基于ANSYS软件的压力容器屈曲分析
- 格式:pdf
- 大小:449.99 KB
- 文档页数:11
ansys屈曲分析练习模型:边界条件:底端固定几何:长为100mm,截面:10mm×10mm 惯性矩:Izz=833.333材料性质:E=2.0e5MPa,v=0.3分析压力的临界值分析过程:特征值屈曲分析方法:1、建立关键点1(0 0 0),2(0 100 0)2、在关键点1、2之间建立直线3、定义单元类型(Beam3)4、定义单元常数5、定义材料属性6、定义网格大小,指定单元边长为107、划分网格(首先此处应该做一次模态分析,有模态数据文件,后出来才可以看屈曲模态。
)8、定义分析类型(static)9、激活预应力效应。
要进行屈曲分析,必须激活预应力效应。
10、施加位移约束(关键点1固定)11、施加集中荷载,Fy=-1N12、求解13、结束求解,14、重新定义分析类型(Eigen Buckling)15、设置屈曲分析选项,提取1阶模态(菜单路径:Solution-->Analysis Type-->Analysis options16、求解,结束后退出17、解的展开1)设置expansion pass “on”2)设置展开模态为1(Load Step Options>ExpansionsPass>Single Expand>Expand Modes3)重新求解18、查看结果(临界载荷和屈曲模态等)二、非线性分析方法前8步与上述过程相同9、设置分析控制(主要黄色高亮部分区域需要修改)10、施加位移约束(关键点1固定)11、施加集中荷载,Fy=-50000N,Fx=-250N12、求解13、查看变形和位移14、定义时间-历史变量1)进入时间历程后处理器(TimeHist Postproc)2)在弹出的对话框中选择左上角的+号,添加一个监控变量(节点2的Y方向位移)15、查看位移-载荷曲线屈曲分析是一种用于确定结构开始变得不稳定时的临介荷载和屈曲结构发生屈曲响应时的模态形状的技术。
压力容器分析报告目录1 设计分析依据 01.1 设计参数 01.2 计算及评定条件 (1)1.3 材料性能参数 (1)2 结构有限元分析 (2)2.1 理论基础 (2)2.2 有限元模型 (3)2.3 划分网格 (4)2.4 边界条件 (4)3 应力分析及评定 (4)3.1 应力分析 (4)3.2 应力强度校核 (5)4 分析结论 (7)4.1 上封头接头外侧 (8)4.2 上封头接头内侧 (11)4.3 上封头壁厚 (14)4.4 筒体上 (17)4.5 筒体左 (20)4.6 下封头接着外侧 (24)4.7 下封头壁厚 (27)1 设计分析依据(1)压力容器安全技术监察规程(2)JB4732-1995 《钢制压力容器-分析设计标准》-2005确认版1.1 设计参数表1 设备基本设计参数正常设计压力 MPa7.2最高工作压力 MPa 6.3设计温度℃0~55工作温度℃5~55压缩空气 46#汽轮机工作介质油焊接系数φ 1.0腐蚀裕度 mm 2.0容积㎡ 4.0容积类别第二类筒体29.36计算厚度 mm封头29.031.2 计算及评定条件(1)静强度计算条件表2 设备载荷参数设计载荷工况工作载荷工况设计压力 7.2MPa工作压力 6.3MPa设计温度 55℃工作温度 5~55℃注:在计算包括二次应力强度的组合应力强度时,应选用工作载荷进行计算,本报告中分别选用设计载荷进行计算,故采用设计载荷进行强度分析结果是偏安全的。
1.3 材料性能参数材料性能参数见表3,其中弹性模型取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2、表6-4、表6-6确定。
表3 材料性能参数性能温度55℃设计应力强材料名称厚度弹性模型泊松比度1.92×钢管20≤10mm150 MPaμ=0.3103MPa1.92×μ=0.3锻钢Q345≤100mm185 MPa103MPa1.92×钢板16MnR26~36188 MPaμ=0.3103MPa1.92×μ=0.3锻钢16Mn≤300mm168 MPa103MPa2 结构有限元分析2.1 理论基础传统的压力容器标准与规范,一般属于“常规设计”,以弹性失效准则为理论基础,由材料力学方法或经验得到较为简单的适合于工程应用的计算公式,求出容器在载荷作用下的最大主应力,将其限制在许用值以内,即可确认容器的壁厚。
3.1 几何非线性3.1.1 大应变效应一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。
当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。
首先,如果这个单元的形状改变,它的单元刚度将改变(图3-1(a))。
其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变(图3-1(b))。
小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。
这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级)。
相反,大应变分析考虑由单元的形状和取向改变导致的刚度改变。
因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。
通过发出 NLGEOM,ON(GUI路径Main Menu>Solution>Analysis Options),来激活大应变效应。
这种效应改变单元的形状和取向,且还随单元转动表面载荷。
(集中载荷和惯性载荷保持它们最初的方向。
)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。
在ANSYS/Linear Plus程序中大应变效应是不可用的。
图3-1 大应变和大转动大应变过程对单元所承受的总旋度或应变没有理论限制。
(某些ANSYS单元类型将受到总应变的实际限制──参看下面。
)然而,应限制应变增量以保持精度。
因此,总载荷应当被分成几个较小的步,这可用〔 NSUBST, DELTIM, AUTOTS〕命令自动实现(通过GUI路径 MainMenu>Solution>Time/Frequent)。
无论何时如果系统是非保守系统,如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。
3.1.2 应力-应变在大应变求解中,所有应力─应变输入和结果将依据真实应力和真实(或对数)应变(一维时,真实应变将表示为ε=Ln(l/l) 。
第13章 特征值屈曲分析
屈曲分析主要用于研究结构在特定载荷下的稳定性以及确定结构失稳的临界载荷,屈曲分析包括线性屈曲分析和非线性屈曲分析。
线性屈曲分析可以考虑固定的预载荷,也可使用惯性释放;非线性屈曲分析包括几何非线性失稳分析、弹塑性失稳分析、非线性后屈★ 了解线性屈曲分析。
13.1 屈曲分析概述
特征值屈曲分析(Eigenvolue Buckling)是以特征值为研究对象的,特征值或线性屈曲分析预测的是理想线性结构的理论屈曲强度(分歧点),特征值方程决定了结构的分歧点。
然而,非理想和非线性行为阻止了许多真实的结构达到它们理论上的弹性屈曲强度。
线性屈曲通常产生非保守的结果,应当谨慎使用。
尽管屈曲分析是非保守的,但是也有许多优点。
屈曲分析比非线性屈曲分析计算省时,并且应当作第一步计算来评估临界载荷(屈曲开始时的载荷)。
通过线性屈曲分析可以预知结构的屈曲模型形状,结构可能发生屈曲的方法可以作为设计中的向导。
13.1.1 关于欧拉屈曲
结构的丧失稳定性称为(结构)屈曲或欧拉屈曲。
L.Euler
从一端固定、另一端自由的受压理想柱出发,给出了压杆的临
界载荷。
所谓理想柱,是指起初完全平直而且承受中心压力的
受压杆,如图13-1所示。
设此柱完全是弹性的,且应力不超过比例极限,若轴向外
载荷P小于它的临界值,则此杆将保持直的状态而只承受轴向图13-1 受压杆。
317压力容器是一种能够承受压力的密闭容器,广泛应用于煤化工生产领域。
煤化工生产作业环境苛刻,需要其外壳具备较高的强度,保护内部电子元器件不被损坏。
为验证压力容器的耐压性能,需根据其工作条件设计压力容器,将机器人安装在压力容器内部,对压力容器进行加压以模拟其高压工作环境,检测外壳的耐压性能是否符合要求。
本文基于国标 GB150-2011中关于压力容器的规定,完成压力容器的各项参数的计算取值。
利用 ANSYS 有限元仿真软件对其进行校核,对该压力容器工作状态下的应力及变形情况进行分析,判断其结构强度及 O 形圈的密封效果是否符合要求[1]。
1 压力容器参数化设计 对实际工况进行分析,根据要求完成压力容器的初步设计,结构如图 1 所示。
图1 压力容器三维模型该压力容器主要由两部分组成:压力舱和平盖,两个部件通过螺栓连接,平盖挤压压力舱端面上的 O 形圈完成密封。
由于采用水作为介质进行加压维持压力舱内压力处于预定值,压力容器需经常浸泡在水环境中,容易腐蚀生锈,会对密封结构造成破坏,且存在安全隐患,因此采用不锈钢完成该压力容器的设计和制造。
平盖所承受的应力较大,工作时容易产生较大变形导致 O 形圈密封失效,因此平盖需采用高强度不锈钢材料。
20Cr13是一种常用的高强度马氏体不锈钢材料,具有高抗蚀性、高强度、高韧性和较强抗氧化性,被广泛应用于制造各种承受高应力的零件。
基于20Cr13的优良性能,选用该材料用于平盖的设计和制造[2]。
与平盖相比较,压力舱承受应力相对较小,选用 304 不锈钢用于压力舱的设计和制造。
基于国标 GB150-2011 关于压力容器的规定,对压力容器各部分的参数进行计算如下:(1)壳体厚度计算: 圆筒厚度计算公式如下:[]c ii c P D −=φσδ2P(1)式中,σ为圆筒壳体计算厚度(mm);p c 为计算压力(MPa);D i 为圆筒内直径(mm),[σ]i 为壳体材料的许用应力(MPa),φ为焊接接头系数。
文)基于ANSYS的轴心受压柱屈曲分析吕辉哈尔滨工程大学航天与建筑工程学院摘要:为了了解和掌握轴心受压柱特征值屈曲和非线性屈曲差异,以及考虑在屈曲分析中划分不同单元数量对分析结果的影响,选取适当的单元数量,利用有限元软件ANSYS对结构进行分析。
初步了解特征值屈曲与非线性屈曲所得结果差异。
在此基础上进行了多例轴心受压柱的仿真模拟分析,同时考虑不同长细比对屈曲分析结果的影响,掌握了长细比变化对轴心受压柱特征值屈曲和非线性屈曲的计算结果的影响规律。
提出工程中应尽量采取非线性屈曲分析,并在分析中采取正确的分析方法。
关键词:ANSYS仿真模拟;轴心受压柱;单元数量;特征值屈曲;非线性屈曲The analysis of axial-compressed column buckling based onANSYSLv HuiHarbin Engineering University, College of Aerospace and Civil EngineeringAbstracts: The finite element software ANSYS is used to understand and master the diffierences between axial-compressed column buckling and nonlinear buckling, and to consider different numbers of modules`s impact on analysis results in buckling analysis, and choose the appropriate element numebrs. The differences of the results of eigenvalue buckling and nonlinear buckling is preliminary understood. Based that, simulation analysis of a number of cases of axial-compressed column is made, meanwhile different slenderness ratio`s impact on buckling analysis is taken into account, so the impact by variable slenderness ratio on the results of axial-compressed column buckling and nonlinear buckling is unterstood. So the nonlinear buckling analysis in the project is proposed,and the right analysis method should be taken.Key words:ANSYS Simulation; axial-compressed column; the number of element; eigenvalue buckling; nonlinear buckling文)引言:随着计算机的发展人类实现了一个又一个的突破,大大提高了产品开发、设计、分析和制造的效率和产品性能。
书山有路勤为径,学海无涯苦作舟基于ANSYS Workbench 的真空管道屈曲分析利用ANSYS Workbench 对某装置中设计的真空管道进行了屈曲分析,并把有限元分析结果和解析法计算结果进行对比,验证了有限元屈曲分析的可靠性。
同时,提出真空管道优化设计方法,并对优化结果进行校核。
计算结果表明:通过合理设置加强圈,既能有效提高真空管道抗外压失稳能力,又能减轻管道重量,从而显著降低制造成本。
大型真空管道为薄壁结构件,其主要失效形式不是强度失效而是失稳失效。
所谓的压力容器失稳是指压力容器所承受的载荷超过某一临界值时突然失去原有几何形状的现象。
研究外压容器稳定性的目的在于研究容器的临界压力及相应的失稳模态,以改进加强措施,提高结构的抗失稳能力。
由于外压容器很难进行外压试验,直接考核大型外压容器承受外压时的稳定性是不现实的,因此大型外压容器的稳定性计算往往多采用理论或有限元分析方法。
ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,在压力容器的屈曲稳定分析中有着广泛的应用,它提供了两种预测结构屈曲临界载荷和屈曲模态的技术,一种是特征值屈曲分析,可以预测结构屈曲形状,得到失稳临界载荷的上限。
另一种是非线性屈曲(包括几何非线性和几何及材料双非线性)分析。
使用非线性技术,模型中就可以包括诸如初始缺陷、塑性行为、间隙、大变形响应等特征,因此,非线性屈曲分析更接近工程实际的真实情况。
本文利用特征值屈曲分析和非线性屈曲分析方法,对某装置中设计的真空管道进行屈曲分析,并把有限元分析结果和解析法计算结果进行对比,得出真空管道稳定性的分析结论。
同时,提出真空管道优化设计方法,为提高真空。
ANYSY屈曲分析APDLANSYS屈曲分析总结很多现有的ANSYS资料都对特征值屈曲分析进行了较为详细的解释,特征值屈曲分析属于线性分析,它对结构临界失稳力的预测往往要高于结构实际的临界失稳力,因此在实际的工程结构分析时一般不用特征值屈曲分析。
但特征值屈曲分析作为非线性屈曲分析的初步评估作用是非常有用的。
1.非线性屈曲分析的第一步最好进行特征值屈曲分析,特征值屈曲分析能够预测临界失稳力的大致所在,因此在做非线性屈曲分析时所加力的大小便有了依据。
特征值屈曲分析想必大家都熟练的不行了,所以小弟不再罗嗦。
小弟只说明一点,特征值屈曲分析所预测的结果我们只取最小的第一阶,所以你所得出的特征值临界失稳力的大小应为F=实际施加力*第一价频率。
2.由于非线性屈曲分析要求结构是不“完善”的,比如一个细长杆,一端固定,一端施加轴向压力。
若次细长杆在初始时没有发生轻微的侧向弯曲,或者侧向施加一微小力使其发生轻微的侧向挠动。
那么非线性屈曲分析是没有办法完成的,为了使结构变得不完善,你可以在侧向施加一微小力。
这里由于前面做了特征值屈曲分析,所以你可以取第一阶振型的变形结果,并作一下变形缩放,不使初始变形过于严重,这步可以在Main Menu>Preprocessor>Modeling>Update Geom 中完成。
3.上步完成后,加载计算所得的临界失稳力,打开大变形选项开关,采用弧长法计算,设置好子步数,计算。
4.后处理,主要是看节点位移和节点反作用力(力矩)的变化关系,找出节点位移突变时反作用力的大小,然后进行必要的分析处理。
特载值分析得到的是第一类稳定问题的解,只能得到屈曲荷载和相应的失稳模态,它的优点就是分析简单,计算速度快。
事实上在实际工程中应用还是比较多的,比如分析大型结果的温度荷载,而且钢结构设计手册中的很多结果都是基于特征值分析的结果,例如钢梁稳定计算的稳定系数,框架柱的计算长度等。