x +6与2x ﹣1=5的解相同,则k 的值为( ) A .4B .3C .5D .62.(2分)(2022秋•高新区期末)已知等式3a =2b +5,则下列等式中不一定成立的是( ) A .3a ﹣5=2bB .3a +1=2b +6C .D .3ac =2bc +53.(2分)(2022秋•玄武区校级期末)小明到某文具店购买铅笔和中性笔.设购买铅笔的金额为x元,根据表格,下列方程错误的是()商品单价(元/支)购买数量/支购买金额/元铅笔x中性笔总计/ 13 34 A.+=13 B.x+3.5(13﹣)=34C.1.2(13﹣)=x D.3.5(13﹣)=34﹣x4.(2分)(2022秋•江都区期末)某学校组织师生去中小学素质教育实践基地研学.已知此次共有n名师生乘坐m辆客车前往目的地,若每辆客车坐40人,则还有15人没有上车;若每辆客车坐45人,则刚好空出一辆客车.以下四个方程:①40m+15=45(m﹣1);②40m﹣15=45(m﹣1);③=﹣1;④+1.其中正确的是()A.①④B.①③C.②③D.②④5.(2分)(2022秋•连云港期末)明代的数学著作《算法统宗》中有这样一个问题“隔墙听得客分银,不知人数不知银,七两分之少四两,五两分之多半斤.”其大意为:有一群人分银子,如果每人分七两,则还差四两,如果每人分五两,则还多半斤(注:明代1斤=16两,故有“半斤八两”这个成语).设共有x 两银子,则可列方程为()A.7x﹣4=5x+8 B.C.7x+4=5x﹣8 D.6.(2分)(2022秋•惠山区校级期末)元旦期间,甲、乙两家水果店对刚到货的橙子搞促销,甲水果店连续两次降价,第一次降价10%,第二次降价20%,乙水果店一次性降价30%,小丽想要购买这种橙子,她应选择()A.甲水果店B.乙水果店C.甲、乙水果店的价格相同D.不确定7.(2分)(2022秋•南通期末)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()A.依题意3×120=x﹣120B.依题意20x+3×120=(20+1)x+120C.该象的重量是5040斤D.每块条形石的重量是260斤8.(2分)(2022秋•泗洪县期末)《算学启蒙》中有一道题,原文是:良马日行二百四十里,驽马日行一百二十里.驽马先行一十二日,问良马几何追及之?译文为:跑得快的马每天走240里,跑的慢的马每天走120里.慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,可列方程()A.240(x+12)=120x B.240(x﹣12)=120xC.240x=120(x+12)D.240x=120(x﹣12)9.(2分)(2022秋•工业园区校级月考)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=2OA,点M以每秒1个单位长度的速度从点A向右运动,点N以每秒3个单位长度的速度从点B向左运动(点M、点N同时出发),经过几秒,点M、点N分别到原点O的距离相等()A.5秒B.5秒或者4秒C.5秒或者秒D.秒10.(2分)(2022秋•江都区月考)观察月历,用形如的框架框住月历表中的五个数,对于框架框住的五个数字之和,小明的计算结果有45,55,60,75,小华说有结果是错误的.通过计算,可知小明的计算结果中错误的是()A.45 B.55 C.60 D.75二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•亭湖区期末)若(2﹣a)x|a﹣1|﹣5=0是关于x的一元一次方程,则a=.12.(2分)(2022秋•泗阳县期末)如图,在数轴上,A、B两点同时从原点O出发,分别以每秒2个单位和4个单位的速度向右运动,运动的时间为t,若线段AB上(含线段端点)恰好有4个整数点,则时间t 的最小值是.13.(2分)(2022秋•海门市期末)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱.问人数、羊价各是多少?根据题意,可求得合伙买羊的是人.14.(2分)(2022秋•鼓楼区校级期末)防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500mL,需将其加入适量的水,使浓度稀释为75%.设加水量为xmL,可列方程为.15.(2分)(2022秋•江都区期末)一项工程甲单独做要20小时,乙单独做要12小时,现先由甲单独做5小时,然后乙加入进来合作.完成整个工程一共需要小时.16.(2分)(2022秋•江阴市期末)某种商品降价10%后的价格恰好比原价的一半多40元,该商品的原价是元.17.(2分)(2022秋•姑苏区校级期末)如图,在数轴上,O为原点,点A对应的数为2,点B对应的数为﹣12.在数轴上有两动点C和D,它们同时向右运动,点C从点A出发,速度为每秒4个单位长度,点D从点B出发,速度为每秒6个单位长度,设运动时间为t秒,当点O,C,D中,其中一点正好位于另外两点所确定线段的中点时,t的值为.18.(2分)(2022秋•大丰区期末)京张高铁是2022年北京冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段全长11千米,分为地下清华园隧道和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时,按此运行速度,地下隧道运行时间比地上大约多3分钟,求清华园隧道全长为多少千米.设清华园隧道全长为x千米,依题意,可列方程为.19.(2分)(2022秋•句容市校级期末)如图,正方形的边长为6,已知正方形覆盖了三角形面积的,而三角形覆盖了正方形面积的一半,那么三角形的面积是.20.(2分)(2021秋•射阳县校级期末)如图,在长方形ABCD中,AB=6cm,BC=8cm,点E是AB上的一点,且AE=2BE.点P从点C出发,以2cm/s的速度沿点C﹣D﹣A﹣E匀速运动,最终到达点E.设点P运动时间为ts,若三角形PCE的面积为18cm2,则t的值为.三.解答题(共8小题,满分60分)21.(6分)(2022秋•仪征市期末)解方程:(1)5(x﹣1)+3=3x﹣3;(2)+=1.、22.(6分)(2022秋•仪征市期末)某小组计划做一批“中国结”如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个.该小组共有多少人?计划做多少个“中国结”?小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程:①5x﹣9=4x+15②=(1)①中的x表示;②中的y表示.(2)请选择其中一种方法,写出完整的解答过程.23.(8分)(2022秋•丹徒区期末)某商场用2730元购进甲、乙两种商品共60件,这两种商品的进价、标价如表所示:价格\类型甲乙进价(元/件)35 65标价(元/件)50 100(1)这两种商品各购进多少件?(2)若甲种商品按标价的9折出售,乙种商品按标价的8.5折出售,且在运输过程中有2件甲种、1件乙种商品不慎损坏,不能进行销售,请问这批商品全部售出后,该商场共获利多少元?24.(8分)(2022秋•惠山区校级期末)运动场环形跑道周长为300米,爷爷一直都在跑道上按逆时针方向匀速跑步,速度为3米/秒,与此同时小红在爷爷后面100米的地方也沿该环形跑道按逆时针方向运动,速度为a米/秒.(1)若a=1,求两人第一次相遇所用的时间;(2)若两人第一次相遇所用的时间为80秒,试求a的值.25.(8分)(2022秋•丹徒区期末)已知关于m的方程的解也是关于x的方程2(x﹣8)﹣n=6的解.(1)求m、n的值;(2)如图,数轴上,O为原点,点M对应的数为m,点N对应的数为n.①若点P为线段ON的中点,点Q为线段OM的中点,求线段PQ的长度;②若点P从点N出发以1个单位/秒的速度沿数轴正方向运动,点Q从点M出发以2个单位/秒的速度沿数轴负方向运动,经过秒,P、Q两点相距3个单位.26.(8分)(2022秋•玄武区校级期末)某市采用分段收费的方式按月计算每户家庭的水费,收费标准如表:户月用水量(m3)收费标准(元/m3)不超过18m3超过18m3,但不超过25m3的部分 5超过25m3的部分7(1)小明家3月份用水量为20m3,应缴纳水费元;(2)设某户某月的用水量为xm3,应缴纳水费多少元?(用含x的代数式表示)(3)小红家6月份和7月份的用水量共50m3,且7月份用水量比6月份多,这两个月共缴纳水费217元,则小红家6月份和7月份的用水量分别为m3,m3.27.(8分)(2022秋•太仓市期末)如图1,将一副三角板摆放在直线MN上,在三角板OAB和三角板OCD中,∠OAB=∠OCD=90°,∠AOB=45°,∠COD=30°.(1)保持三角板OCD不动,当三角板OAB旋转至图2位置时,∠BOD与∠AON有怎样的数量关系?请说明理由.(2)如图3,若三角板OAB开始绕点O以每秒6度的速度逆时针旋转的同时、三角板OCD也绕点O以每秒3度的速度逆时针旋转,当OB旋转至射线OM上时,两块三角板同时停止转动.设旋转时间为t秒,则在此过程中,是否存在t,使得∠BOD+∠AON=60°?若存在,求出t的值;若不存在,请说明理由.28.(8分)(2022秋•广陵区校级期末)数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合.研究数轴我们发现了很多重要的规律,例如;数轴上点M、点N表示的数分别为m、n,则M、N 两点之间的距离MN=|m﹣n|,线段MN的中点表示的数为.如图,数轴上点M表示的数为﹣1,点N 表示的数为3.(1)直接写出:线段MN的长度是,线段MN的中点表示的数为;(2)x表示数轴上任意一个有理数,利用数轴探究下列问题,直接回答:|x+1|+|x﹣3|有最小值是,|x+1|﹣|x﹣3|有最大值是;(3)点S在数轴上对应的数为x,且x是方程2x﹣1=x+4的解,动点P在数轴上运动,若存在某个位置,使得PM+PN=PS,则称点P是关于点M、N、S的“麓山幸运点”,请问在数轴上是否存在“麓山幸运点”?若存在,则求出所有“麓山幸运点”对应的数;若不存在,则说明理由.。