弹性力学:直角坐标解答
- 格式:ppt
- 大小:1000.00 KB
- 文档页数:43
x2(y)
n
F
3. 取
Φ为三次项:
3
2
例题2 无体力作用的悬臂梁,在端部受集中力P 作用。
本题采用应力函数的半逆解法。
半逆解法思路:
1. 根据受力情况和求解经验,包括材料力学的解,定性估计应力分量的变化,并根据应力分量与应力函数关系,反推出 Φ
函数的主要项。
2.
将所设Φ 代入∇ 4Φ =0和力的边界条件进行检验,如果不满足则进
行修正(适当增加项),再代入∇
4
Φ =0和力的边界条件进行检验,直
至满足所有方程为止。
本题求解的基本情况: 基本方程 ∇ 4Φ =0, 边界条件为混合边界条件:
x
y P
ql
ql
q
常微分方程积分,可得到f2 (y)的表达式。
所有待定系数由边界条件定。
例题4 楔形体受重力和液体压力作用,楔形体下端无限长。
第六章平面问题的直角坐标解知识点平面应变问题应力表示的变形协调方程应力函数应力函数与双调和方程平面问题应力解法逆解法简支梁问题矩形梁的级数解法平面应力问题平面应力问题的近似性应力分量与应力函数应力函数与面力边界条件应力函数性质悬臂梁问题楔形体问题一、内容介绍对于实际工程结构的某些特殊形式,经过适当的简化和力学模型的抽象处理,就可以归结为弹性力学的平面问题,例如水坝,受拉薄板等。
这些问题的特点是某些基本未知量被限制在平面内发生的,使得数学上成为二维问题,从而简化了这些问题的求解困难。
本章的任务就是讨论弹性力学平面问题:平面应力和平面应变问题。
弹性力学平面问题主要使用应力函数解法,因此本章的工作从推导平面问题的基本方程入手,引入应力函数并且通过例题求解,熟悉和掌握求解平面问题的基本方法和步骤。
本章学习的困难是应力函数的确定。
虽然课程讨论了应力函数的相关性质,但是应力函数的确定仍然没有普遍的意义。
这就是说,应力函数的确定过程往往是根据问题的边界条件和受力等特定条件得到的。
二、重点1、平面应变问题;2、平面应力问题;3、应力函数表达的平面问题基本方程;4、应力函数的性质;5、典型平面问题的求解。
§6.1 平面应变问题学习思路:对于弹性力学问题,如果能够通过简化力学模型,使三维问题转化为二维问题,则可以大幅度降低求解难度。
平面应变问题是指具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束的弹性体。
这种弹性体的位移将发生在横截面内,可以简化为二维问题。
根据平面应变问题定义,可以确定问题的基本未知量和基本方程。
对于应力解法,基本方程简化为平衡微分方程和变形协调方程。
学习要点:1、平面应变问题;2、基本物理量;3、基本方程;4、应力表示的变形协调方程1、平面应变问题部分工程构件,例如压力管道、水坝等,其结构及其承载形式力学模型可以简化为平面应变问题,典型实例就是水坝,如图所示这类弹性体是具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束。