1用定积分的定义计算下列积分
- 格式:pdf
- 大小:324.89 KB
- 文档页数:12
第五章 定积分(A)1.利用定积分定义计算由抛物线12+=x y ,两直线)(,a b b x a x >==与横轴所围成的图形的面积。
2.利用定积分的几何意义,证明下列等式: 3.估计下列各积分的值4.根据定积分的性质比较下列各对积分值的大小 ⎰21ln )1xdx 与dx x ⎰212)(ln dx e x⎰10)2与⎰+10)1(dx x5.计算下列各导数 6.计算下列极限7.当x 为何值时,函数⎰-=xt dt te x I 02)(有极值?8.计算下列各积分⎰2)()8dx x f ,其中⎪⎩⎪⎨⎧+=2211)(x x x f11>≤x x9.设k ,l 为正整数,且l k ≠,试证下列各题: 10.计算下列定积分11.利用函数的奇偶性计算下列积分12.设f (x )在[]b a ,上连续,证明:⎰⎰-+=ba ba dx xb a f dx x f )()(13.证明:)0(1111212>+=+⎰⎰x x dx x dx x x14.计算下列定积分15.判定下列反常积分的收敛性,如果收敛,计算反常积分的值。
1)⎰∞+14xdx2)⎰+∞-0dx e ax ()0>a3)dx ee x x ⎰∞+-+014)⎰+∞->>0)0,0(sin ωωp tdt e pt5)⎰-121x xdx 6)⎰-211x xdx7)⎰∞+∞-++222x x dx8)()⎰-e x x dx 12ln 1 (B)1.填空: 1)________)12111(lim =++++++∞→nn n n n 。
2)估计定积分的值:_____sin 1____342≤+≤⎰ππx dx。
3)运用积分中值定理可得:⎰-→xa a x x f dt t f a x )(()(1lim 是连续函数)=________,______)0(sin lim =>⎰+∞→a dx xxa n n n 。
1.利用定积分的定义计算下列积分: ⑴baxdx ⎰(a b <);【解】第一步:分割在区间[,]a b 中插入1n -个等分点:k b ax k n-=,(1,2,,1k n =-L ),将区间[,]a b 分为n 个等长的小区间[(1),]b a b aa k a k n n--+-+,(1,2,,k n =L ),每个小区间的长度均为k b an-∆=,取每个小区间的右端点k b ax a k n-=+,(1,2,,k n =L ), 第二步:求和对于函数()f x x =,构造和式1()n n k k k S f x ==⋅∆∑1n k k k x ==⋅∆∑1()nk b a b aa k n n=--=+⋅∑ 1()n k b a b a a k n n =--=+∑1()nk b a b a na k n n =--=+∑ 1()n k b a b a na k n n =--=+∑(1)[]2b a b a n n na n n ---=+⋅ 1()[(1)]2b a b a a n -=-+⋅-1()()22b a b a b a a n --=-+-⋅ 1()()22b a b a b a n+-=--⋅第三步:取极限令n →∞求极限1lim lim ()nn k k n n k S f x →∞→∞==⋅∆∑1lim()()22n b a b a b a n→∞+-=--⋅ ()(0)22b a b a b a +-=--⨯()2b a b a +=-222b a -=,即得baxdx ⎰222b a -=。
⑵1xe dx ⎰。
【解】第一步:分割在区间[0,1]中插入1n -个等分点:k k x n=,(1,2,,1k n =-L ),将区间[0,1]分为n 个等长的小区间1[,]k kn n-,(1,2,,1k n =-L ),每个小区间的长度均为1k n ∆=, 取每个小区间的右端点k kx n=,(1,2,,k n =L ),第二步:求和对于函数()xf x e =,构造和式1()nn k k k S f x ==⋅∆∑1knx k k e ==⋅∆∑11k nnk e n ==⋅∑11kn n k e n ==∑由于数列k n e ⎧⎫⎨⎬⎩⎭为等比数列,其首项为11n x e =,公比为1n q e =,可知其前n 项和为1111[1()]1k nnn n nk ne e e e=-=-∑11(1)1nne e e-=-,于是1()nn k k k S f x ==⋅∆∑11kn n k e n ==∑111(1)1nn e e n e -=⋅-111(1)1n ne ne e =-- 第三步:取极限令n →∞求极限1lim lim ()nn k k n n k S f x →∞→∞==⋅∆∑111lim (1)1n n nen e e →∞=--1 x n=0(1)lim 1x x x xe e e →=-- 洛必达法则0(1)lim x x x x e xe e e →+--01=(1)lim 1x xe →+-- =(1)(1)1e e --=-,即得11x e dx e =-⎰。
第六章 定积分及其应用习题 6.1 (A)1、 利用定积分的定义计算积分baxdx ⎰;解 将区间[]b a ,n 等分, 则每个小区间的长度均为nab x i -=∆,取每个小区间的左端点为i ξ,则)1,...,2,1,0(,-=-+=n i i nab a i ξ, 所以⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-++++-+-=--+=∆=∑∑-=-=)1...210(1)()()(110n n a b na n a b n a b i n a b a x f S n i n i i i n ξ ⎥⎦⎤⎢⎣⎡-⋅-+-=⎥⎦⎤⎢⎣⎡-⋅-+-=)11(2)(2)1()(2n a b a a b n n n a b a a b 两边取极限,得)(21)2)(()11(2)(lim lim 22a b a b a a b n a b a a b S n n n -=-+-=⎥⎦⎤⎢⎣⎡-⋅-+-=∞→∞→ 所以221()2baxdx b a =-⎰.2、利用定积分的几何意义,证明下列等式。
(1)4π=⎰; (2)322cos 0xdx ππ-=⎰;(3)22sin 0xdx ππ-=⎰;(4)12π-=⎰。
证明 (1) 因为圆122=+y x 在第一象限的方程为21x y -=,所以根据定积分的几何意义知0⎰为圆在第一象限的面积,故4π=⎰.(2) 因为当ππ232≤≤-x 时,曲线x y cos =在x 轴的上方和下方的曲边梯形的面积相等,所以根据定积分的几何意义知322cos 0xdx ππ-=⎰.(3) 因为当22ππ≤≤-x 时,曲线x y sin =在x 轴上方和下方的曲边梯形的面积相等,所以根据定积分的几何意义知22sin 0xdx ππ-=⎰.(4) 因为圆122=+y x 在x 轴上方的方程为21x y -=,所以根据定积分的几何意义知1-⎰为圆在第一二象限的面积,故12π-=⎰.(B)1、利用定积分定义计算由抛物线21y x =+,两直线()x a x b b a ==>,及横轴所围成的图形的面积。
第六章习题6-11. 利用定积分定义计算由直线y =x +1,直线x =a ,x =b (a<b )及x 轴所围成的图形的面积. 解 因y =x 2+1在[a,b ]上连续,所以x 2+1在[a,b ]上可积,从而可特殊地将[a,b ]n 等分,并取2,,()()1Δi i i b a b a b a a i x f a i n n nξξ---=+==++, 于是21122221222()[()1]1()[()2()1]111(1)1()[()(1)(21)2()]62Δ nni i i i ni b a b a f x a i n ni i b a a b a a b a n n n n n b a na b a n n n b a a n n n nξ===--=++=-+-+-++=-+-⋅⋅+++-⋅⋅+⋅∑∑∑ 故面积 22211(1)l i m ()()[()()1]3d Δnbi i a n i S x x f x b a a b a a b a ξ→∞==+==-+-+-+∑⎰ 331()()3b a b a =-+- 2. 利用定积分的几何意义求定积分: (1)12d x x ⎰;(2)x ⎰(a >0).解 (1)根据定积分的几何意义知, 102d x x ⎰表示由直线y =2x ,x =0,x =1及x 轴所围的三角形的面积,而此三角形面积为1,所以12d x x ⎰=1.(2)根据定积分的几何意义知,0x ⎰表示由曲线0,y x x a ===及x轴所围成的14圆的面积,而此14圆面积为214πa ,所以2014πx a =⎰.3. 根据定积分的性质,比较积分值的大小: (1)12d x x ⎰与13d x x ⎰; (2)1e d xx ⎰与1(1)d x x +⎰.解 (1)∵当[0,1]x ∈时,232(1)0x x x x -=-≥,即23x x ≥,又2x3x ,所以11230d d x x x x >⎰⎰.(2)令()1,()1e e x xf x x f x '=--=-,因01x ≤≤,所以()0f x '>,从而()(0)0f x f ≥=,说明1e xx ≥+,又ex1+x .所以11(1)e d d xx x x >+⎰⎰.4. 估计下列各积分值的范围:(1)421(1)d x x +⎰;(2) arctan d x x ;(3)2e d ax ax --⎰(a >0); (4)22e d x x x -⎰.解 (1)在区间[1,4]上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d x x -≤+≤-⎰, 即 4216(1)51d x x ≤+≤⎰.(2)令()arctan f x x x =,则2()arctan 1x f x x x '=++,当x ∈时,()0f x '>,从而()f x在上是增函数,从而f (x )在上的最大值M f ==,最小值m f ==,所以2arctan 93ππd x x =≤≤=即2arctan 93ππd x x ≤≤. (3)令2()e x f x -=,则2()2e x f x x -'=-,令()0f x '=得驻点x =0,又(0)1f =,2()()e a f a f a -=-=,a >0时, 21e a -<,故()f x 在[-a,a ]上的最大值M =1,最小值 2e a m -=,所以2222e e d aa x aa x a ---≤≤⎰.(4)令2()ex xf x -=,则2()(21)e xxf x x -'=-,令()0f x '=得驻点12x =,又(0)1,f = 1241(),(2)2e ef f -==,从而()f x 在[0,2]上的最大值2e M =,最小值14e m -=,所以 212242ee d e x x x --≤≤⎰,而2222ed e d x xx x x x --=-⎰⎰,故 21024222e ed ex xx ---≤≤-⎰.习题6-21. 求下列导数:(1)20d d x t x ⎰; (2) 53ln 2d e d d x t t t x -⎰; (3) cos 2sin cos()d xxt t '⎡⎤π⎢⎥⎣⎦⎰; (4) 22dsin d d x t t x tπ⎰ (x >0). 解220(1)()d d x t x x'⋅=⎰5353ln 2(2)d e d e d x tx t t x x --=⎰cos cos sin 222sin 00cos sin 220022222(3)cos()cos()cos()cos()cos()cos(cos )(cos )cos(sin )(sin )cos(cos )sin cos(sin )cos cos(sin )sin πd πd πd πd πd πππππx x xx xx t t t t t t t t t tx x x x x x x x x x ''⎡⎤⎡⎤=-⎣⎦⎣⎦''⎡⎤⎡⎤=-⎣⎦⎣⎦''=⋅-⋅=--=-⎰⎰⎰⎰⎰22cos(sin )cos (sin cos )cos(sin )ππx x x x x =-2222sin sin sin (4)cos sin sin cos .ππd d d d d d d d d d xx t t x t t xt x x x t x x x x x x x x x⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭--=-=⎰⎰ 2. 求下列极限:(1) 02arctan d limxx t t x →⎰; (2) 2020sin 3d lim e d x xx tt t t t→-⎰⎰; (3)()22220e d lime d xt xx t t t t→⎰⎰.解 ()022000021a r c t a n a r c t a n a r c t a n11(1)l i m l i ml i m l i m 222d d x xx x xxt t t t x x x xx →→→→'⎡⎤--⎣⎦+====-'⎰⎰ 2220030003300222200sin 3sin 3sin 32(2)lim lim lim 2sin 3sin 3lim lim 663d d e e d e d e e x x x x x x x t x t x xx x t t t t x x x t t t t x x x x-→→→--→→'⎡⎤⋅⎢⎥⎣⎦=='⎡⎤⎣⎦=⋅=⋅⋅=⎰⎰⎰⎰()()[]222222222222222200002000022000200022(3)lim lim lim lim 222lim lim lim 2122e d e d e d e e d e e e d e d e d e e e e xxx x t t t x tx x x x x x x t x t x t x x x x x x x t t t t x x t tt t t x x x x →→→→→→→'⎡⎤⋅⎢⎥⎣⎦==='⎡⎤⎣⎦'⎡⎤⎣⎦====+'+⋅⎰⎰⎰⎰⎰⎰⎰ 3. 求由方程e d cos d 0yxtt t t +=⎰⎰所确定的隐函数y =y (x )的导数.解 方程两边对x 求导数得:cos 0e y y x '⋅+=, cos e yxy '∴=-. 又由已知方程有000sin e y xtt +=,即1sin sin 00e y x -+-=即1sin e yx =-,于是有cos cos sin 1e yx xy x '=-=-. 4. 当x 为何值时,I (x )=2e d xt t t -⎰有极值?解 2()e x I x x -'=,令()0I x '=得驻点0x =,又22()(12),(0)10e x I x x I -''''=-=>, 所以当x =0时,I (x )有极小值,且极小值为I (0)=0.5. 计算下列定积分:(1)3x ⎰; (2)221d x x x --⎰;(3)()d f x x π⎰,其中,0,2()sin ,2x x f x x x π⎧≤≤⎪⎪=⎨π⎪≤≤π;⎪⎩ (4) {}222max 1,d x x -⎰.解433322233222(1)(43)(8333x x ⎛⎫==-=- ⎪⎝⎭⎰201222221101(2)()()()d d d d x x x x x x x x x x x x --=-+-+--⎰⎰⎰⎰012322332101111111116322332x x x x x x -⎛⎫⎛⎫⎛⎫=++=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()22220022(3)()sin 1cos 82ππππππππd d d xf x x x x x x x =+=+=+-⎰⎰⎰(4)由于22221()max{1,}11112x x f x x x x x ⎧-≤<-⎪==-≤<⎨⎪≤≤⎩,于是 21121212223312122111120max{1,}333d d 1d d x x x x x x x x x x -------=++=++=⎰⎰⎰⎰ 6. 已知f (x )连续,且f (2)=3,求2222()d d lim(2)xt x f u u tx →⎡⎤⎢⎥⎣⎦-⎰⎰.解 []222222222222()()()()limlim lim lim (2)2(2)2(2)(2)d d d d d d x xx x t t x x x x t f u u t f u u f u u f u u x x x x →→→→''⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦===--''-⎡⎤-⎣⎦⎰⎰⎰⎰⎰⎰ 22()113lim lim ()(2)2222x x f x f x f →→-==-=-=-.习题6-31. 计算下列积分: (1)3sin()d x x πππ+3⎰; (2) 32d (115)xx 1-+⎰;(3)1x -⎰; (4) 320sin cos d ϕϕϕπ⎰;(5)22cos d u u ππ6⎰;(6)2e 1⎰;(7)1;(8)x ;(9)ln 3ln 2d e ex xx--⎰; (10) 322d 2xx x +-⎰;(11)21x ⎰;(12) 22x ππ-⎰.解 333(1)sin()d sin()d()[cos()]x x x x x ππππππππππ+=++=-+3333⎰⎰42coscos 033ππ=-+= 12332221d 1d(511)151(2)(511)(115)5(511)10512x x x x x 11---+==-=+++⎰⎰1111(3)4)14x x--=-==⎰⎰2334220011(4)sin cos d cos dcos cos44ϕϕϕϕϕϕπππ=-==-⎰⎰22222π2π61cos211(5)cos d d d cos2d22241πππ1sin226264uu u u u u uuππππππππ6666+==+⎛⎫=+=-⎪⎝⎭⎰⎰⎰⎰222e e11(6)1)===⎰⎰(7)令x=tan t,则d x=sec2t d t,当x=1时,π4t=;当x=,π3t=,于是ππ33π21π44cos1dsin sinttt t==-=⎰(8)令x t,则d dx t t=,当x=0时,t=0;当x=,π2t=,于是πππ222200π12cos d(1cos2)d(sin2)22x t t t t t t==+==+⎰⎰.(9)令e x t=,则1ln,d dx t x tt==,当ln2x=时,2t=;当ln3x=时,3t=,于是3ln3332ln2222d d1113111d ln lne e12222111x xx t ttt t t t--⎛⎫====-⎪---++⎝⎭⎰⎰⎰.3 333222222d d11111(10)()d ln19231232()241211(ln ln)ln2ln53543x x xxx x x x xx-==-=+--+++-=-=-⎰⎰⎰(11)t=,则65,d6dx t x t t==,当x=1时,t=1;当x=2,t于是2111611d6()d1x t tt t t t==-++⎰6(ln ln(7ln26ln(1t t=-+=-220202(12)d sin )d sin d x x x x x x x x xπ-π-π-==-+=-⎰⎰⎰33022202224cos cos 333x x ππ-=-= 2. 利用被积函数的奇偶性计算下列积分值:(1)ln(aa x x -+⎰(a 为正常数);(2) 325425sin d 21x xx x x -++⎰; (3) 4224cos d θθππ-⎰.解((1)()l n f x x =+是奇函数.(ln 0d aax x -∴=+⎰.3242sin (2)()21x xf x x x =++ 是奇函数.325425sin 021d x x x x x -∴=++⎰4(3)()cos f θθ= 是偶函数.4422222022202020222004cos 24cos 2(1cos )2(12cos 2cos 2)312(2cos 2cos 4)22(34cos 2cos 4)1332sin 2sin 442ππππππππππd d d d d d θθθθθθθθθθθθθθθθθθ-∴==+=++=++=++=++=⎰⎰⎰⎰⎰⎰π3. 证明下列等式: (1)2321()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正整数);(2)证明:11221d d 11xx x x x x =++⎰⎰ (x >0);(3) 设f (x )是定义在(-∞,+∞)上的周期为T 的连续函数,则对任意a ∈[-∞,+∞),有()d ()d a TTaf x x f x x +=⎰⎰.证 (1)令x 2=t ,则d x x t ==,当x =0时,t =0;当x =a 时,t =a 2, 于是2223200011()()()()22d d d aa a a x f x x t t tf t t xf x x ===⎰⎰⎰⎰即2321()()2d d aa x f x x xf x x =⎰⎰.(2)令1x t=则21d d x t t -=,1111111222231111111111111d d d d d t xx t tx t t t x x t t x t t⎛⎫=⋅=-⋅==- ⎪++++⎝⎭+⎰⎰⎰⎰⎰ 即 1122111d d xx x x x x =++⎰⎰. 4. 若f (t )是连续函数且为奇函数,证明0()d xf t t ⎰是偶函数;若f (t )是连续函数且为偶函数,证明()d xf t t ⎰是奇函数.证 令0()()d xF x f t t =⎰.若f (t )为奇函数,则f (-t )=- f (t ),从而()()()()()d d d xxxF x f t tt u f u u f u u F x -==---==⎰⎰⎰,所以0()()d xF x f t t =⎰是偶函数.若f (t )为偶函数,则f (-t )=f (t ),从而()()()()()d d d xxxF x f t tt u f u u f u u F x --==---=-=-⎰⎰⎰,所以0()()d xF x f t t =⎰是奇函数.5※. 设f (x )在(-∞,+∞)内连续,且F (x )= 0(2)()d xx -t f t t ⎰,试证:若f (x )单调不减,则F (x )单调不增.证 00()()()2()()2()d d d x xxF x f t t xf x xf x xf t t tf t x '⎡⎤'==+--⎣⎦⎰⎰⎰()()()()[()()]d xf t t xf x f x xf x x f f x ξξ=-=-=-⎰,其中ξ在x 与0之间.当x >0时,x >ξ,由f (x )单调不减有()()0f f x ξ-≤,即()0F x '≤;当x <0时,ξ> x ,由f (x )单调不减有()()0f f x ξ-≥,即()0F x '≤;综上所述知F (x )单调不增.习题6-41. 计算下列定积分: (1)10e d xx x -⎰; (2)e1ln d x x x ⎰;(3)41x ⎰; (4) 324d sin xx x ππ⎰; (5) 220e cos d x x x π⎰; (6)221log d x x x ⎰;(7)π20(sin )d x x x ⎰; (8)e1sin(ln )d x x ⎰;(9)230e d x x ; (10)1201lnd 1xx x x+-⎰. 解 (1)1111000e d de e e d x x x xx x x x x ----=-=-+⎰⎰⎰ 111012e e e e e 1ex----=--=--+=-.e e e 22222ee 11111111111(2)ln d ln d ln d e (e 1)222244x x x x x x x x x x ==-=-=+⎰⎰⎰444441111(3)2ln 28ln 28ln 24x x x x ==-=-=-⎰⎰⎰33332444434(4)d dcot cot cot d sin π131πln πlnsin 492249xx x x x x x xx x ππππππππππ=-=-+⎛=-+=+- ⎝⎭⎰⎰⎰22222222000π2π222220π220(5)e cos d e dsin e sin 2e sin d e 2e dcos e 2e cos 4e cos d e 24e cos d xxxx xxx x x x x xx xx x x x x xππππππππ==-=+=+-=--⎰⎰⎰⎰⎰⎰故2π201e cos d (e 2)5x x x π=-⎰.()2222222111111(6)log d ln d ln d 2ln 22ln 2133(4ln 2)22ln 224ln 2x x x x x x x x x ==-=-=-⎰⎰⎰πππ2232π000033ππ2π0003ππ0033π01111(7)(sin )d (1cos 2)d (dsin2)2232π1π1(sin 22sin2d )dcos26464π1(cos 2cos d )64ππ1ππsin 264864x x x x x x x x x x x x x x x xx x x x x =-=-=--=-=--=-+=-⎰⎰⎰⎰⎰⎰ee e111ee11e1(8)sin(ln )d sin(ln )cos(ln )d esin1cos(ln )sin(ln )d esin1ecos11sin(ln )d x x x x x x x x x x x x=-=--=-+-⎰⎰⎰⎰故e11sin(ln )d (esin1ecos11)2x x =-+⎰. 222222322000011(9)e d de e e d 22111ln 2ln 2e ln 2222x x x x x x x x x x==-=-=-=-1112122222220000111222200012011111(10)ln d ln d ln d 121211111111ln 3(1)d ln 3()d 818211111131ln 3ln ln 3822281x x x x x x x x x x x x x x x x x x x x x +++==+----=++=++---+-=++=-+⎰⎰⎰⎰⎰2. 已知f (2)= 12,f ′(2)=0, 2()d 1f x x =⎰,求220()d x f x x ''⎰.解222222200()d d ()()2()d x f x x x f x x f x xf x x '''''==-⎰⎰⎰222004(2)2d ()2()2()d 14(2)21420.2f x f x xf x f x xf '=-=-+=-+⨯=-⨯+=⎰⎰3※. 利用分部积分公式证明:()()()d ()d d xxuf u x u u f x x u -=⎰⎰⎰.证 令0()()d uF u f x x =⎰则()()F u F u '=,则(())()()()d d d d xu x xx f x x u f u u uF u uF u u '==-⎰⎰⎰⎰()()()()()()()()()()d d d d d d d d x x xx x x xxxF x uf u u x f x x uf u ux f u u uf u u xf u u uf u u x u f u u=-=-=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰即等式成立.习题6-51. 求由下列曲线所围成的平面图形的面积:(1) y =e x 与直线x =0及y =e; (2) y =x 3与y =2x ;(3) y =x 2,4y =x 3; (4) y =x 2与直线y =x 及y =2x ; (5) y =1x,x 轴与直线y =x 及x =2; (6) y =(x -1)(x -2)与x 轴; (7) y =e x ,y =e -x 与直线x =1; (8) y =ln x ,y 轴与直线y =ln a ,y =ln b , (0)a b <<. 解 (1)可求得y =e x 与y =e 的交点坐标(1,e), y =e x 与x =0的交点为(0,1),它们所围成的图形如图6-1中阴影部分,其面积eee111d ln d (ln )1S x y y y y y y ===-=⎰⎰图6-1 图6-2(2)解方程组32y x y x ⎧=⎨=⎩得0,0x x x y y y ⎧⎧===⎧⎪⎪⎨⎨⎨==-=⎩⎪⎪⎩⎩即三次抛物线3y x =和直线2y x =的交点坐标分别为(0,0),(-,它们所围成的图形的面积3342240112)d )d ()(244S x x x x x x x x x x =-+-=-+-=⎰.(3)解方程234y xy x⎧=⎪⎨=⎪⎩得两曲线的交点为(0,0),(4,16),所求面积为 4233440011116()d ()43163S x x x x x =-=-=⎰.图6-3 图6-4(4)可求得2y x =与y x =的交点为(0,0),(1,1);2y x =与2y x =的交点为(0,0),(2,4); y =x 与y =2x 的交点为(0,0),它们所围图形如图6-4中阴影所示,其面积为:121122012231201(2)d (2)d d (2)d 117()236S x x x x x x x x x x xx x x =-+-=+-=+-=⎰⎰⎰⎰(5) 1y x =与y x =的交点为(1,1),1y x=,x 轴与直线x =1,及x =2所围成的图形如图6-5阴影所示,其面积:2121201111d d ln ln 222x S x x x xx =+=+=+⎰⎰.图6-5 图6-6(6) 231(1)(2)()24y x x x =--=--,顶点坐标为31(,)24-,与x 轴所围成的图形如图6-6中阴影所示,由231()24y x =--得32x =所求面积0143021433d 2222112364S y y y --⎡⎤⎛⎛=-=⎢⎥ ⎝⎝⎣⎦⎛⎫=⋅=+ ⎪⎝⎭⎰⎰(7)可求得曲线e x y =与e x y -=的交点(0,1),曲线e x y =,e x y -=与x =1所围成的图形如图6-7阴影所示,其面积:10)() 2.101(e e d e e e ex x x x S x --=-=+=+-⎰图6-7 图6-8(8)曲线ln ,y x y =轴与直线ln ,ln y a y b ==所围成的图形如图6-8阴影所示,其面积:ln ln ln ln ln ln .d e d e bby yb aaaS x y y b a ====-⎰⎰2. 求由下列曲线围成的平面图形绕指定轴旋转而成的旋转体的体积:(1) y =e x ,x =0,y =0,x =1,绕y 轴; (2) y =x 3,x =2,x 轴,分别绕x 轴与y 轴; (3) y =x 2,x =y 2,绕y 轴; (4) y 2=2px ,y =0,x =a (p >0,a >0),绕x 轴; (5) (x -2)2+y 2≤1,绕y 轴.解 (1)如图6-9所求旋转体的体积为矩形OABD ,与曲边梯形CBD 绕y 轴旋转所成的几何体体积之差,可求得y =e x 与x =1的交点为(1,e), y =e x 与y 轴的交点为(0,1),所以,所求旋转体的体积.222111(ln )(ln )2(ln )22(1)2(ln )eee11ee1πe πd πe πd πe πe ππe e π.d y V y y y y y y y y y ⎡⎤=⋅⋅-=--⎣⎦⎡⎤=-+=-+=-⎣⎦⎰⎰⎰722262000128(2)7ππd πd π7x x V y x x x ===⋅=⎰⎰25882283336428323255πππd ππd ππy V x y y y y =⨯⨯-=-=-⋅⋅=⎰⎰.图6-9 图6-10(3)解方程组22y xx y⎧=⎪⎨=⎪⎩得交点(0,0),(1,1),所求旋转体的体积2511410031025πdπdππxx xV x x x x⎛⎫=-=⋅=-⎪⎝⎭⎰⎰.图6-11 图6-1222300(4)2πdπdππa aaxV y x px x p x pa===⋅=⎰⎰.(5)所求旋转体的体积是由右半圆2x=2x=x轴旋转生成的旋转体的体积之差,即((122122281641dπππyV yy yπ-⎡⎤=-+-⎢⎥⎣⎦===⎰⎰⎰图6-133. 已知曲线y=(a>0)与y(x0,y0)处有公共切线,求:(1) 常数a及切点(x0,y0);(2) 两曲线与x轴围成的平面图形的面积S.解(1)由题意有点00(,)x y在已知曲线上,且在点00(,)x y处两函数的导数相等.即有00x xyy==⎧=⎪⎪==即12yyx⎧=⎪⎪=⎨=解得211eexya⎧=⎪⎪=⎨⎪=⎪⎩.(2)由(1)知两曲线的交点为2(,1)e,又在区间(0,1)上,曲线y=y=方,它们与x轴所围成的平面图形的面积122231221111()6223d ee ee e yyS y yy⎛⎫===-⎡⎤-- ⎪⎣⎦⎝⎭⎰.(由ey==得2()x ey=,由y=得2e yx=).4※. 设2()lim1e nxnxf xx→+∞=+-,试求曲线y=f(x),直线y=12x及x=1所围图形的面积.解2200()lim101nxnxxf x xx e xx→∞≥⎧⎪==⎨+-<⎪+⎩解方程2121y xxyx⎧=⎪⎪⎨⎪=⎪+⎩得交点为11,2⎛⎫--⎪⎝⎭,且易知当(1,0)x∈-时,12y x=位于21xyx=+的上方.所围图形如阴影部分所示,其面积2221111111111ln2ln(1)22422142dxS xx x xx--⎛⎫⎡⎤=+⨯⨯=+=--+⎪⎢⎥+⎣⎦⎝⎭⎰.5. 一抛物线y=ax2+bx+c通过点(0,0)、(1,2)两点,且a<0,试确定a,b,c的值,使抛物线与x轴所围图形的面积最小.解由抛物线过(0,0),(1,2)点,有c=0,a+b=2,又由抛物线方程2y ax bx=+得与x轴的两交点为(0,0), ,0ba⎛⎫-⎪⎝⎭,抛物线与x轴所围图形的面积.2220()6d b ab S ax bx x a-=+=⎰,由2a b +=得2b a =-,代入上式有32(2)6a S a -=, 23(2)(4)6a a S a--+'=,令0S '=得2a =或4a =-, 由已知0a <得4a =-,从而26b a =-=, 所以4,6,0a b c =-==.6. 已知某产品产量的变化率是时间t (单位:月)的函数f (t )=2t +5,t ≥0,问:第一个5月和第二个5月的总产量各是多少?解 设产品产量为()Q t ,则()()Q t f t '=,第一个5月的总产量552510()(25)(5)50.d d Q f t t t t t t ==+=+=⎰⎰ 第2个5月的总产量为10252055()(25)(5)100.d d tQ f t t t t t t ==+=+=⎰⎰ 7. 某厂生产某产品Q (百台)的总成本C (万元)的变化率为C ′(Q )=2(设固定成本为零),总收入R (万元)的变化率为产量Q (百台)的函数R ′(Q )=7-2Q .问: (1) 生产量为多少时,总利润最大?最大利润为多少?(2) 在利润最大的基础上又生产了50台,总利润减少了多少? 解 (1)总利润()()()L Q R Q C Q =-当()0L Q '=即()()0R Q C Q ''-=即7220Q --=, Q =2.5百台时,总利润最大,此时的总成本2.5 2.52.50()225d d C C Q Q Q Q'====⎰⎰总利润11.255 6.25L R C =-=-=(万元).即当产量为2.5百台时,总利润最大,最大利润是6.25万元.(2)在利润最大的基础上又生产了50台,此时产量为3百台,总成本3300()26d d C C Q Q Q '===⎰⎰,总收入3323000()(72)(7)12d d R R Q Q Q Q Q Q '==-=-=⎰⎰, 总利润为1266L R C =-=-=(万元).减少了6.25-6=0.25万元.即在利润最大的基础上又生产了50台时,总利润减少了0.25万元.8. 某项目的投资成本为100万元,在10年中每年可获收益25万元,年利率为5%,试求这10年中该投资的纯收入的现值. 解 投资后T 年中总收入的现值(1)e rt ay r-=-,由题意知 25,5%0.05,10.a r T ====所以0.051025(1)196.730.05e y -⨯=-= 纯收入的现值为196.73-100=96.73.即这10年中该投资的纯收入的现值为96.73万元.习题6-61. 判断下列广义积分的敛散性,若收敛,则求其值: (1)41d xx +∞⎰; (2)1+∞⎰; (3)0e d axx +∞-⎰ (a >0); (4)0cos d x x +∞⎰;(5)0e sin d x x x +∞⎰; (6)2d 22xx x +∞-∞++⎰; (7)21⎰; (8)10ln d x x ⎰;(9)e1⎰(10)22d (1)xx -⎰;(11)1⎰解 (1)1431d 1133x x x +∞+∞=-=⎰,此广义积分收敛.(2)1+∞==+∞⎰,此广义积分发散. (3)111e d e ax axx aa+∞--+∞=-=⎰,此广义积分收敛. (4)1cos d sin lim sin sin 0lim sin x x x x xx x +∞+∞→+∞→+∞==-=⎰不存在,所以,此广义积分发散.00(5)e sin d e d cos e cos e cos d e cos e dsin e cos e sin e sin d 11e sin d (e sin e cos )e (sin cos )22e sin d lim e sin d lim x x x x x x x x x x x x x b x x b b x x x x x x x x x x x xx x x x x x x x x x +∞→+∞→=-=-+=-+=-+-∴=-=-∴==⎰⎰⎰⎰⎰⎰⎰⎰ 01e (sin cos )211 lim e (sin cos )22x b b b x x b b +∞→+∞⎧⎫⎡⎤-⎨⎬⎢⎥⎣⎦⎩⎭⎡⎤=-+⎢⎥⎣⎦不存在,此广义积分发散.22d d(1)(6)arctan(1)π22(1)1xx x x x x +∞+∞+∞-∞-∞-∞+==+=++++⎰⎰,收敛.23222110013202(7)lim lim (1)3222lim 2,.2333收敛x x εεεεεε++++→→+→⎡==-+⎢⎣⎛==-- ⎝⎰⎰111011eee1111222220100(8)ln d ln d ln 1 ln d lim ln d lim (ln 1)1,.π(9)arcsin(ln ),.211d d d (10)lim (1)(1)(1)收敛收敛x x x x x x x x x x x x x x x x εεσεεεεεεεεεεεε+++→→-+→=-=--∴==--=-===⎛⎫+= ⎪---⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰120100112 lim lim ,211xxεεεεε++-+→→⎛⎫⎛⎫===+∞+- ⎪ ⎪--⎝⎭⎝⎭此广义积分发散.)211-00001(11)lim lim 2lim 1,1εεεεε+++-→→→==-=-=⎰⎰此广义积分收敛. 2. 当k 为何值时,广义积分+2d (ln )kxx x ∞⎰收敛?当k 为何值时,这广义积分发散?又当k 为何值时,这广义积分取得最小值? 解 当k =1时,++222d dln ln(ln )ln ln x x x x x x∞∞+∞===+∞⎰⎰,发散.当1k ≠时,1++122211d (ln )(1)(ln 2)(ln )dln (ln)11kk kk k x x k x x x kk -∞∞--+∞⎧>⎪-==⎨-⎪+∞<⎩⎰⎰所以,当k >1时,此广义积分收敛,当k ≤1时,此广义积分发散.记1()(1)(ln 2),k f k k -=-11()(ln 2)(1)(ln 2)lnln 2k k f k k --'=+-.令()0f k '=得11ln ln 2k =-. 又 1()(ln 2)lnln 2[2(1)lnln 2]k f k k -''=+-,且 1ln ln 21(1)(ln 2)ln ln 20ln ln 2f -''-=<, 故()f k 在11ln ln 2k =-有极大值,而()f k 只有一个驻点,所以当11ln ln 2k =-时()f k 取得最大值,因而11ln ln 2k =-时,这个广义积分取得最小值.3. 利用递推公式计算反常积分+0e d n x n I x x ∞-=⎰.解 ++110de e e d n x n xn x n n I x x n x x nI ∞∞----+∞-=-=-+=⎰⎰又 +10de e e 1x x xI x x ∞---+∞+∞=-=--=⎰故 121(1)(1)2!n n n I nI n n I n n I n --==-=-= 4. 求120(1)d n n I x x =-⎰(n 0,1,2,…).解 设x =sin t ,则d x =cosd t ,π2120cos d n n I t t +=⎰而 ππ2200(21)!!π2(2)!!2sin d cos d (2)!!21(21)!!n n k n kk x x x x k n k k -⎧⋅=⎪⎪==⎨⎪=+⎪+⎩⎰⎰所以 π221220(2)!!(!)cosd 2 (0,1,2,)(21)!!(21)!n nn n n I t t n n n +====++⎰.6. 用Γ函数表示下列积分:(1)e d nx x +∞-⎰ (n >0); (2)101(ln )d x x α⎰ (α>-1); (3) 0e d n m x x x +∞-⎰1(>0)m n +; (4)220e d n x x x +∞-⎰ (12n >-).解 (1)令nx t =,则1111,d d nn x t x t t n-==,于是1111+++001111ed e d e d ()nx tt n n x t t t t n n n n --∞∞∞---=⋅==Γ⎰⎰⎰.(2)令1lnt x =,则e ,d e d .t t x x t --==- 于是 10+(1)1001(ln )d e d e d (1).a a t a tx t t tt a x∞-+--+∞=-==Γ+⎰⎰⎰ (3)令nx t =,则1111,d d nn x t x t t n-==,于是1111+++001111ed ()e d e d ()nm m x m tt n n n m x x t t t t t n n n n+-∞∞∞---+=⋅⋅=⋅=Γ⎰⎰⎰.(4)令2x t =,则x x t ==,于是21+++2220011+201ed e e d 2111e d ()222n n x ntt n t x x t t tt t n ∞∞∞----⎛⎫-+∞ ⎪-⎝⎭=⋅===Γ+⎰⎰⎰⎰。
习题4-11. 利用定义计算下列定积分:(1) d ();b ax x a b <⎰ 1(2)e d .x x ⎰解:(1)将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n-=+=- 记每个小区间1[,]i i x x -长度为,i b ax n-∆=取, 1,2,,,i i x i n ξ==则得和式211()2(1)()[()]()2nni i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得220122()(1) d lim ()lim[()]21().2nbi i an i b a n n x x f x a b a nb a λξ→→∞=-+=∆=-+=-∑⎰(2) 将区间[0, 1] n 等分,分点为 (1,2,,1),i ix i n n==-记每个小区间长度1,i x n∆=取 (1,2,,),i i x i n ξ==则和式111()i nnni i i i f x enξ==∆=∑∑ 12101111111e d lim e lim (e e e )1e (1e )1e (e 1)limlim 1e e 11e (e 1)1lim e 1.1i n n xn n n nn n i n nnnn n n nn x n n nnn n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰2. 利用定积分概念求下列极限:111(1)lim 122n n n n →+∞⎛⎫+++⎪++⎝⎭; 221(2)lim ).n n n →+∞+解:(1)原式11011111lim d ln 2.ln(1)121111n x x n n x nn n →+∞⎛⎫+++⎪=⋅===++++ ⎪+⎝⎭⎰ (2)原式13200122lim ..33n n x x n n →+∞⎫====+⎪⎭⎰ 3. 用定积分的几何意义求下列积分值:10(1)2 d x x ⎰; 0(2)(0)x R >⎰.解:(1)由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2) 由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R . 4. 证明下列不等式:2e 22e(1)e e ln d 2(e e)x x -≤≤-⎰; 210(2)1e d e.x x ≤≤⎰证明:(1)当2e e x ≤≤时,2ln e ln ln e ,x ≤≤即1ln e.x ≤≤由积分的保序性知:222e e e e eed ln d 2d x x x x ≤≤⎰⎰⎰即 2e 22ee e ln d 2(e e).x x -≤≤-⎰(2) 证明:当0 1.x ≤≤时,21e e,x ≤≤由积分的保序性知:2111d ed ed x x x x ≤≤⎰⎰⎰即2101e d e.xx ≤≤⎰5. 证明: (1) 12lim0;nn x →∞=⎰(2) π40lim sin d 0.n n x x →∞=⎰证明:(1) 当102x ≤≤时,0,n n x ≤≤ 于是1112200110d (),12n n x x n +≤≤=⋅+⎰⎰ 而111lim()0,12n n n +→∞⋅=+由夹逼准则知:12lim 0.nn x →∞=⎰(2) 由中值定理得π440ππsin d sin (0)sin ,44n n x x ξξ=⋅-=⎰其中π0,4ξ≤≤故π4πlim sin d lim sin 0 ( 0sin 1).4n n n n x x ξξ→∞→∞==≤<⎰习题4-21. 计算下列定积分:3(1)x ⎰; 221(2)d x x x --⎰;π(3)()d f x x ⎰,其中π,0,2()πsin ,π;2x x f x x x ⎧≤≤⎪⎪=⎨⎪<≤⎪⎩;222(4)max{1,}d x x -⎰;(5)x .解:(1)原式43238233x ==-(2)原式01222211()d ()d ()d x x x x x x x x x -=-+-+-⎰⎰⎰01232233210111111132233251511.6666x x x x x x -⎛⎫⎛⎫⎛⎫=++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=++= (3)原式πππ2π222π0π221πd sin d cos 1.28x x x x xx=+=-=+⎰⎰ (4)原式121122233211212011d d d 2.333x x x x x x x -----=++=++=⎰⎰⎰(5)原式πππ242π04d (cos sin )d (sin cos )d sin cos x x x x x x x x x ==-+--⎰⎰⎰ππ24π04(sin cos )(cos sin )1).x x x x =++--=2. 计算下列导数:20d (1)d x t x ⎰;32d (2)d x x x ⎰解:(1)原式2=(2)原式32200d d d d x x x x =-=⎰⎰ 3. 求由参数式2020sin d cos d t tx u uy u u⎧=⎪⎨⎪=⎩⎰⎰所确定的函数y 对x 的导数d d y x .解:222d d cos d cot .d d sin d yy t t t x x tt=== 4. 求由方程e d cos d 0yxtt t t +=⎰⎰所确定的隐函数()y y x =的导数.解:方程两边对x 求导,有e cos 0y y x '⋅+=又 e 1sin yx =- 故 cos sin 1xy x '=-.5. 求下列极限:2030ln(12)d (1)lim xx t t x →+⎰; 2220020e d (2)lim e d x t x x t t t t→⎡⎤⎣⎦⎰⎰.解: (1)原式21222300ln(12)22limlim ln(12).333x x x x x x →→+==+=(2)原式2222222002e d e e d 1lim2lim2lim2.12e e xxt xt xxx x x t tx x x →→→⋅====+⎰⎰6. a , b , c 取何实数值才能使201lim sin x bx t c x ax →=-⎰ 成立.解:因为0x →时,sin 0x ax -→而该极限又存在,故b =0.用洛必达法则,有220000,1,lim lim 2cos cos lim 2, 1.sin x x x a x x x x a x a a x→→→≠⎧⎪==⎨--=-=⎪-⎩ 所以 1,0,2a b c ===- 或 1,0,0a b c ≠==.习题4-31. 利用基本积分公式及性质求下列积分:2(1)5)d x x -;解:原式51732222210d 5d 73x x x x x x c =-=-+⎰⎰. (2)3e d x x x ⎰;解:原式=(3e)(3e)d .ln(3e)xxx c =+⎰23(3)d ;1x x ⎛ +⎝⎰ 解:原式=321d 23arctan 2arcsin .1x x x x c x -=-++⎰22(4)d ;1x x x +⎰解:原式=22211d d d arcsin .11x xx x x x c x x+-=-=-+++⎰⎰⎰ 2(5)sin d 2x x ⎰; 解:原式=1cos 1d sin .222x x x x c -=-+⎰21(6);1x x ⎛- ⎝⎰解:原式=357144444d d 4.7x x x x x x c ---=++⎰⎰2d (7);x x⎰解:原式=21d x x c x-=-+⎰. (8);x ⎰解:原式=35222d 5x x x c =+⎰.(9)解:原式=25322d 3x x x c --=-+⎰.2(10)(32)d ;x x x -+⎰解:原式=32132.32x x x c -++ 422331(11)d ;1x x x x +++⎰解:原式=23213d d arctan .1x x x x x c x +=+++⎰⎰ 3(12)d 2e x x x ⎛⎫+ ⎪⎝⎭⎰;解:原式=2e 3ln .xx c ++(13)e d ;1x xx -⎛ ⎝⎰解:原式=e d e .xx x x c -=-⎰2352(14)d ;3x xxx ⋅-⋅⎰ 解:原式=5222d 5d 2233ln 3x xx x x c ⎛⎫⎛⎫-=-⋅+ ⎪ ⎪⎝⎭⎝⎭⎰⎰.(15)sec (sec tan )d x x x x -⎰;解:原式=2sec d sec tan d tan sec x x x x x x x c -=-+⎰⎰.1(16)d 1cos 2x x+⎰;解:原式=22111d sec d tan 2cos 22x x x x c x ==+⎰⎰.cos 2(17)d cos sin xx x x-⎰;解:原式=(cos sin )d sin cos .x x x x x c +=-+⎰22cos 2(18)d cos sin xx x x ⎰.解:原式=2211d d cot tan .sin cos x x x x c xx -=--+⎰⎰ 2. 一平面曲线过点(1,0),且曲线上任一点(x , y )处的切线斜率为2x -2,求该曲线方程. 解:依题意知:22y x '=- 两边积分,有22y x x c =-+又x =1时,y =0代入上式得c =1,故所求曲线方程为221y x x =-+.3. 在下列各式等号右端的空白处填入适当的系数,使等式成立. (1)()2(1)xdx d x =-;(2)()22x xx dx d e e =;(3)()(35ln )d xx x d -=; (4)()33(1)x x a a dx d =-;(5)()sin 3cos3xdx d x =; (6)()2cos 5tan 5dxxd x =; (7)()221ln 1x x d dxx =--;(8)()l 2552n d d xxx =--;()(1arcs 2in )1d x x -=-; (10)()2arcta 9n 13d dxx x =+;(11)()()2(3)(3)4d x dx x =---;(12)()22(1)x x x d e d e--+=.4. 利用换元法求下列积分:2(1)cos()d x x x ⎰;解:原式=22211cos d sin .22x x x c =+⎰ 3(2)sin cos x x x-;解:原式=12333(sin cos )d(sin cos )(sin cos ).2x x x x x x c ---=-+⎰2d (3)21xx -⎰; 解:原式=1d 112x c =+-+⎰.c =+ 3(4)cos d x x ⎰;解:原式=231(1sin )dsin sin sin .3x x x x c -=-+⎰(5)cos cos d 2xx x ⎰;解:原式=1133d sin sin .cos cos 232222x x x x c x ⎛⎫=+++ ⎪⎝⎭⎰ (6)sin 2cos3d x x x ⎰;解:原式=111(sin 5sin )d cos cos5.2210x x x x x c -=-+⎰2arccos (7)x x ;解:原式=2arccos 2arccos 1110d(2arccos )10.22ln10x x x c -=-⋅+⎰ 21ln (8)d (ln )xx x x +⎰;解:原式=21(ln )d(ln ).ln x x x x c x x-=-+⎰(9)x ;解:原式=2.c =+⎰ln tan (10)d cos sin xx x x⎰;解:原式=21ln tan d(ln tan )(ln tan ).2x x x c =+⎰5(11)e d x x -⎰;解:原式=51e5xc --+.d (12)12xx -⎰; 解:原式=1ln .122c x -+-(13)t;解:原式=.c =-⎰102(14)tan sec d x x x ⎰;解:原式=10111tan d(tan )tan .10x x x c =+⎰2d (15)ln xx x⎰; 解:原式=21(ln )d(ln ).ln x x c x--=+⎰(16)tan x ⎰;解:原式=ln .cos c =-+⎰d (17)sin cos xx x⎰;解:原式=2d d tan ln .tan tan cos tan x xc x x x x==+⎰⎰2(18)e d x x x -⎰;解:原式=22211e d()e .22x x x c ----=-+⎰ 10(19)(4)d x x +⎰;解:原式=111(4)11x c ++.(20)解:原式=123311(23)d(23)(23)32x x x c ----=--+⎰.2(21)cos()d x x x ⎰;解:原式=2211sin()sin().22d x x c =+⎰(22)x ; 解:原式=122222d 1()d()2x x a a x a x -⎛⎫ ⎪=---⎰arcsin .xa c a =⋅d (23)e ex x x-+⎰;解:原式=2d(e )arctane .1(e )x xx c =++⎰ ln (24)d xx x⎰; 解:原式=21ln d(ln )(ln ).2x x x c =+⎰23(25)sin cos d x x x ⎰;解:原式=223511sin (1sin )d(sin )sin sin .35x x x x x c -=-+⎰(26);解:原式32tan 444sec cos 1sin d d d(sin )tan sin sin x tt t tt t t t t t =-==⎰⎰⎰令311,3sin sin c t t=-++又cos t t ==故上式.c =(27)⎰;d ln |1|ln(1.1tt t t c c t =-++=+++(28) ;x 解:原式3sec 223tan d 3(sec 1)d 3tan 3x tt t t t t t c ==-=-+⎰⎰令,又3tan arccos ,t t x === 故上式33arccosc x+. (29);解:原式2tan 3sec d cos d sin sec x ttt t t t c t ===+⎰⎰令,又sec t所以sin t =,故上式c =+.(30)解:原式sin cos d sin cos x ttt t t =+⎰令① sin d sin cos tt t t +⎰②① + ② 1t c =+ ② - ① 2 l n sin cos t t c =++ 故cos 1d ln sin cos sin cos 2211arcsin ln .22t t t ct t t t x c x =++++=++⎰5. 用分部积分法求下列不定积分:2(1)sin d x x x ⎰;解:原式=222dcos cos 2cos d cos 2dsin x x x x x x x x x x x -=-+⋅=-+⎰⎰⎰2cos 2sin 2cos .x x x x x c =-+++(2)e d x x x -⎰;解:原式=de e e d e e .x x x x x x x x x c ------=-+=--+⎰⎰(3)ln d x x x ⎰;解:原式=222211111ln d ln d ln 22224x x x x x x x x x c ⋅=-=-+⎰⎰. 2(4)arctan d x x x ⎰;解:原式=3332111arctan d arctan d 3331x x x x x x x=-+⎰⎰ 322111arctan ln(1).366x x x x c =-+++ (5)arccos d x x ⎰;解:原式=arccos arccos x x x x x c +=.2(6)tan d x x x ⎰;解:原式=22211(sec 1)d d tan tan tan d 22x x x x x x x x x x x -=-=--⎰⎰⎰ 21tan ln .cos 2x x x c x =+-+(7)e cos d x x x -⎰;解:e cos d e dsin e sin e sin d x x x x x x x x x x ----==⋅+⎰⎰⎰e sin e dcos e sin e cos e cos d x x x x x x x x x x x -----=-=--⎰⎰∴原式=1e (sin cos ).2xx x c --+ (8)sin cos d x x x x ⎰;解:原式=1111sin 2d d cos 2cos 2cos 2d 2444x x x x x x x x x =-=-+⎰⎰⎰ 11cos 2sin 248x x x c =-++.32(ln )(9)d x x x ⎰;解:原式=332111(ln )d (ln )3(ln )d x x x x x x ⎛⎫⎛⎫-=--⎪ ⎪⎝⎭⎝⎭⎰⎰32131(ln )(ln )6ln d x x x x x x ⎛⎫=--- ⎪⎝⎭⎰321366(ln )(ln )ln .x x x c x x x x=----+(10)x .解:原式tan 23sec d .x a ta t t =⎰又32sec d sec (tan 1)d tan d(sec )sec d t t t t t t t t t =+=+⎰⎰⎰⎰ 3tan sec sec d ln sec tan t t t t t t =⋅-++⎰所以 311sec d tan sec ln sec tan 22t t t t c t t '=+++⎰ 故11ln .22x c x =+6. 求下列不定积分:221(1)d (1)(1)x x x x ++-⎰; 解:原式=2111111d ln ln 1122122(1)(1)(1)x c x x x x x x ⎛⎫ ⎪-=++++-++ ⎪+++-⎝⎭⎰ 211ln .112c x x =++-+ 33d (2)1x x +⎰;解:原式=22211112d ln ln d 1122111x x x x x x x x x x x -+⎛⎫=-+++-+⎪-++-+⎝⎭⎰⎰3c =++. 5438(3)d x x x x x+--⎰; 解:原式=2843d 111x x x x x x ⎛⎫+++-- ⎪+-⎝⎭⎰32118ln 4ln 3ln .1132x x x c x x x =+++--++- 26(4)d 1x x x +⎰;解:原式=33321d()1arctan .31()3x x c x =++⎰ sin (5)d 1sin xx x +⎰;解:原式=222sin 1d tan d (sec 1)d sec tan .cos cos x x x x x x x x x c x x-=--=-++⎰⎰⎰ cot (6)d sin cos 1xx x x ++⎰;解:原式22tan 222222212d 1111111d d d 22(1)22211111x t t t t t t t t t t t t t t t t t t =-⋅-++==-+⎛⎫-++⎪+++⎝⎭⎰⎰⎰⎰令1111ln ln tan .tan 222222x x t c c t =-+=-+(7)x ;解:原式=2.c =+(8)x ;解:原式=2d 2ln 2d 1x x x x x x x ⎛=+-+- ⎝⎭⎰⎰ 又2x2221d 44d 11t t t t t t =+--⎰⎰142ln1t t c c t -''=++=++故原式=1)x c -+.习题4-4利用计分表,计算下列不定积分:(1)2sin3d x e x x -⎰; (2)x ; (3)arcsin d 2xx x ⎰; (4);(5)()21d 1x x x -⎰; (6)x ;(7)x x ⎰; (8)x ; (9)x ; (10)4sin d x x ⎰.习题4-51. 利用被积函数奇偶性,计算下列积分值(其中a 为正常数)(1)sin d ;||aa x x x -⎰解:因sin ||xx 为[-a , a ]上的奇函数, 故sin d 0.||a a xx x -=⎰(2)ln(a ax x -+⎰;解:因为ln(ln(x x -=-即被积函数为奇函数,所以原式=0.12212sin tan (3)d ln(1)3cos3x x x x x -⎡⎤+-⎢⎥+⎣⎦⎰;解:因为2sin tan 3cos3x xx+为奇函数,故原式=111222111222d 0ln(1)d ln(1)1xx x x x x x---++-=--⎰⎰()121231ln 3ln 2 1.ln 3ln 2ln(1)22x x -==----+-π242π23(4)sin d sin ln 3x x x x x -+⎛⎫+ ⎪-⎝⎭⎰.解:因为3ln3xx+-是奇函数,故 原式=ππ6622π02531π5sin d 2sin d 2π642216x x x x -==⋅⋅⋅⋅=⎰⎰2. 计算下列积分:(1)1x -⎰;2e 1(2)⎰;π40sin (3)d 1sin xx x+⎰;0(4)x ⎰;231(5)ln d x x x ⎰; π220(6)e cos d x x x ⎰;322d (7)2x x x +-⎰;21(8)x ⎰; ππ3π(9)sin d 3x x ⎛⎫+ ⎪⎝⎭⎰; 2120(10)e d t t t -⎰;π22π6(11)cos d u u ⎰.解:(1)原式= (2)原式=221e211).(1ln )d(1ln )x x -=++=⎰(3)原式=πππ244422000sin(1sin )sin d d tan d cos cos x x x x x x xx -=-⎰⎰⎰π40π1 2.tan 4cos x x x ⎛⎫==+-+ ⎪⎝⎭ (4)原式=πππ2π02d cos d cos d cos x x x x x x x ==⎰⎰ππ2π02xx==(5)原式=22243411111151ln d d 4ln 2.ln 44164x x x x x x =-=-⎰⎰(6)ππππ222222220e cos d e dsin e sin 2e sin d xx xx x x x xx x ==⋅-⎰⎰⎰πππ2π2π22220e 2e d cos e 2e cos 4e cos d xxx x xx x =+=+-⎰⎰所以,原式=π1(e 2)5-.(7)原式=3322111111d ln ln 2ln5.333122x x x x x -⎛⎫==-- ⎪-++⎝⎭⎰ (8)原式11611d 6d (1)t 1t t t t t ⎫=-⎪++⎝⎭()67ln 26ln ln ln(1)1t t ==--+(9)原式ππ3πcos 03x ⎛⎫=-=+ ⎪⎝⎭ (10)原式=2212122ed e 12t t t --⎛⎫-=-=-- ⎪⎝⎭⎰(11)原式=ππ22ππ661π11(1cos 2)d sin 226824u u u u ⎛⎫+==-+ ⎪⎝⎭⎰3. 证明:232001()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正常数);证明:左222222000111()d()()d ()d 222a a a x t x f x x tf t t xf x x ====⎰⎰⎰令右 所以,等式成立.4. 证明:ππ2200sin cos πd d sin cos sin cos 4x x x x x x x x ==++⎰⎰,并由此计算a⎰(a 为正常数)证明:ππ2200sin cos d d sin cos sin cos x xx x x xx x =++⎰⎰又 πππ222000sin cos πd d d .sin cos sin cos 2x x x x x x x x x +==++⎰⎰⎰故等式成立.a⎰πsin 20cos πd .sin cos 4x a tx t t t ==+⎰令5. 已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰.解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444f x f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰习题4-61. 用定义判断下列广义积分的敛散性,若收敛,则求其值:22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim coslim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭ 0(3)e d n x x x +∞-⎰(n 为正整数)解:原式=10e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n xx n x x n x n +∞+∞---=+===⎰⎰(4)(0)aa >⎰;解:原式=000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=110+⎰2121221111202lim 2lim πππlim lim 2222π.424εεεεεε++-→→→→=⎛⎫=+=⋅+=- ⎪⎝⎭⎰⎰2. 讨论下列广义积分的敛散性:2d (1)(ln )kxx x +∞⎰; 解:原式=2122112,1ln(ln )1d(ln ),1(ln )1(ln )1(ln 2),1(ln )11k k kk k x x k x k x k x kk +∞+∞-+∞-+∞-⎧=∞=⎪⎪⎪=∞<=⎨-⎪⎪=>⎪--⎩⎰ 故该广义积分当1k >时收敛;1k ≤时发散.d (2)()()bkaxb a b x >-⎰.解:原式=1100011lim ()()1,1lim ()d()1lim 1ln()b k k b a k a b a k b x b a k k b x b x k k b x εεεεεε+++-----→→-→⎧>⎧⎪⎪=-⎨--⎪-<---=⎪⎨-⎩⎪⎪-=-⎩⎰ 发散,发散, 综上所述,当k <1时,该广义积分收敛,否则发散. 3. 已知sin πd 2x x x +∞=⎰,求: 0sin cos (1)d ;x xx x+∞⎰220sin (2) d .x x x +∞⎰ 解:(1)原式=001sin(2)1sin πd(2)d .2224x t x t x t +∞+∞==⎰⎰(2)222002200200020000sin 1cos 2d d 21cos 2d d 22111d cos 2d 2211111d cos 2dcos2222111sin 2cos 2d2222ππ0.22xx x xx x x x x x x x x x xx x x x x xx x xx x x +∞+∞+∞+∞+∞+∞+∞+∞+∞+∞+∞-==-=+=+⋅-⎡⎤=-+⋅+⎢⎥⎣⎦=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰4. 证明:无穷积分敛散性的比较判别法的极限形式,即节第六节定理2. 证明:如果|()|lim0()x f x g x ρ→+∞=≠,那么对于ε(使0ρε->),存在x 0,当0x x ≥时|()|0()f xg x ρερε<-<<+ 即 ()()|()|()()g x f x g x ρερε-<<+ 成立,显然()d ag x x +∞⎰与|()|d af x x +∞⎰同进收敛或发散.如果0ρ=,则有|()|()f x g x ε<, 显然()d ag x x +∞⎰收敛, 则|()|d af x x +∞⎰亦收敛.如果ρ=+∞,则有|()|()()f x g x ρε>-,显然()d ag x x +∞⎰发散,则|()|d af x x +∞⎰亦发散.习题四1.填空题(1)设40ln sin d I x x π=⎰,40ln cot d J x x π=⎰,40ln cos d K x x π=⎰,则,,I J K 的大小关系是 I K J << . (2)设2x e-是函数()f x 的一个原函数,则(2)d f x x =⎰2412x e C -+ . (3)设[]x 表示不超过x 的最大整数,则定积分[]()20120d x x x -⎰的值是多少 1006 .(4)已知函数()f x ,则1()()d f x f x x '''⎰的值为14. (5)反常积分22d (1)x x x 的值为 12. 2.选择题(1)设函数()f x 与()g x 在(,)-∞+∞内皆可导,且()()f x g x <,则必有( A ).A.0lim ()lim ()x x x x f x g x →→< B.()()f x g x ''<C.d ()dg()f x x <D.()d ()d xxf t tg t t <⎰⎰(2)下列定积分中,积分值不等于零的是( D ). A.20ln(sin x x π⎰B. 2cos 0sin(sin )d x e x x π⎰C.cos 2d x x ππ-⎰ D.2222sin cos d cos 2sin x xx x x ππ-++⎰(3)设()F x 是连续函数()f x 的一个原函数,“⇔M N ”表示“M 的充分必要条件是N ”,则必有( ). (05年全国考研题第(8)题)A.()F x 是偶函数⇔()f x 是奇函数B.()F x 是奇函数⇔()f x 是偶函数 B.()F x 是周期函数()⇔f x 是周期函数 D.()F x 是单调函数()⇔f x 是单调函数(4)设ln xx 为()f x 的一个原函数,则()d xf x x '=⎰( D ). A.ln x C x + B.2ln 1x C x ++ C.1C x + D.12ln xC x x-+ (5)设函数1()sin()d ,()ln(1)d xf x x t tg x x xt t =-=+⎰⎰,则当0x →时,()f x 是()g x的( C ).A.高阶无穷小量B.低阶无穷小量C.等价无穷小量D.同阶但不等价无穷小量 3.利用定积分概念求下列极限: (1)lim n →∞; (2)1lim ln 1ln 1ln 1n n →∞⎡⎤⎛⎛⎛+++++⎢⎥ ⎢⎥⎝⎝⎝⎣⎦.解:(1)(2)有定积分的定义可得(101lim ln 1ln 1ln 1ln 1n dx n →∞⎛⎫⎛⎛⎛+++++=+ ⎪ ⎪⎝⎝⎝⎝⎭⎰ ()120ln 1u du =+⎰(令2x u =)2111200011ln(1)ln 2(1)011u u u du u du du u u =+-=---++⎰⎰⎰11ln 21ln 222=-+-=4*. 已知曲线在点(,)x y 处的斜率为2sin cos x x +,且曲线过点(,0)π,求该曲线的方程.解:由已知2sin cos ,(2sin cos )2cos sin y x x y x x dx x x C '=+=+=-++⎰,由于曲线过(,0)π,则有2C =-,因此所求曲线方程为2cos sin 2y x x =-+-.5*. 设函数()f x 连续,且满足0()()d (2)2xx x t f t t x x e x -=-+⎰.(1)求函数()f x 的表达式; (2)求函数()f x 的单调区间与极值. 解:(1)0()()()()(2)2xxxx x t f t dt xf t dt tf t dt x x e x -=-=-+⎰⎰⎰,方程两边对x 求导数,则有20()(2)2xx f t dt e x =-+⎰,再对x 求导数得2()(22)x f x e x x =+-.(2)()(4)xf x x x e '=+,令()0f x '=得04x x ==-或.所以,函数()f x 的单调增加区间为(),4(0,)-∞-+∞与;单调减少区间为[]4,0-.函数()f x 的极大值为()446f e --=,极小值为()02f =-.6*.设函数2202(1)d ,0,(),0,x t e t x f x x A x ⎧-⎪≠=⎨⎪=⎩⎰问当A 取何值时,()f x 在0x =处可导,并求出(0)f '的值. (国防科大09-10年秋季第三大题第2小题)7*.设函数()f x 在,22ππ⎡⎤-⎢⎥⎣⎦上连续,且满足2222()cos ()d x f x x xe f t t ππ-=++⎰,求()f x 的表达式.解:设22()a f x dx ππ-=⎰,则有22()cos x f x x xe a =++,所以有222222(cos )2cos 2x a x xe a dx xdx a a ππππππ-=++=+=+⎰⎰,解得2(1)a ππ=-,因此所求函数的表达式为22()cos 2(1)x f x x xeππ=++-.8. 求下列不定积分,并用求导方法验证其结果正确否:d (1)1e xx+⎰; 解:原式=e d 11de ln(1e ).e (1e )e 1e x x xx x x xx x c ⎛⎫==-++- ⎪++⎝⎭⎰⎰ 验证:e 1(ln(1e ))1.1e 1ex xx xx c '-++=-=++ 所以,结论成立.(2)ln(x x +⎰;解:原式=ln(ln(.x x x x x c -=+-验证:ln(ln(x x x x c '⎡⎤=+++-⎣⎦ln(x =+所以,结论成立.2(3)ln(1)d x x +⎰;解:原式=2222ln(1)2d ln(1)22arctan 1x x x x x x x x c x+-=+-+++⎰.验证:2222222ln(1)2ln(1).ln(1)22arctan 11x x x x x x x x c x x'=++⋅-+=+⎡⎤+-++⎣⎦++ 所以,结论正确.(4)x ;解:原式=9212)arcsin (.232x x x c ++=++验证:921arcsin (232x x '+⎡++⎢⎣211(2)32x =+== 所以,结论正确.(5)sin(ln )d x x ⎰;解:1sin(ln )d sin(ln )cos(ln )d x x x x x x x x=-⋅⋅⎰⎰ sin(ln )cos(ln )sin(ln )d x x x x x x =--⎰所以,原式=().sin(ln )cos(ln )2xc x x +- 验证: ()sin(ln )cos(ln )2x c x x '⎡⎤+-⎢⎥⎣⎦()111sin(ln )cos(ln )cos(ln )sin(ln )22sin(ln ).x x x x x x x x ⎛⎫=+-⋅+⋅ ⎪⎝⎭= 故结论成立.2e (6)d (e 1)xx x x +⎰;解:原式=1e 1d d d e 1e 1e 11e e 1x x x x xx x x x x x --⎛⎫-=-+=-+ ⎪+++++⎝⎭⎰⎰⎰ ln(1e ).e 1x xxc --=-+++ 验证:22(e 1)e e e ln(1e )(e 1)1e (e 1)e 1x xx x xx x x x x x x c ---'-++--⎡⎤=-=-++⎢⎥++++⎣⎦.故结论成立.23/2ln (7)d (1)xx x +⎰; 解:原式=1ln d d ln(.x x x c x =-=++⎰验证:ln(x c '⎤-++⎥⎦2223/223/2(1ln )(1)ln ln .(1)(1)x x x x x x x =++-==++所以,结论成立.sin (8)d 1cos x x x x++⎰;解:原式=2d cos d d tan ln(1cos )1cos 22cos 2x x xx x x x x -=-++⎰⎰⎰tantan d ln(1cos )22tan ln(1cos )ln(1cos )2tan 2x xx x x xx x x c x x c=--+=++-++=+⎰验证:2221sin sin (tan)tan sec 22221cos 2cos 2cos 22x x x x x x xx c x x x x +'+=+⋅=+=+ 所以,原式成立.(9)()d xf x x ''⎰;解:原式=d ()()()d ()().x f x xf x f x x xf x f x c ''''=-=-+⎰⎰验证:[]()()()().()()f x xf x f x xf x xf x f x c ''''''''=+-=-+ 故结论成立.(10)sin d n x x ⎰ (n >1,且为正整数).解:1sin d sindcos nn n I x x x x -==-⎰⎰1221212cos sin (1)cos sin d cos sin (1)sin d (1)sin d cos sin (1)(1)n n n n n n n nx x n x x xx x n x x n x x x x n I n I ------=-+-=-+---=-+---⎰⎰⎰ 故 1211cos sin .n n n n I x x I n n---=-+ 验证: 1211cos sin sin d n n n x x x x n n --'-⎡⎤-+⎢⎥⎣⎦⎰ 22222111sin cos (1)sin cos sin 111sin (1sin )sin sin sin .n n n n n n n n x x n x x x n n n n n x x x x n n n x -----=-⋅-⋅+--=--+= 故结论成立.9. 求不定积分max(1,)d x x ⎰.解: ,1max(1,)1,11,1x x x x x x -<-⎧⎪=-≤≤⎨⎪>⎩故原式=212231,12,111,12x c x x c x x c x ⎧-+<-⎪⎪+-≤≤⎨⎪⎪+>⎩又由函数的连续性,可知:213111,1,2c c c c c c =+=+= 所以 221,121max(1,)d ,11211,12x c x x x c x x x c x ⎧-+<-⎪⎪⎪=++-≤≤⎨⎪⎪++>⎪⎩⎰10.计算下列积分:(1)1(2)1解:原式=211112⎛⎫+ ⎪-== (3)ln3ln 2d e ex xx--⎰; 解:原式=ln3ln32ln 2ln 2de 113e 1ln ln .(e )1222e 1x x x x-==-+⎰(4)x ⎰;解:原式=π33π222π02d sin d sin sin d sin x x x x x x =-⎰⎰⎰ππ55222π02422.sin sin 555x x =-=(5)120ln(1)d (2)x x x +-⎰;解:原式=111000111ln(1)ln(1)d d 2212x x x x x x x ++=-⋅--+-⎰⎰101100111ln 2d 321111ln 2ln 2ln(2)ln(1)333x x x x x ⎛⎫=-+ ⎪-+⎝⎭=+-=-+⎰(6){}230max ,d x x x ⎰.11. 计算下列积分(n 为正整数): (1)1;n x ⎰解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342, 253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰为偶数, 为奇数.(2)π240tan d .n x x ⎰解:πππ2(1)22(1)22(1)4440π2(1)411tantan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=- 可得 111(1)(1)[(1)].43521n nn I n π--=---+-+- 12. 设1,0,1()1,0,1xx xf x x e ⎧≥⎪⎪+=⎨⎪<⎪+⎩求20(1)d x x -⎰.13. 设()f x 在[]0,1上连续,证明2201(cos )d (cos )d 4f x x f x x ππ=⎰⎰.14. 已知()d1p x x +∞-∞=⎰,其中1,()0,1,x p x x <=≥⎩求C .解:1111()d 0d 0d p x x x x x x +∞-+∞-∞-∞--=⋅++⋅=⎰⎰⎰⎰⎰11001arcsin arcsin π1x x C x C xC --=+=⋅+⋅==⎰⎰所以1πC =.。
用定积分定义求下列题目
当给定一个函数时,定积分可以用来计算函数在特定区间上的
面积。
定积分的定义如下:
设函数f(x)在区间[a, b]上有定义,将区间[a, b]分成n等分,每个小区间的长度为Δx=(b-a)/n。
在第i个小区间上任取一点ξi,构造和式Σf(ξi)Δx,其中i的范围是从1到n。
当n趋向于无穷
大时,如果这个和的极限存在,且与区间的分法和点的取法无关,
那么这个极限就是函数f(x)在区间[a, b]上的定积分,记作∫[a, b]f(x)dx。
现在让我们用定积分的定义来解决一个具体的问题。
假设我们
要求函数f(x) = x^2 在区间[0, 2]上的定积分。
首先,我们将区
间[0, 2]分成n等分,每个小区间的长度为Δx=(2-0)/n=2/n。
然
后在每个小区间上任取一点ξi,构造和式Σf(ξi)Δx,其中i的
范围是从1到n。
接下来,当n趋向于无穷大时,计算这个和的极
限即可得到函数f(x) = x^2 在区间[0, 2]上的定积分。
通过这种方法,我们可以用定积分的定义来求解各种函数在给
定区间上的定积分。
这种方法虽然有些繁琐,但可以帮助我们更好地理解定积分的概念和原理。
定积分例题例1、计算dx x ⎰π20sin分析:可利用积分的可加性将绝对值去掉解:dx x ⎰π20sin ππππππ2020cos cos )sin (sin x x dx x xdx +-=-+=⎰⎰ 4)]1(1[)11(=--+---= 例2、计算dx xxe⎰12ln 解:dx x x e ⎰12ln 31ln 31ln ln 1312===⎰ee x x xd例3、计算下列定积分1、dx xe x⎰2022、⎰e xdx x 1ln分析:利用分部积分法,定积分的分部积分公式是⎰⎰-=baba bavdu uv udv ,它与不定积分的区别在于每一项都带有积分上、下限。
解:1、dx xe x ⎰202)(2222202202dx e xe x x x ⎰⎰-==4)44(444202=--=-=e e e e x2、⎰exdx x 1ln )ln ln (21ln 21121212x d x x x xdx e e e ⎰⎰-==)1(4121412121212212212--=-=-=⎰e e x e xdx e ee)1(41414122+=+=e e 例4、计算下列无穷限积分:1、dx e x ⎰+∞-03; 2、dx xx e⎰+∞ln 1分析:由定义知,⎰⎰+∞→+∞=ba b a dx x f dx x f )(lim )(,对于无穷限积分⎰+∞adx x f )(的求解步骤为①求常义积分)()()(a F b F dx x f ba-=⎰;②计算极限)]()([lim a F b F b -+∞→ 解:1、dx e x⎰+∞-03)31(lim lim 0303bx b bxb e dx e-+∞→-+∞→-==⎰31)1(lim 313=--=-+∞→b b e 2、dx xx e⎰+∞ln 1+∞===+∞→+∞→⎰be b b e b x x d x ln ln lim ln ln 1lim 说明此无穷积分dx xx e⎰+∞ln 1是发散的 例5、设)(x f ''在],[b a 上连续,证明:)]()([)]()([)(a f a f a b f b f b dx x f x ba-'--'=''⎰分析:利用定积分的分部积分公式证明 证明:⎰⎰⎰'-'='=''ba ba ba b a dx x f x f x x f xd dx x f x )()()()( ba x f a f ab f b )()()(-'-'= )]()([)]()([a f a f a b f b f b -'--'=。
习题6-11. 利用定积分的几何意义求定积分:(1)12xdx ⎰; (2)220aa x dx -⎰(0)a >.解 (1) 根据定然积分的几何意义知, 102xdx ⎰表示由直线2,1y x x ==及x 轴所围的三角形的面积,而此三角形面积为1,所以121xdx =⎰.(2) 根据定积分的几何意义知,220aa x dx -⎰表示由曲线22,0,y a x x x a =-==及x 轴所围成的14圆的面积,而此14圆面积为214πa ,所以222014a a x dx a -=⎰π.2. 根据定积分的性质,比较积分值的大小:(1)12x dx ⎰与13x dx ⎰; (2)1xe dx ⎰与1(1)x dx +⎰.解 (1) ∵当[0,1]x ∈时,232(1)0x x x x -=-≥,即23x x ≥,又2x3x ,所以11230x dx x dx >⎰⎰.(2) 令()1,()1x xf x e x f x e '=--=-,因01x ≤≤,所以()0f x '>,从而()(0)0f x f ≥=,说明1xe x ≥+,所以110(1)x e dx x dx >+⎰⎰.3. 估计下列各积分值的范围:(1)421(1)x dx +⎰; (2) 33arctan xdx ⎰;(3)2ax ae dx --⎰(0a >); (4)22xxe dx -⎰.解 (1) 在区间[]1,4上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d x x -≤+≤-⎰,即 4216(1)51x dx ≤+≤⎰.(2) 令()arctan f x x x =,则2()arctan 1xf x x x '=++,当[3]3x ∈时,()0f x '>,从而()f x 在[3]3上是增函数,从而f (x )在3]3上的最大值(3)3πM f ==,最小值(363πm f ==所以 3323arctan 3)9363333xdx =≤≤=⎰ππππ即2arctan 93x xdx ≤≤ππ.(3) 令2()x f x e -=,则2()2x f x xe -'=-,令()0f x '=得驻点0x =,又(0)1f =,2()()a f a f a e -=-=,a >0时, 21a e -<,故()f x 在[],a a -上的最大值1M =,最小值2e a m -=,所以2222aa x aa dx a ---≤≤⎰e e .(4) 令2()x xf x e-=,则2()(21)x x f x x e -'=-,令()0f x '=得驻点12x =,又(0)1,f = 1241(),(2)2f e f e -==,从而()f x 在[]0,2上的最大值2M e =,最小值14m e -=,所以 212242xxee dx e --≤≤⎰.习题6-21. 求下列导数:(1)0d dx ⎰; (2) 5ln 2x t d t e dt dx-⎰; (3) cos 20cos()x d t dt dx π⎰; (4) sin x d t dt dx tπ⎰ (0x >). 解 (1)d dx =⎰. (2) 55ln 2x t xd te dt x e dx--=⎰. (3) cos 2220cos()cos(cos )(cos )sin cos(cos )x d t dt x x x x dxπππ'=⋅=-⎰. (4) sin sin sin x x d t d t x dt dt dx t dx t xππ=-=-⎰⎰. 2. 求下列极限:(1) 02arctan limxx tdt x →⎰; (2)()22220e lime x t xx t dt t dt→⎰⎰.解 (1) ()022000021arctan arctan arctan 11(1)limlim lim lim 222x xx x x x tdt tdt x x x x x →→→→'⎡⎤--⎣⎦+====-'⎰⎰.(2) ()()22222222222000020000220022lim lim lim lim xxx x t t t x tx x x x x x x t x t e dt e dt e dt e dt xe xe te dtte dt →→→→'⎡⎤⋅⎢⎥⎣⎦==='⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰e []2222202000222lim lim lim 2122x t x x x x x x x e dt e x e xe x xe →→→'⎡⎤⎣⎦====+'+⋅⎰. 3. 求由方程e cos 0yxt dt tdt +=⎰⎰所确定的隐函数()y y x =的导数.解 方程两边对x 求导数得:cos 0e y y x '⋅+=, cos e yxy '∴=-, 又由已知方程有000sin e y xtt +=,即1sin sin 00e y x -+-=, 即1sin e yx =-,于是有cos cos sin 1e yx xy x '=-=-. 4. 计算下列定积分:(1)1⎰; (2)221d x x x --⎰;(3) 设,0,2()sin ,2x x f x x x πππ⎧≤≤⎪⎪=⎨⎪≤≤;⎪⎩ ,求0()f x dx π⎰(4)⎰.解 (1)4321121433x ==⎰.(2)21222221101()()()dx x x dx x x dx x x dx x x --=-+-+--⎰⎰⎰⎰ 012322332101111111116322332x x x x x x -⎛⎫⎛⎫⎛⎫=++=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(3) ()22220022()sin 1cos 82xf x dx xdx xdx x ππππππππ=+=+=+-⎰⎰⎰(4)32322(2)(2)x dx x dx x dx =-=-+-⎰⎰⎰⎰232202115(2)(2)222x x x x =-+-=.5.设函数()f x 在区间[],a b 上连续,在(),a b 内可导,()0f x '≤,1()()xaF x f t dt x a =-⎰;证明:在(),a b 内有()0F x '≤. 证明 22111()()()()()()()()xx aa F x f t dt f x x a f x f t dt x a x a x a ⎡⎤'=-+=--⎢⎥⎣⎦---⎰⎰[][][]21()()()(),(,,)()x a f x x a f a x a b x a ξξ=---∈∈- (),((,)(,))x f x a b x aξηηξ-'=∈∈-. 由已知条件可知结论成立.习题 6-31. 计算下列积分:(1) 3sin()x dx πππ+3⎰; (2) 32(115)dxx 1-+⎰;(3)1-⎰; (4) 320sin cos d ϕϕϕπ⎰;(5)22cos udu ππ6⎰;(6)2e 1⎰(7)1(8);(9)ln3ln 2e e x x dx --⎰; (10) 3222dxx x +-⎰. 解 (1)333sin()sin()()[cos()]x dx x d x x ππππππππππ+=++=-+3333⎰⎰42coscos 033ππ=-+=. (2) 123322211(511)151(511)(115)5(511)10512dx d x x x x 11---+==-=+++⎰⎰. (3)1111(54)14x --=--==⎰⎰.(4)233422011sin cos cos cos cos 44d d πππϕϕϕϕϕϕ=-==-⎰⎰.(5) 222221cos 211cos cos 2(2)224u udu du du ud u ππππππππ6666+==+⎰⎰⎰⎰2611sin 226264u πππππ⎛⎫=+=- ⎪⎝⎭(6)222111)e e ===⎰⎰. (7) 令tan x t =,则2sec dx tdt =,当1x =时,4t π=;当x =3t π=;于是332144cos 1sin sin t dt t tππππ==-=⎰. (8)令x t =,则dx tdt =,当0x =时,0t =;当x =,2t π=;于是2222012cos (1cos 2)(sin 2)22tdt t dt t t ππππ==+==+⎰⎰.(9) 令xe t =,则1ln ,d x t x dt t==,当ln 2x =时,2t =;;当ln3x =时,3t =;于是3ln3332ln 22221113111(ln ln )12222111x x dx dt t dt e e t t t t --⎛⎫====- ⎪---++⎝⎭⎰⎰⎰. (10)333222211111()ln 231232dx x dx x x x x x -=-=+--++⎰⎰1211(ln ln )ln 2ln 53543=-=- 2. 计算下列定积分: (1)1e x x dx -⎰; (2)e1ln x xdx ⎰;(3)41dx ⎰; (4) 324sin xdx xππ⎰; (5) 220e cos xxdx π⎰; (6) 221log x xdx ⎰;(7)π2(sin )x x dx ⎰; (8) e1sin(ln )x dx ⎰.解 (1)1111000x x x xxe dx xde xe e dx ----=-=-+⎰⎰⎰1110121x e ee e e e----=--=--+=-. (2)2222211111111111ln ln ln (1)222244ee e ee x xdx xdx x x xdx e x e ==-=-=+⎰⎰⎰.(3) 444111112ln 28ln 2dx x dx x ==-=-⎰⎰⎰ 8ln 24=-.(4) 333324444cot cot cot sin x dx xd x x x xdx x ππππππππ=-=-+⎰⎰⎰34π131ln ln sin 492249xπππ⎛=-+=+- ⎝⎭.(5)22222222cos sin sin 2sin x x xx e xdx e d x e xe xdx ππππ==-⎰⎰⎰22222202cos 2cos 4cos x xx e e d x e e xe xdx πππππ=+=+-⎰⎰220e 24cos x e xdx ππ=--⎰于是221cos (2)5xe xdx e ππ=-⎰. (6) ()2222222111122221111log ln ln 2ln 22ln 211ln 2ln 22x xdx xdx x x xdx x x x ==-⎛⎫=- ⎪ ⎪⎝⎭⎰⎰⎰ 133(4ln 2)22ln 224ln 2=-=-. (7) 223200001111(sin )(1cos 2)(sin2)2232x x dx x x dx x x d x ππππ=-=-⎰⎰⎰33200011(sin 22sin2)cos26464x x x xdx xd x πππππ=--=-⎰⎰ 3001(cos 2cos2)64x x xdx πππ=--⎰ 3301sin 264864x πππππ=-+=-. (8)111sin(ln )sin(ln )cos(ln )eeex dx x x x dx =-⎰⎰11sin1cos(ln )sin(ln )eee x x x dx =--⎰1sin1cos11sin(ln )ee e x dx =-+-⎰所以11sin(ln )(sin1cos11)2ex dx e e =-+⎰. 3. 利用被积函数的奇偶性计算下列积分:(1)11ln(x dx -+⎰ ; (2)1212sin 1xdx x -++⎰(3)222(x dx -⎰; (4)4224cos d θθππ-⎰.解 (1)ln(1x +是奇函数,11ln(0x dx -∴+=⎰.(2)2sin 1xx +是奇函数,121sin 01x dx x-∴=+⎰, 因此 111221112sin 22arctan 11x dx dx x x x π---+===++⎰⎰.(3)2222222((42416x dx dx dx ---=+==⎰⎰⎰.(4) ()244222022201cos 24cos 8cos 82212cos 2cos231384222d d d d θθθθθθθθθππππππ-π+⎛⎫== ⎪⎝⎭=++=⋅⋅⋅=⎰⎰⎰⎰.4. 证明下列等式: (1) 证明:11(1)(1)m n n m x x dx x x dx -=-⎰⎰;(2) 证明:1122111xx dx dx x x =++⎰⎰ (0x >); (3) 设()f x 是定义在区间(,)-∞+∞上的周期为T 的连续函数,则对任意(,)a ∈-∞+∞,有0()()a TTaf x dx f x dx +=⎰⎰.证 (1)令1x t -=,则dx dt =-,当0x =时,1t =;当1x =时,0t =;于是1111(1)(1)()(1)(1)m nm nnmn m x x dx t t dt t t dt x x dx -=--=-=-⎰⎰⎰⎰,即11(1)(1)m n n m x x dx x x dx -=-⎰⎰.(2) 令1x t =则21dx dt t-=, 于是11111112222211211111111111t xx t t dx dt t dt dx x tt x t t⎛⎫=⋅=-⋅==- ⎪++++⎝⎭+⎰⎰⎰⎰⎰d ,即 1122111xx dx dx x x =++⎰⎰. (3) 因为()()()a TT a Taaf x dx f x dx f x dx ++=+⎰⎰⎰,而()()()a Taaaf x dx x t T f t T dt f t dt +=++=⎰⎰⎰令()()()aT Taf x dx f x dx f x dx ==-⎰⎰⎰故()()a TT af x dx f x dx +=⎰⎰.4. 若()f t 是连续函数且为奇函数,证明0()xf t dt ⎰是偶函数;若()f t 是连续函数且为偶函数,证明()xf t dt ⎰是奇函数.证 令0()()xF x f t dt =⎰.若()f t 为奇函数,则()()f t f t -=-,令t u =-,可得()()()()()xx xF x f t dt f u du f u du F x --==--==⎰⎰⎰,所以0()()xF x f t dt =⎰是偶函数.若()f t 为偶函数,则()()f t f t -=,令t u =-,可得()()()()()xx xF x f t dt f u du f u du F x --==--=-=-⎰⎰⎰,所以0()()xF x f t dt =⎰是奇函数.5. 利用分部积分公式证明:()()()()d xxuf u x u du f x x du -=⎰⎰⎰.证 令0()()uF u f x dx =⎰则()()F u f u '=,则(())()()()xu x xxf x dx du F u du uF u uF u du '==-⎰⎰⎰⎰()()()()xxxxF x uf u du x f x dx uf u du =-=-⎰⎰⎰ 0()()()()xx x xx f u du uf u du xf u du uf u du =-=-⎰⎰⎰⎰()()xx u f u du =-⎰.习题6-41. 求由下列曲线所围成的平面图形的面积:(1) 2y x =与22y x =-; (2) xy e =与0x =及y e =; (3) 24y x =-与0y =; (4) 2y x =与y x =及2y x =;(5) 1y x =与y x =及2x =; (6) 2y x =与2y x =-;(7) ,x xy e y e -==与1x =;(8) sin (0)2y x x π=≤≤与0,1x y ==. 解 (1)两曲线的交点为(1,1),(1,1)-,取x 为积分变量,[]1,1x ∈-,面积元素22(2)dA x x dx =--,于是所求的面积为112311182(1)2()33A x dx x x --=-=-=⎰.(2) 曲线x y e =与y e =的交点坐标(1,)e , xy e =与0x =的交点为(0,1),取y 为积分变量,[]1,y e ∈,面积元素ln dA ydy =;于是所求面积为111ln (ln )1eeeA ydy ydy y y y ===-=⎰⎰.(3)曲线24y x =-与0y =的交点为(2,0),(2,0)-,取x 为积分变量,[]2,2x ∈-,面积元素2(4)dA x dx =-,于是所求的面积为222322132(4)(4)33A x dx x x --=-=-=⎰.(4) 曲线2y x =与y x =的交点为(0,0),(1,1);2y x =与2y x =的交点为(0,0),(2,4); 它们所围图形面积为:121222011(2)(2)(2)A x x dx x x dx xdx x x dx =-+-=+-⎰⎰⎰⎰223121117()236x x x =+-=.(5) 曲线1y x =与y x =的交点为(1,1),1y x =与2x =的交点为1(2,)2;取x 积分变量,[]1,2x ∈,面积元素1()dA x dx x=-,于是所求的面积为22211113()(ln )ln 222A x dx x x x =-=-=-⎰.(6) 曲线2y x =与2y x =-的交点为()()114,2-,和,取y 作积分变量,[]1,2y ∈-,面积元素2(2)dA y y dy =+-,于是所求的面积为2222311117(2)(2)232A y y dy y y y --=+-=+-=⎰.(7) 曲线x y e =与xy e-=的交点(0,1),取x 作积分变量,[]0,1x ∈,面积元素()x x dA e e dx -=-,于是所求图形的面积为10)()2x x x x A e e dx e e e e--=-=+=+-⎰101(. (8)取x 作积分变量,0,2x π⎡⎤∈⎢⎥⎣⎦,面积元素(1sin )dA x dx =-,于是所求的面积为2200(1sin )(cos )12A x dx x x πππ=-=+=-⎰.2. 求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:(1) 1,4,0y x x y ====,绕x 轴;(2) 3,2,y x x x ==轴,分别绕x 轴与y 轴; (3) 22,y x x y ==,绕y 轴; (4) 22(5)1x y -+=,绕y 轴.解 (1)取x 作积分变量,[]1,4x ∈,体积元素2dV dx xdx ππ==,于是所求旋转体的体积为442111522V xdx x πππ===⎰. (2)绕x 轴旋转时,取x 作积分变量,[]0,2x ∈,体积元素32()x dV x dx π=,于是2267012877x V x dx x πππ===⎰; 同理可求平面图形绕y 旋转所成的旋转体的体积858223003642(4)55y V dy y y πππ⎡⎤=-=-=⎣⎦⎰.(3)曲线2y x =与2x y =的交点为(0,0),(1,1),取y 作积分变量[]0,1y ∈,体积元素222()dV y dy π⎡⎤=-⎣⎦,于是所求的旋转体的体积为1142500113()()2510V y y dx y y πππ=-=-=⎰. (4) 取y 作积分变量[]1,1y ∈-,体积元素22(5(520dV dy π⎡⎤=-=⎣⎦,于是所求的旋转体的体积为1212020102V πππ-==⋅=⎰.3.设某企业边际成本是产量Q (单位)的函数0.2()2QC Q e '=(万元/单位),其固定成本为090C =(万元),求总成本函数. 解 总成本函数为0.200()()290Q QQ C Q C Q dQ C e dQ '=+=+⎰⎰0.20.2010901080QQ Q e e =+=+.4.设某产品的边际收益是产量Q (单位)的函数()152R Q Q '=-(元/单位),试求总收益函数与需求函数. 解 总收益函数为20()(152)15QR Q Q dQ Q Q =-=-⎰需求函数为()15R Q P Q Q==-. 5.已知某产品产量的变化率是时间t (单位:月)的函数()25,0f t t t =+≥,问:第一个5月和第二个5月的总产量各是多少?解 设产品总产量为()Q t ,则()()Q t f t '=,第一个5月的总产量552510()(25)(5)50Q f t dt t dt t t ==+=+=⎰⎰.第二个5月的总产量为10102102555()(25)(5)100Q f t dt t dt t t ==+=+=⎰⎰.6.某厂生产某产品Q (百台)的总成本()C Q (万元)的变化率为()2C Q '=(设固定成本为零),总收益()R Q (万元)的变化率为产量Q (百台)的函数()72R Q Q '=-.问: (1) 生产量为多少时,总利润最大?最大利润为多少?(2) 在利润最大的基础上又多生产了50台,总利润减少了多少? 解 (1)总利润()()()L Q R Q C Q =-当()0L Q '=即()()0R Q C Q ''-=即7220Q --=,2.5Q =(百台)时,总利润最大,此时的总成本和总收益分别为2.52.52.50()225C C Q dQ dQ Q'====⎰⎰2.52.52.520()(72)(7)11.25R R Q dQ Q dQ Q Q '==-=-=⎰⎰总利润11.255 6.25L R C =-=-=(万元).即当产量为2.5(百台)时,总利润最大,最大利润是6.25万元.(2)在利润最大的基础上又生产了50台,此时产量为3百台,总成本3300()26C C Q dQ dQ '===⎰⎰,总收入3323000()(72)(7)12R R Q dQ Q dQ Q Q '==-=-=⎰⎰, 总利润为1266L R C =-=-=(万元).减少了6.2560.25-=万元.即在利润最大的基础上又生产了50台时,总利润减少了0.25万元.习题 6-51. 判断下列反常积分的敛散性,若收敛,则求其值: (1)41dxx +∞⎰; (2)1+∞⎰; (3) 0xe dx +∞-⎰(a >0); (4)sin xdx +∞⎰;(5)1-⎰; (6)222dxx x +∞-∞++⎰;(7)21⎰; (8)10ln x xdx ⎰;(9)e1⎰; (10)23(1)dxx -⎰.解 (1)14311133dx x x +∞+∞=-=⎰.此反常积分收敛.(2)1+∞==+∞⎰.此反常积分发散. (3) 101x xe dx e +∞--+∞=-=⎰.此反常积分收敛.(4) 0sin cos lim cos 1x xdx x x +∞+∞→+∞=-=-+⎰不存在,此反常积分发散.(5)111arcsin x π--==⎰.此反常积分收敛.(6)22(1)arctan(1)22(1)1dxd x x x x x π+∞+∞+∞-∞-∞-∞+==+=++++⎰⎰.此反常积分收敛.(7)23222110012lim lim (1)3x εεεε+++→→+⎡==-+⎢⎣⎰⎰320222lim 22333εε+→⎛==-- ⎝.此反常积分收敛. (8)11122221000111111ln limln lim ln lim ln 222424x xdx xdx x x xdx εεεεεεεεε→→→⎛⎫⎛⎫==-=-- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰, 所以11220001111ln lim ln lim(ln )4244x xdx x xdx εεεεεε++→→==--=-⎰⎰.此反常积分收敛.(9)111πarcsin(ln )2eeex ===⎰⎰.此反常积分收敛. (10)21233301(1)(1)(1)dx dx dx x x x =+---⎰⎰⎰,因为反常积分1132001(1)(1)dx x x ==∞--⎰发散,所以反常积分230(1)dxx -⎰发散. 2. 当k 为何值时,反常积分+2(ln )kdxx x ∞⎰收敛?当k 为何值时,这反常积分发散? 解 当1k =时,++222ln ln(ln )ln ln dxd x x x x x∞∞+∞===+∞⎰⎰,发散.当1k ≠时,1++122211(ln )(1)(ln 2)(ln )ln (ln )11kk kk k dx x k x d x x x kk -∞∞--+∞⎧>⎪-===⎨-⎪+∞<⎩⎰⎰所以,当1k >时,此广义积分收敛;当1k ≤时,此广义积分发散. 3. 利用递推公式计算反常积分+0e n x n I x dx ∞-=⎰.解 ++110n x n xn x n n I x de x e n x e dx nI ∞∞----+∞-=-=-+=⎰⎰,因为 +101x x xI xde xe e ∞---+∞+∞=-=--=⎰,所以 121(1)(1)2!n n n I nI n n I n n I n --==-=-=.复习题6(A )1、 求下列积分:(1)121tan sin 1xdx x -+⎰; (2)⎰; (3)2x⎰; (4)ln 0⎰;(5)21220(1)x dx x +⎰; (6)1⎰;(7)120xx e dx -⎰; (8)21(ln )ex dx ⎰;(9) 401cos 2xdx xπ+⎰; (10) 20cos x e xdx π-⎰;(11) 20sin 1cos x xdx x π++⎰; (12) 40ln(1tan )x dx π+⎰. 解 (1) 因为被积函数2tan sin 1x x +是奇函数,所以121tan 0sin 1xdx x -=+⎰.(2)=⎰⎰,令1sin x t -=,则cos dx tdt =;当0x =时,2t π=-;当1x =时,0t =;所以22221cos 2sin 2cos 2244t t t tdt dt ππππ---+⎡⎤===+=⎢⎥⎣⎦⎰⎰⎰. (3) 令2sin x t =,则2cos dx tdt =,当0x =时,0t =;当2x =时,2t π=;所以222222204sin 4cos 4sin 22(1cos 4)xt tdt tdt t dt πππ=⋅==-⎰⎰⎰⎰2012(sin 4)4t t ππ=-=. (4)t =,则221tdx dt t =+,当0x =时,0t =;当ln 2x =时,1t =;所以2ln 11200022(arctan )2(1)14t dt t t t π==-=-+⎰⎰. (5) 令tan x t =,则2sec dx tdt =,当0x =时,0t =;当1x =时,4t π=;所以22412442240000tan 1cos 2sin 21sec ()(1)sec 22484x t t t t dx tdt dt x t ππππ-===-=-+⎰⎰⎰.(6) 令sec x t =,则sec tan dx t tdt =,当1x =时,0t =;当2x =时,3t π=;所以23330100tan sec tan tan (tan )sec 3t t tdt tdt t t t ππππ===-=⎰⎰⎰.(7)111112221022x x x x x x e dx x de x e xe dx e xde ------=-=-+=--⎰⎰⎰⎰1111110223225x x x e xe e dx e e e ------=--+=--=-⎰.(8)22111111(ln )ln 2ln 2ln 22ee e e e x dx x x x x dx e x x dx e x=-⋅=-+=-⎰⎰⎰.(9) 44440000tan tan tan 1cos 2xdx xd x x x xdx x ππππ==-+⎰⎰⎰ 401ln cos ln 2442x πππ=+=-. (10)22220cos cos cos sin xxxx e xdx xdee x e xdx ππππ----=-=--⎰⎰⎰2220001sin 1sin cos xxx xdee x e xdx πππ---=+=+-⎰⎰221cos x ee xdx ππ--=+-⎰,所以 2201cos (1)2xe xdx e ππ--=+⎰.(11)22222000002sin sin cos tan 1cos 1cos 21cos 2cos2x x x x x d x dx dx dx xd x x x x πππππ+=+=-+++⎰⎰⎰⎰⎰2220002200tan tan ln(1cos )222ln cos ln(1cos )22x x x dx x x x ππππππ=--+=--+⎰20ln 22ln cos222x πππ=++=. (12) 4444000cos sin ln(1tan )ln ln(cos sin )ln cos cos x x x dx dx x x dx xdx xππππ++==+-⎰⎰⎰⎰令4x u π-=,可得0440041ln(cos sin )ln cos()(ln 2ln cos )42x x dx x dx u du ππππ⎤+=-=-+⎥⎦⎰⎰⎰40ln 2ln cos 8xdx ππ=+⎰所以40ln 2ln(1tan )8x dx ππ+=⎰.2、设()f x 在[],a b 上连续,且()1baf x dx =⎰,求()b af a b x dx +-⎰.解 令a b x t +-=,则dx dt =-,当x a =时,t b =;当x b =时,t a =;所以()()()1bababaf a b x dx f t dt f t dt +-=-==⎰⎰⎰.3、设()f x 为连续函数,试证明:()()(())xx tf t x t dt f u du dt -=⎰⎰⎰.证 用分部积分法,(())()(())xxt tx tf u du dt t f u du td f u du =-⎰⎰⎰⎰⎰()()()()xx x xx f u du tf t dt xf t dt tf t dt =-=-⎰⎰⎰⎰()()xf t x t dx =-⎰.4、设()u ϕ为连续函数,试证明:220()2()aa ax dx x dx ϕϕ-=⎰⎰.证2220()()()aaaax dx x dx x dx ϕϕϕ--=+⎰⎰⎰,令x t =-,则0022220()(())()()a aaax dx t dt t dt x dx ϕϕϕϕ-=--==⎰⎰⎰⎰所以022220()()()2()aa aaax dx x dx x dx x dx ϕϕϕϕ--=+=⎰⎰⎰⎰.5、计算下列反常积分:(1)2048dxx x +∞++⎰; (2)21arctan x dx x+∞⎰; (3)1⎰; (4)1e ⎰解 (1)222000(2)12arctan 48(2)2228dx d x x x x x π+∞+∞+∞++===++++⎰⎰. (2)221111arctan 1arctan 1arctan (1)x x dx xd dx x x x x x +∞+∞+∞+∞=-=-++⎰⎰⎰ 22111lnln 242142xx ππ+∞=+=++.(3)11100022dx π⎡===⎣⎰⎰.(4)112ee ===⎰⎰. 6、求抛物线22y px =及其在点(,)2pp 处的法线所围成的平面图形的面积. 解 抛物线22y px =在点(,)2p p 处的法线方程为32x y p +=,两曲线的交点为9(,3),(,)22pp p p -;取y 作积分变量3p y p -≤≤,所求的平面图形面积为 2232333131116()()222263pp p pA p y y dy py y y p p p --=--=--=⎰. 7、求由曲线32y x =与直线4,x x =轴所围图形绕y 轴旋转而成的旋转体的体积.解 曲线32y x =与直线4x =的交点为(4,8),取y 作积分变量,08y ≤≤,体积元素223244()(16)dy y dy y dy ππ⎡⎤=-=-⎣⎦于是,所求的旋转体的体积为884373003512(16)(16)77V y dy y y πππ=-=-=⎰.8、设某产品的边际成本为()2C Q Q '=-(万元/台),其中Q 代表产量,固定成本022C ==(万元),边际收益()204R Q Q '=-(万元/台).试求: (1) 总成本函数和总收益函数; (2) 获得最大利润时的产量;(3) 从最大利润时的产量又生产了4台,总利润的变化. 解 (1)总成本函数2001()(2)2222QC Q Q dQ C Q Q =-+=-+⎰,总收益函数20()(204)202QR Q Q dQ Q Q =-=-⎰.(2)利润函数23()()()18222L Q R Q C Q Q Q =-=--,令()0L Q '=,得6Q =(台),而(6)30L ''=-<,所以当产量6Q =(台)时,利润最大.(3)(10)(6)83224L L -=-=-,所以从最大利润时的产量又生产了4台,总利润减少了24(万元).(B) 1、填空题:(1)202cos x d x t dt dx=⎰ . (2) 设()f x 连续,220()()x F x xf t dt =⎰,则()F x '= .(3) 2sin()x d x t dt dx -=⎰ .(4) 设()f x 连续,则220()xd tf x t dt dx -=⎰ . (5) 设20cos ()1sin xt f x dt t=+⎰,则220()1()f x dx f x π'=+⎰ . (6) 设()f x 连续,且1()2()f x x f x dx =+⎰,,则()f x = .(7) 设()f x 连续,且()1cos xtf x t dt x -=-⎰,则20()f x dx π=⎰ .(8)2ln e dxx x +∞=⎰ .解 (1) 2220002224cos (cos )cos (cos )2x x x d d x t dt x t dt t dt x x x dx dx==+-⋅⎰⎰⎰2224cos 2cos xt dt x x =-⎰.(2) 2222200()(())()()2x x d F x x f t dt f t dt x f x x dx '==+⋅⋅⎰⎰22220()2()x f t dt x f x =+⎰.(3) 令x t u -=,则02220sin()sin ()sin xxxx t dt u du u du -=-=⎰⎰⎰所以22200sin()sin sin x x d d x t dt u du x dx dx-==⎰⎰. (4)令22x t u -= 则222222001()()()2x x tf x t dt f x t d x t -=---⎰⎰220011()()22x x f u du f u du =-=⎰⎰.所以2222001()()()2x x d d tf x t dt f u du xf x dx dx-=⋅=⎰⎰. (5)22200()arctan ()arctan ()arctan (0)1()2f x dx f x f f f x πππ'==-+⎰, 而02222000cos cos (0)0,()arctan(sin )1sin 21sin 4t t f dt f dt t t t ππππ=====++⎰⎰,所以220()arctan 1()4f x dx f x ππ'=+⎰(6) 等式1()2()f x x f x dx =+⎰两边在区间[]0,1积分得111100001()2()2()2f x dx xdx f x dx f x dx =+=+⎰⎰⎰⎰101()2f x dx =-⎰, 所以 ()1f x x =-.(7)令x t u -=,则du dt =-,于是00()()()xxtf x t dt x u f u du -=-⎰⎰原等式化为 0()()1cos xxx f u du uf u du x -=-⎰⎰两边对x 求导()sin xf u du x =⎰在上式中,令2x π=,得()1xf x dx =⎰.(8)22ln 11ln ln ln ee edx d x x x x x +∞+∞+∞==-=⎰⎰ 2、计算下列积分:(1) 120ln(1)(2)x dx x +-⎰; (2) 3142(1)x x dx -⎰;(3) 31(2)f x dx -⎰,其中21()x x f x e -⎧+=⎨⎩ 00x x ≤>;(4) 0()f x dx π⎰,其中0sin ()x t f x dt tπ=-⎰. 解 (1) 111120000ln(1)1ln(1)ln(1)(2)22(1)(2)x x dxdx x d x x x x x ++=+=----+-⎰⎰⎰ 1100111111ln 2()ln 2ln ln 2312323x dx x x x +=--=-=+--⎰. (2) 令2sin x t =,则331144242222200001111cos 2(1)(1)cos ()2222t x x dx x dx tdt dt ππ+-=-==⎰⎰⎰⎰220011cos 41313(12cos 2)(sin 2sin 4)8282832t t dt t t t πππ+=++=++=⎰. (3) 令2x t -=,则dx dt =,当1x =时,1t =-;当3x =时,1t =;于是3101111(2)()()()f x dx f t dt f x dx f x dx ---==+⎰⎰⎰⎰12171(1)3x x dx e dx e--=++=-⎰⎰. (4) 由题设有sin ()xf x xπ'=-,用分部积分法得 00000sin sin ()()()t x f x dx xf x xf x dx dt x dx t xππππππππ'=-=---⎰⎰⎰⎰ 000sin sin sin ()x x xdx x dx x dx x x xππππππππ=-=----⎰⎰⎰sin 2xdx π==⎰.3、设13201()()1f x x f x dx x =++⎰,求10()f x dx ⎰. 解 等式两边在区间[]0,1上积分得11113200001()()1f x dx dx f x dx x dx x =+⋅+⎰⎰⎰⎰11100011arctan ()()444x f x dx f x dx π=+=+⎰⎰解得1()3f x dx π=⎰.4、求函数2()(1)x t f x t e dt -=-⎰的极值.解 令222()(1)22(1)(1)0x x f x x e x x x x e --'=-⋅=--+=,得函数()f x 的驻点:1,0,1-;当1x <-时,()0f x '>;当10x -<<时,()0f x '<; 当01x <<时,()0f x '>;当1x >时,()0f x '<;所以函数()f x 在0x =处取得极小值(0)0f =,在1x =±处取得极大值:101(1)(1)t f t e dt e-±=-=⎰.5、设21sin ()x tf x dt t=⎰,求10()xf x dx ⎰.解 用分部积分法得221211122220011001sin 1sin 1sin ()2222x x t t x xf x dx dt dx x dt x xdx t t x ⎡⎤⎡⎤==-⋅⋅⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰112220011cos11sin cos 222x dx x -=-==⎰.6、求曲线(1)(2)y x x =--和x 轴围成的平面图形绕y 轴旋转所成的旋转体体积. 解 抛物线(1)(2)y x x =--的顶点坐标为31(,)24-,左、右半支方程分别为:11()(32x y =和21()(32x y =;取y 作积分变量,104y -≤≤;体积元素为2221(())(())3dV x y x y dy π⎡⎤=-=⎣⎦,因此所求的旋转体的体积为0302114433(14)(14)422V y y πππ--==+=+=⎰⎰.7、设2()()()xax x t f t dt Φ=-⎰,证明:()2()()xax x t f t dt 'Φ=-⎰.证 2222()(2)()()2()()xxx xaaaax x xt t f t dt xf t dt x tf t dt t f t dt Φ=-+=-+⎰⎰⎰⎰,所以()22()()2()()xxx aaax xf t dt x tf t dt t f t dt ''Φ=-+⎰⎰⎰222()()2()2()()xxa ax f t dt x f x tf t dt x xf x x f x =+--⋅+⎰⎰2()2()2()()xx xaaaxf t dt tf t dt x t f t dt =-=-⎰⎰⎰.8、设连续函数()f x 满足(2)2()f x f x =,证明:2110()7()xf x dx xf x dx =⎰⎰. 证 202110()()()xf x dx xf x dx xf x dx =+⎰⎰⎰, 令2x t =,则21110000()2(2)(2)42()8()xf x dx tf t d t t f t dt xf x dx ==⋅=⎰⎰⎰⎰, 所以 202110()()()xf x dx xf x dx xf x dx =+⎰⎰⎰ 111000()8()7()xf x dx xf x dx xf x dx =-+=⎰⎰⎰.。
第5章 定积分及其应用§5.1 定积分的概念习 题 5-11.填空题:(1)函数()f x 在区间[,]a b 上的定积分是积分和的极限,即()baf x dx ⎰=( ).(2)定积分的值只与( )及( )有关,而与( )的记法无关. (3)区间[,]a b 的长度的定积分的表示是( ). (4)被积函数()f x 在区间[,]a b 上连续是定积分()baf x dx ⎰存在的( ).(5)定积分的几何意义( ). 2.利用定积分的定义计算下列积分: (1)2baxdx ⎰; (2)1x e dx ⎰.3.利用定积分的定义计算由抛物线21y x =+,直线x a =、x b =(b a >)及x 轴所围成的图形的面积.4.利用定积分的几何意义,证明下列等式: (1)1310x -=⎰; (2)sin 0xdx ππ-=⎰;(3)4π=⎰; (4)11arctan 0xdx -=⎰;(5)11124x dx xdx -=⎰⎰ ; (6)2202cos 2cos xdx xdx πππ-=⎰⎰.5.利用定积分的几何意义求a⎰(0)b >的值.6. 将下列极限表示成定积分: (1)()201lim3nii i i x λξξ→=-∆∑,λ是[]7,5-上的分割;(2)01limni i x λ→=,λ是[]0,1上的分割.7.将下列和式的极限表示成定积分:(1)111lim 12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (2)112lim p p p p n n n +→∞+++(0p >);(3))221limn n n →∞+; (4)n .8.有一河,宽为200米,从一岸到正对岸每隔20米测量一次水深,测得数据如下(图5-1-8).试用梯形公式求此河横截面积的近似值.图5-1-8§5.2 定积分的性质习 题 5-21. 证明定积分的性质: (1)()()bb aakf x dx k f x dx =⎰⎰ (k 为常数); (2)1b baadx dx b a ⋅==-⎰⎰. 2. 估计下列积分值:(1)421(2)x dx +⎰; (2)3244(1sin )x dx ππ+⎰; (3)arctan x xdx ;(4)21x edx ⎰; (5)2211x dx x +⎰; (6)20sin x dx x π⎰. 3. 设()f x 及()g x 在[],a b 上连续,证明: (1) 若在[],a b 上,()0f x ≥,且()0baf x dx =⎰,则在[],a b 上,()0f x ≡;(2)若在[],a b 上,()0f x ≥,且()f x 不恒等于零,则()0baf x dx >⎰;(3)若在[],a b 上,()()f x g x ≤,且()()bbaaf x dxg x dx =⎰⎰,则在[],a b 上,()()f x g x ≡.4. 根据定积分性质及第3题的结论,比较下列每组积分的大小:(1)320sin xdx π⎰,220sin xdx π⎰; (2)221x dx ⎰,231x dx ⎰;(3)21ln xdx ⎰,221(ln )x dx ⎰; (4)10x e dx ⎰,21x e dx ⎰;(5)1xe dx ⎰,()101x dx +⎰; (6)20xdx π⎰,20sin xdx π⎰;(7)20sin xdx π⎰,02sin xdx π-⎰; (8)2cos xdx π-⎰,20cos xdx π⎰;(9)10xdx ⎰,()01ln 1x dx +⎰ (10)()01ln 1x dx +⎰,011xdx x+⎰;. 5. 利用积分中值定理求下列极限: (1)sin limn pnn x dx x+→∞⎰; (2)120lim 1nn x dx x →∞+⎰; (3)10lim 1n xx n x e dx e →∞+⎰.6. 设()f x 在[],a b 上连续,()0baf x dx =⎰.证明:()f x 在[],a b 上在[],a b 内至少存在一个零点.7. 设()f x 在[]0,1上连续,在()0,1内可导,且1233()(0)f x dx f =⎰.证明:在()0,1内至少存在一点ξ,使得()0f ξ'=.8. 设()f x 在[],a b 上连续,在(),a b 内可导,且存在(),c a b ∈,使得()()()caf x dx f b c a =-⎰.证明:在(),a b 内至少存在一点ξ,使得()0f ξ'=.§5.3 微积分基本公式习 题 5-31. 设0()cos xx t tdt ϕ=⎰,求(0)ϕ',4πϕ⎛⎫' ⎪⎝⎭. 2.求下列函数的一阶导数: (1)0()sin xtx e dt ϕ=⎰; (2)223()t xx e dt ϕ-=⎰;(3)2()x x ϕ=⎰; (4)2x y =;(5)32x xy =⎰; (6)()cos 2sin ()cos xxx t dt ϕπ=⎰;(7)22x txy t e dt -=⎰; (8)2()xe xy f t dt =⎰.3. 求下列函数的二阶导数:(1)()330sin xy t x tdt =-⎰; (2)258sin ()xy t f x dt dy t ⎛⎫= ⎪⎝⎭⎰⎰.4. 利用洛必达法则,求下列极限:(1)20cos limxx t dt x→⎰; (2)201lim arctan xx tdt x+→⎰;(3)202limsin 2x t x x e dt x x→-⎰; (4)()2202002sin limln 1x x xt dtt t dt→⎡⎤+⎣⎦⎰⎰;(5)121ln 1lim (1)xx tdtt x →-⎰+; (6)232lim(sin )x x x t dtt t t dt→-⎰⎰;(7)22201lim ()x t x x t t edt x -→+∞+⎰; (8)()222020lim xt xx t e dt te dt→⎰⎰.5. 设函数()y y x =由方程00cos 0y xte dt tdt +=⎰⎰所确定,求dydx. 6. 设函数()y y x =由方程20cos y x x y tdt -+=⎰所确定,求dy dx.7. 设0sin t x udu =⎰,0cos t y udu =⎰,求dydx.8.设20()(1)xt f x t t e dt -=-⎰,问x 为何值时,()f x 有极值?9. 求函数0()(4)xF x t t dt =-⎰在[1,5]-上的最大值与最小值.10. 计算下列各定积分: (1)24211()x dx x+⎰; (2)()13213x x dx --⎰; (3)332(21)x dx --⎰; (4)1(21)xe dx +⎰; (5)12111dx x -+⎰; (6)240tan xdx π⎰;(7)10⎰; (8)21201x dx x +⎰; (9)20cos 2x dx π⎛⎫ ⎪⎝⎭⎰; (10)41dx ⎰; (11)420213311x x dx x -+++⎰; (12)211e dx x ---+⎰; (13)20sin x dx π⎰; (14)设21,01()1,10x x f x x x ⎧+ ≤≤=⎨+ -≤<⎩,求11()f x dx -⎰. 11. 设()f x 连续,若()f x 满足1()()x f xt dt f x xe =+⎰,求()f x .12. 设13201()()1f x x f x dx x =++⎰,求()f x 与10()f x dx ⎰. 13. 设0ln(1)()(0)xt f x dt x t+=>⎰,求1()f x f x ⎛⎫+ ⎪⎝⎭. 14. 设1sin ,0()20,0x x f x x x ππ⎧ ≤≤⎪=⎨⎪ <>⎩或,求0()()x x f t dt ϕ=⎰在(,)-∞+∞内的表达式.§5.4 定积分的换元积分法与分部积分法习 题 5-41. 用换元积分法求下列定积分: (1)122(115)dxx --+⎰; (2)101xx e dx e +⎰; (3)220sin cos x xdx π⎰; (4)022122dx x x -⎰++; (5)1⎰; (6)2120t te dx -⎰; (7)1221xe dx x ⎰; (8)35201x dx x +⎰; (9)2502353x x dx x +-+⎰;(10)6e e⎰; (11)21e ⎰; (12)320sin cos d πθθθ⎰;(13)1(14);(15)ax ⎰;(16)3⎰(17)⎰;(18)0;(19) 0⎰; (20); (21)3122(1)xdx -+⎰;(22)1;(23)41⎰;(24)1⎰-;(25)⎰; (26)2⎰; (27)-⎰; (28)()223min 2,x dx -⎰(29)2sin sin cos xdx x xπ+⎰;(30)0π⎰. 2. 用分部积分法求下列定积分: (1)ln 2x xe dx ⎰; (2)1ln e x xdx ⎰;(3)41⎰; (4)1arctan x xdx ⎰; (5)220sin x xdx π⎰; (6)324sin xdx xππ⎰; (7)220cos x xdx π⎰; (8)1530ln x xdx ⎰ ;(9)230x e dx ;(10)22(1)x - ; (11)220cos x e xdx π⎰; (12)1sin(ln )ex dx ⎰ ;(13)22ln (1)e exdx x -⎰; (14)12(1)ln (1)e x x dx -++⎰;(15)221log x xdx ⎰;(16)20sin x x dx π⎰; (17)1ln eex dx ⎰ ; (18)()242sec 1tan x xdx x π+⎰;(19)161⎰; (20)122(1)m xdx -⎰(m 为自然数).3. 利用积分区间的对称性以及函数的奇偶性,计算下列定积分:(1)22sin cos 2x xdx ππ-⎰;(2)22ππ-⎰;(3)6sin x xdx ππ-⎰;(4)1⎰; (5)x dx ; (6)221cos xdx x ππ-+⎰;(7)522cos xdx ππ-⎰; (8)325425sin 21x xdx x x -+⎰+; (9))sin x x dx ππ-⎰+.(10)244cos 1x xdx e ππ--+⎰.4.已知()f x 是连续函数,证明 (1)1()()[()]baf x dx b a f a b a x dx =-+-⎰⎰;(2)200()[()(2)]aaf x dx f x f a x dx =+-⎰⎰;(3)()2321()2aa x f x dx xf x dx =⎰⎰(0a >).5. 设()f x 是连续函数,证明 (1) 当()f x 是偶函数时,则0()()xx f t dt ϕ=⎰为奇函数;(2)当()f x 是奇函数时,则0()()xx f t dt ϕ=⎰为偶函数.6. 证明:220()2()aaax dx x dx ϕϕ-=⎰⎰,其中()x ϕ为连续函数.7. 证明:110(1)(1)m n n m x x dx x x dx ϕϕ-=-⎰⎰.8. 证明:20sin 2sin nn xdx xdx ππ=⎰⎰.9. 证明:112211111xx dx dx x x =++⎰⎰(0x >). 10. 设31sin ()x t f x dt t =⎰,求120()x f x dx ⎰.若1sin ()n x t f x dt t=⎰,求110()n x f x dx -⎰.11. 若()f x ''在[0,]π连续,(0)2f =,()1f π=,证明:[()()]sin 3f x f x xdx π''+=⎰.12. 当0x >时,()f x 可导,且满足方程11()1()xf x f t dt x=+⎰, 求()f x .§5.5 广义积分习 题 5-51 计算下列瑕积分.(1)41dx x +∞⎰; (2)0e +∞⎰; (3)2122dx x x +∞-∞++⎰; (4)211(1)dx x x +∞+⎰; (5)1+∞⎰; (6) 0sin px e xdx ω+∞-⎰(0,0p ω>>);(7)21arctan xdx x+∞⎰;(8) 1⎰(9)1e⎰(10)10⎰;(11)21⎰;(12)()22011dx x -⎰.2. 求当k 为何值时,瑕积分()21ln kdx x x +∞⎰收敛?当k 为何值时,该瑕积分发散?又当k 为何值时,该瑕积分取得最小值?3. 计算瑕积分0n x n I x e dx +∞-=⎰(n 为自然数).4. 求c 为何值时,使2lim xc tx x c te dt x c -∞→+∞+⎛⎫= ⎪-⎝⎭⎰. 5.求2+∞⎰.6. 计算下列式子:(1)(7)2(4)(3)ΓΓΓ; (2)3(3)()29()2ΓΓΓ; (3)40x x e dx +∞-⎰; (4)2220x x e dx +∞-⎰. 7. 用Γ函数表示下列积分,并指出积分的收敛范围.(1)nxe dx +∞-⎰(0n >); (2)101ln pdx x ⎛⎫⎪⎝⎭⎰; (3)22x dx +∞--∞⎰;(4)mn x x edx +∞-⎰; (5)10⎰; (6)311dx x +∞+⎰. §5.6 定积分的几何应用习题5-61. 求由下列各组曲线所围成平面图形的面积:(1)1xy =,y x =,2x =; (2)x y e =,xy e -=,1x =; (3)2y x =,2x y +=; (4)3y x =,1y =,2y =,0x =;(5)0y =,1y =,ln y x =,0x =; (6)22x y =,228x y +=;(7) ln y x =,y 轴,ln y a =,ln y b =( 0b a >>);(8) 23y x =+,2y x =. 2. 直线x k =平分由2y x =,0y =,1x =所围之面积,求k 之值. 3. 求抛物线243y x x =-+-及在点(0,3)-和(3,0)处切线所围成图形的面积. 4. 求抛物线22y px =及其在点,2p p ⎛⎫⎪⎝⎭处的法线所围成的图形的面积. 5. 求曲线33cos ,sin x a t y a t ==,).0(>a 所围成图形的面积. 6. 求曲线2cos r a θ=).0(>a 所围成图形的面积.7. 求曲线2(2cos r a θ=+)).0(>a 所围成图形的面积. 8. 求对数螺线r ae θ=(0a >,πθπ-≤≤)及射线θπ=所围成图形的面积.9. 计算阿基米德螺线r a θ= (0a >)上相应于θ从0到2π的一段弧与极轴所围成的图形(如图5-6-22)的面积.图5-6-22 图5-6-2310.求由下列各曲线所围成图形的公共部分的面积. (1) 3cos r θ=及1cos r θ=+;(2) r θ=及2cos 2r θ=.11. 圆1r =被心形线1cos r θ=+分割成两部分,求这两部分的面积. 12.设sin y x =,02x π≤≤.问:为t 何值,图5-6-23中阴影部分的面积1s 与2s 之和最小?最大?13.求由下列已知曲线围成的平面图形绕指定的轴旋转而成的旋转体的体积.(1)2xy a =,0y =,x a =,2x a =(0a >),绕x 轴. (2)22(2)1x y +-=,绕x 轴.(3)ln y x =,0y =,x e =,绕x 轴和y 轴. (4)224x y +=,24(1)x y =--,0y >,绕x 轴. (5)5xy =,6x y +=,绕x 轴.(6)cos y x =,0x =,x π=,x 轴,绕y 轴.14. 求摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩(02t π≤≤,0a >)的一拱与0y =所围成的图形绕直线2y a =旋转而成的旋转体的体积.15. 由心形线4(1cos )ρθ=+和直线0θ=及2πθ=所围成图形绕极轴旋转而成的旋转体的体积.16. 一个棱锥体的底面是长为2a 的正方形,高为h ,求此棱锥体的体积 (如图5-6-24).图5-6-24 图5-6-2517.设直线y ax b =+(0a >,0b >)与直线0x =,1x =及0y =所围成的梯形面积等于A ,试求a 、b ,使这个梯形绕x 轴旋转所得旋转体的体积最小.18.在由椭圆域2214y x +≤绕y 轴旋转而成的椭球体上,以y 轴为中心轴打一个圆孔,使剩下的部分的体积恰好等于椭球体体积的一半,求圆孔的直径.19.设有一锥体,其高为h ,上、下底都为椭圆,椭圆的轴长分别为2a 、2b 与2A 、2B ,求这锥体的体积.20.作半径为r 的球的外切正圆锥,问此圆锥的高h 为何值时,其体积V 最小?求出此最小值(如图5-6-25).21.把星形线232323x y a +=所围成的图形绕x 轴旋转(图5-6-26),计算所得旋转体的体积.图5-6-26 图5-6-27 22.用积分的方法证明图5-6-27所示球缺的体积为2()3H V H R π=-. 23.求圆盘222x y a +≤绕x b =-(0b a >>)旋转而成的旋转体的体积.24.证明:由平面图形x a =,x b =,0a b ≤<,0()y f x ≤≤绕y 轴旋转而成的旋转体的体积为2()baV xf x dx π=⎰.25.利用24题的结论,计算sin y x =(0x π≤≤)和x 轴所围成的图形绕y 轴旋转所成的旋转体的体积.习题5-71. 已知边际成本'2()25309C q q q =+-,固定成本为55,试求总成本()C q ,平均成本与变动成本.2. 已知边际收入为'()30.2R q q =-,q 为销售量,求总收入函数()R q ,并确定最高 收入的大小.3. 某产品生产q 个单位是总收入R 的变化率为'()200100qR q =-,求: (1)生产50个单位时的总收入;(2)在生产100个单位的基础上,再生产100个单位时总收入的增量.4. 已知某商品每周生产q 个单位时,总成本变化率为'()0.412C q q =-(元/单位),固 定成本500,求总成本()C q . 如果这种商品的销售单价是20元,求总利润()L q ,并问每周生产多少单位时才能获得最大利润?图5-7-56. 设某城市人口总数为F ,已知F 关于时间t (年)的变化率为dF dt =,假设在计算的初始时间(0)t =,城市人口数为100(万),试求t 年中该城市人口总数.7. 若边际消费倾向在收入为Y 时为1232Y -,且当收入为零时总消费支出070c =.(1)求消费函数()c Y ;(2)求收入由100增加到196时消费支出的增加数.8. 设储蓄边际倾向(即储蓄额S 的变化率)是收入y 的函数 '()0.3S y =, 求收入从100元增加到900元时储蓄的增加额.9. 如果需求曲线为2()500.025D q q =-,并已知需求量为20个单位,试求消费者剩余CS .10. 假设某国某年洛伦兹曲线近似地由3y x =(01x ≤≤)表示,试求该国的基尼系数.11. 某投资项目的成本为100万元,在10年中每年可收益25万元,投资率为5%,试 求这10年中该项投资的纯收入的贴现值.12. 一位居民准备购买一栋别墅,现价为300万元,如果以分期付款的方式,要求每年 付款21万元,且20年付清,而银行贷款的年利率为4%,按连续复利计息,请你帮这位购5. 某新产品的销售率由下式给出()10090x f x e -=-,式中x 是产品上市的天数,前四天的销售总数是曲线()y f x =与x 轴在之间的面积(如图5-7-5),求前四天总的销售量.房者作一决定:是采用一次付款合算还是分期付款合算?总习题五1.求下列极限:(1) limnn k →∞=. (2) 21lim inni n i nen ne→∞=+∑;(3)11lim n n i n →∞= (4)112lim p p p p n n n +→∞+++(0p >); (5)lim n →∞2.利用积分中值定理求下列极限: (1)sin lim0n pnn xdx x +→∞=⎰; (2)222lim n x n n x dx e+→∞⎰.3.求下列极限:(1)101lim (1sin 2)xtx t dt x →+⎰; (2)lim ()x a x a x f t dt x a →-⎰(其中()f x 连续);(3)()2arctan lim xx t dt→+ (4) ()2210limxt t x e dt→+∞⎰.4.(已知[]02()1()1xf t dt f x -=-⎰,求(0)f '.5. 已知()2021,0()0,x t e dtx f x x x ⎧-⎪≠=⎨⎪=0⎩⎰,求(0)f '. 6.设()f t 在0t ≤≤+∞上连续,若220()(1)x f t dt x x =+⎰,求(2)f .7. 求函数0()(3)xF x t t dt =-⎰在[1,5]-上的最大值与最小值.8. 证明:111ln(1)11ln 23n n n+=++++<+. 9. 设()f x 、()g x 在区间[,]a b 上均连续,证明:(1)()222()()()()bbbaaaf xg x dxf x dxg x dx ≤⋅⎰⎰⎰(柯西-施瓦茨不等式);(2)[]()()()111222222()()()()bbba aaf xg x dxf x dxg x dx +≤+⎰⎰⎰(闵可夫斯基不等式).10. 设函数()f x 在区间[,]a b 上连续,且()0f x >,证明:11ln ()ln ()b b a a f x dx f x dx b a b a ⎡⎤≥⎢⎥--⎣⎦⎰⎰. 11. 设()f x 在[0,]a (0a >)上有连续导数,且(0)0f =,证明:2()2aMa f x dx ≤⎰,其中0max ()x aM f x ≤≤'=.12. 设()f x 在[0,1]上连续且单调减少,试证:对任何(0,1)a ∈,有1()()af x dx a f x dx ≥⎰⎰.13. 设()x ϕ在[,]a b 上连续,()()()xaf x x b t dt ϕ=-⎰,证明:必存在(,)a b ξ∈,使得()f ξ'=0.14.设()f x 在区间[,]a b 上连续,()g x 在区间[,]a b 上连续且不变号.证明至少存在一点[,]a b ξ∈,使下式成立()()()()bbaaf xg x dx f g x dx ξ=⎰⎰(积分第一中值定理).15. 计算下列定积分:(1)3(1sin )x dx π-⎰; (2)e ;(3)⎰; (4)0ax ⎰ (0a >);(5)20sin 1cos x xdx xπ++⎰; (6)40ln(1tan )x dx π+⎰;(7)a⎰(0a >); (8);(9)121(21)x x dx -++⎰; (10)sin )x x dx ππ-⎰(11)42213||||1x x dx x -⎛⎫-+ ⎪+⎝⎭⎰; (12)设2,01()2,12x x f x x x ⎧ ≤≤=⎨-<<⎩,求20()f x dx ⎰.16.利用函数的奇偶性计算定积分121(x dx -+⎰. 17. 利用函数的周期性计算定积分2(sin 2)(tan 1)a ax x dx π++⎰.18. 设函数()f x 在(,)-∞+∞内连续,并满足条件()sin xu f x u e du x -=⎰,求()f x .19. 计算下列各题: (1)设(5)2f =,5()3f x dx =⎰,求5()xf x dx '⎰.(2)已知2()tan f x x =,求40()()f x f x dx π'''⎰.20. 证明()[()()]aaaf x dx f x f x dx -=+-⎰⎰,并求下列定积分:(1)441sin dx x ππ-+⎰; (2)244sin 1x x dx e ππ--+⎰; (3)244cos 1nxx dx e ππ--+⎰(n 为正整数). 21. 设()f x 在区间[,]a b 上连续,且()f x 关于2a bx +=对称的点处取相同的值.证明: 2()2()a b baaf x dx f x dx +=⎰⎰.22. 证明:112211111xx dt dt t t =++⎰⎰(0x >). 23. 判断下列瑕积分的敛散性:(1)1+∞⎰;(2)2+∞⎰;(3)2cos ln xdx x+∞⎰;(4) 0+∞⎰;(5)3(1)(2)dxx x x +∞--⎰;(6)1+∞⎰;(7)120ln 1xdx x -⎰; (8)1ln 11eex dx x --⎰.24. 已知sin 2x dx x π+∞=⎰,求220sin x dx x+∞⎰. 25. 求介于直线0x =,2x π=之间由曲线sin y x =和cos y x =所围成的平面图形的面积.26. 求椭圆22113x y +=和22113x y +=的公共部分的面积. 27. 求曲线x y e =及该曲线的过原点的切线和x 轴的负半轴所围成的平面图形的面积. 28. 设曲线21:1L y x =-(01)x ≤≤、及x 轴和y 轴所围成的区域被曲线21:L y ax =分为面积相等两部分,其中a 是大于零的常数,试确定a 的值.29. 求由柱体222x y a +≤与222x z a +≤(0a >)的公共部分所围成图形的体积.30.将曲线r =绕x 轴旋转而成的旋转体的体积. 31. 将抛物线2y x ax =-在横坐标0与c (0c a >>)之间的弧段绕x 轴旋转,问c 为 何值时,所得旋转体体积V 等于弦OP (P 为抛物线与x c =的交点)绕x 轴旋转所得锥体体积.32. 设抛物线2y ax bx c =++通过点(0,0),且当[0,1]x ∈时,0y ≥.试确定a b c 、、 的值,使得该抛物线与直线1x =,0y =所围成图形的面积为13,且使该图形绕x 轴旋转而成的旋转体的体积最小.33.一位居民准备购买一栋别墅价值为300万元,若首付为50万元,以后分期付款,每年付款数目相同,10年付清,而银行贷款的年利率为6%,按连续复利计息,每年应付款多少?(0.60.5448e-≈)34. 某公司投资2000万建成一条生产线,投产后,在t 时刻的追加成本和追加收益分别为23()52g t t =+ (百万/年)23()17t t ϕ=- (百万/年)试确定该生产线在何时停产可获得最大利润?最大利润是多少?.35.生产某种产品的固定成本为50万元,边际成本与边际收益分别为216100=-+(万元/单位产品)MC Q Q=-(万元/单位产品)MR Q894试确定工厂应将产量定为多少个单位时,才能获得最大利润?并求最大利润.。
5.2 课后习题详解习题5-1 定积分的概念与性质1.利用定积分定义计算由抛物线y =x 2+1,两直线x =a 、x =b (b >a )及x 轴所围成的图形的面积.解:因为函数f(x)=x 2+1在区间[a ,b]上连续,所以函数可积,为计算方便,不妨把[a ,b]分成n 等份,则分点为每个小区间长度为取ξi 为小区间的右端点x i ,则当n→∞时,上式极限为即为所求图形的面积.2.利用定积分定义计算下列积分:解:因为被积函数在积分区间上连续,所以把积分区间分成n等份,并取ξi为小区间的右端点,得到(1)(2)3.利用定积分的几何意义,证明下列等式:证:(1)根据定积分的几何意义,定积分表示由直线y=2x、x=1及x轴围成的图形的面积,该图形是底边长为1、高为2的三角形,因此面积为1,即(2)根据定积分的几何意义,定积分表示的是由曲线以及x轴、y轴围成的在第I象限内的图形面积,即单位圆的四分之一的图形,因此有(3)因为函数y=sinx在区间[0,π]上非负,在区间[-π,0]上非正.根据定积分的几何意义,定积分表示曲线y=sinx(x∈[0,π])与x轴所围成的图形D1的面积减去曲线y=sinx(x∈[-π,0])与x轴所围成的图形D2的面积,显然图形D1与D2的面积是相等的,所以有(4)因为函数y=cosx在区间上非负.根据定积分的几何意义,定积分表示曲线与x轴和y轴所围成的图形D1的面积加上曲线与x轴和y轴所围成的图形D2的面积,而图形D1的面积和图形D2的面积显然相等,所以有4.利用定积分的几何意义,求下列积分:解:(1)根据定积分的几何意义,表示的是由直线y=x,x=t以及x轴所围成的直角三角形面积,该直角三角形的两条直角边的长均为t,因此面积为因此有(2)根据定积分的几何意义,表示的是由直线x=-2,x=4以及x轴所围成的梯形的面积,该梯形的两底长分别为梯形的高为4-(-2)=6,因此面积为21.因此有(3)根据定积分的几何意义,表示的是由折线y=|x|和直线x=-1,x=2以及x轴所围成的图形的面积.该图形由两个等腰直角三角形组成,一个由直线y=-x,x=-1和x轴所围成,其直角边长为1,面积为另一个由直线y=x,x=2和x轴所围成,其直角边长为2,面积为2.因此(4)根据定积分的几何意义,表示的是由上半圆周以及x轴所围成的半圆的面积,因此有5.设a<b,问a、b取什么值时,积分取得最大值?解:根据定积分几何意义,表示的是由y=x-x2,x=a,x=b,以及x轴所围成的图形在x轴上方部分的面积减去x轴下方部分面积.因此如果下方部分面积为0,上方部分面积为最大时,的值最大,即当a=0,b=1时,积分取得最大值.6.已知试用抛物线法公式求出ln2的近似值(取n=10,计算时取4位小数).解:计算y i并列表表5-2-1按抛物线法公式,求得7.设求解:(1)(2)(3)(4)8.水利工程中要计算拦水闸门所受的水压力.已知闸门上水的压强p与水深h存在函数关系,且有p=9.8h(kN/m2).若闸门高H=3m,宽L=2m,求水面与闸门顶相齐时闸门所受的水压力P.解:在区间[0,3]上插入n-1个分点,取ξi∈[h i-1,h i],并记Δh i=h i-h i-1,得到闸门所受水压力的近似值为根据定积分的定义可知闸门所受的水压力为因为被积函数连续,而连续函数是可积的,因此积分值与积分区间的分法和ξi的取法无关.为方便计算,对区间[0,3]进行n等分,并取ξi为小区间的端点所以。
定积分例题“定积分”是数学中非常重要的概念,它有着极强的实用价值。
定积分关于求解复杂函数的积分问题具有重要的意义,因此研究它所背后的科学原理是十分有必要的。
此外,理解定积分的知识点也是有可能出现在考试中的数学科目重要的一部分。
本章将以几道定积分的例题来讲解它的性质和原理。
(一)例题1:计算下列定积分:∫0πsin xdx解:该定积分是典型的定积分,由于函数可以写成原函数的积分,积分区间为[0,π],因此可以根据定积分的定义来求解,即∫0πsin xdx =cosπ+cos0=cosπ(二)例题2:计算下列定积分:∫2π^2cos^4x dx解:该定积分是一类特殊的定积分,具体来说,它是多项式函数的积分,由于函数可以写成原函数的积分,积分区间为[2,π^2],因此可以用定积分的定义来求解,即∫2π^2cos^4x dx = 1/5 [cos^5(2π^2)cos^5(2)](三)例题3:计算下列定积分:∫lnxsinx dx解:该定积分是单变量函数的积分,由于函数可以写成原函数的积分,积分区间为[0,+∞],结合高斯积分公式,可以求解,即∫lnxsinx dx =[ln(tanx)+lnx+x]/2(四)例题4:计算下列定积分:∫atanxdx解:该定积分是多项式函数的积分,由于函数可以写成原函数的积分,积分区间为[0,+∞],因此可以根据定积分的定义来求解,即∫atanxdx = xatanx1/2 ln(x^2+1)第二章积分的性质和原理(一)定积分的性质1.定积分的性质:在某一区间上连续可导的函数的积分,称为定积分2.定积分的计算公式:定积分的一般计算公式如下:∫f(x)dx=F(b)F(a),其中F(x)表示原函数f(x)的积分,a, b为积分区间。
3.定积分的应用:定积分可以用来求解复杂函数的积分问题,例如求解积分在一定区间的定积分,求解不可导的函数的积分等。
此外,定积分也可以用来解决一些几何上的问题,例如求得曲线的面积,求得曲线两端点之间的距离等。