等值线f(x,y)=k的法向量
- 格式:ppt
- 大小:1.11 MB
- 文档页数:6
平面向量基本定理系数的等值线法一、适用题型在平面向量基本定理的表达式中,若需研究两系数的和差积商、线性表达式及平方和时,可以用等值线法.二、基本理论(一)平面向共线定理已知OC OB OA μλ+=,若1=+μλ,则C B A ,,三点共线;反之亦然 (二)等和线平面内一组基底OB OA ,及任一向量OP , ),(R OB OA OP ∈+=μλμλ,若点P 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线成为等和线(1)当等和线恰为直线AB 时,1=k ;(2)当等和线在O 点和直线AB 之间时,)1,0(∈k ; (3)当直线AB 在O 点和等和线之间时,),1(+∞∈k ; (4)当等和线过O 点时,0=k ;(5)若两等和线关于O 点对称,则定值k 互为相反数; (6)定值k 的变化与等和线到O 点的距离成正比. (三)等差线平面内一组基底OB OA ,及任一向量OP , ),(R OB OA OP ∈+=μλμλ, C 为线段AB 的中点,若点P 在直线OC 上或在平行于OC 的直线上,则k =-μλ(定值);反之也成立,我们把直线OC 以及与直线OC 平行的直线称为等差线 (1)当等差线恰为直线OC 时,0=k ; (2)当等差线过A 点时,1=k ; (3)当等差线在直线OC 与点A 之间时,)1,0(∈k ; (4)当等差线与BA 延长线相交时,),1(+∞∈k ;(5)若两等差线关于直线OC 对称,则两定值k 互为相反数. (四)等积线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,若点P 在以直线OB OA ,为渐近线的双曲线上,则λμ为定值k ,反之也成立,我们把以直线OB OA ,为渐近线的双曲线称为等积线(1)当双曲线有一支在AOB ∠内肘,0>k ;(2)当双曲线的两支都不在AOB ∠内吋,0<k ;(3)特別的,若),(b a OA =,),(b a OB -=,点P 在双曲线)0,0(12222>>=-b a by a x 上时,41=k (五)等商线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,若点P 在过O 点(不与OA 重合)的直线上,则k =μλ(定值),反之也成立,我们把过点O 的直线(除OA 外)称为等商线(1)当等商线过AB 中点吋,1=k ;(2)当等商线与线段AC (除端点)相交时,),1(+∞∈k ; (3)当等商线与线段BC (除端点)相交时,)1,0(∈k ; (4)当等商线为OB 时,0=k ;(5)当等商线与线段BA 延长线相交时,)1,(--∞∈k ; (6)当等商线与线段AB 延长线相交时,)0,1(-∈k ; (7)当等商线与直线AB 平行时,1-=k . (六)等平方和线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,且OB OA =,若点P 在以AOB ∠角平分线为半长轴的椭圆上,则22μλ+为定值k ,反之也成立,我们把以AOB ∠角平分线为半长轴的椭圆称为等平方和线特別的,若),(b a OA =,),(b a OB -=,,点P 在椭圆)0,0(12222>>=+b a by a x 上时,21=k 三、解题步骤 1、确定等值线为1的线;2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值;3、从长度比或者点的位置两个角度,计算最大值和最小值;四、几点补充1、平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;2、若需要研究的是两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和或差;五、典型例题例1.给定两个长度为1的平面向量OA 和OB ,它们的夹角为0120,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若OB y OA x OC +=,其中R y x ∈,,则y x +的最大值是解法1:以点O 为原点,OA 为x 轴建立平面直角坐标系,则)01(,A ,)23,21(-B设θ=∠AOC ,则)sin ,(cos θθC ,所以OB y OA x OC +=)23,21()0,1()sin ,(cos -+=⇒y x θθ ⎪⎪⎩⎪⎪⎨⎧=+=⇒⎪⎪⎩⎪⎪⎨⎧=-=⇒θθθθθsin 32sin 31cos 23sin 21cos y x y y x2)6sin(2sin 3cos ≤+=+=+∴πθθθy x 当且仅当26ππθ=+即3πθ=时等号成立所以2)(max =+y x解法2:设OC 交AB 于点D ,则 当点C 在1C 处时,2)(max =+y x当点C 在A 或B 处时,1)(min =+y x]2,1[∈+∴y x例 2.在正六边形ABCDEF 中,P 是三角形CDE 内(包括边界)的动点,设AF y AB x AP +=,则y x +的取值范围解析:设AP 与BF 相交于点Q ,则 当点P 在点D 处时,4)(max =+y x ,当点P 在CE 上(不如让点P 在AD 与CE 的交点处)时,3)(min =+y x ∴]4,3[∈+y x例3.如图,在平行四边形ABCD 中,N M ,为CD 边的三等分点,S 为AM 与BN 的交点,P 为边AB 边上一动点,Q 为SMN ∆内一点(含边界),若BN y AM x PQ +=,则yx +的取值范围是 解析:作BN PT AM PR ==,,则PT y PR x BN y AM x PQ +=+=所以当点P 在S 点处时,43)(min =+y x ,当点P 在MN 上时,1)(max =+y x , 故∈+y x ]1,43[例4.梯形ABCD 中,AB AD ⊥,1==DC AD ,3=AB ,P 为三角形BCD 内一点(包括边界),AD y AB x AP +=, 则y x +的取值范围 解析:当点P 在点C 处时,34)(max =+y x 当点P 在BD 上时,1)(min =+y x∈+∴y x ]34,1[例5.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若 AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为解析:作AC DN AB DM ==,,则MN ∥BE (BE 在DMN ∆中位线上)∴DN DM AC AB DE 2121λλλλ+=+==+∴21λλ21注:此题为2013年江苏高考题第8题,但点E 为三等分的条件其实没有必要,可舍例 6.在正方形ABCD 中,E 为BC 中点,P 为以AB 为直径的半圆弧上任意一点,设AP y AD x AE +=,则y x +2的最小值为解析:取AD 的中点M ,则AP y AD x AE +=AP y AM x +=2 因为点P 在半圆上滑动,当点E 离直线MP 最近时,y x +2最小 由图可知点P 在半圆上的最高点处时,点E 离直线MP 最近 此时点E 在MP 上,所以=+min )2(y x 1例7.在正方形ABCD 中,E 为AB 中点,P 为以A 为圆心,AB 为半径的圆弧上的任意一点,设AP y DE x AC +=,则y x +的最小值为 解析:作DE AF =,则AP y DE x AC +=AP y AF x += 当点C 离PF 最近时,y x +最小所以当点P 在圆上滑到点B 处时,y x +最小为218.已知1==ON OM ,ON y OM x OP +=(y x ,为实数),若PMN ∆是以M 为直角顶点的直角三角形,则y x -取值的集合为解析:作ON OA -=,则有OA ON OM ==,所以090=∠AMN ,即P M A ,,三点共线,所以ON y OM x OP +=OA y OM x -=所以1=-y x ,故答案为{}1例9.已知椭圆E :12510022=+y x 的上顶点为A ,直线4-=y 交椭圆于C B ,(B 在C 的左侧),点P 在椭圆E 上,若BC n BA m BP +=,求n m +的最大值 解析:可知点P 为椭圆的与AC 平行的切线的切点处时,n m +最大 计算可得=+max )(n m 1813105+ 例10.已知O 为ABC ∆的外心,若)00(,A ,)02(,B ,1=AC ,32π=∠BAC ,且AC AB AO μλ+=,则=+μλ解析:过点O 作OD ∥BC 交AB 于点D ,则ABAD=+μλ O 为ABC ∆的外心⇒点O 在BC 的垂直平分线上⇒点O 的横坐标为1 )23,21(-C ,532523-=-=BCk ,7)221()23(22=--+=BC由正弦定理得3212327sin 2=⨯=⇒∠=OA BACBCOA ,所以点O 的纵坐标为332137=-,直线OD :)1(53332--=-x y ,令0=y 得点D 的坐标为)0,313( 613==+∴AB AD μλ例11.已知O 为ABC ∆的外心,若31cos =∠BAC ,AC AB AO μλ+=,则=+max )(μλ 解析:设AO 交BC 于点D ,则ODAO AOAD AO +==+μλ 当OD 最小即BC AD ⊥时,μλ+最大,此时=+μλ43所以=+max )(μλ43例12.平面内有三个向量OA 、OB 、OC ,其中OA 与OB 的夹角为0120 ,OA 与OC 的夹角为030,且1==OB OA ,32=OC ,若OB n OA m OC +=,则n m +的值为解析:设OC 交AB 于点D ,则n m +ODOC=OAD ∆中,331300=⇒==∠=∠OD OA OAD AOD , 所以OD OC =63332== 例13.如图,C B A ,,是圆O 上的三点,CO 的延长线与线段BA 的延长线交于圆O 外的点D ,若OB n OA m OC +=,则n m +的取值范围为解析:∈-=+ODOCn m )0,1(-例14.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为)0,5(,)1,2(1=e , )1,2(2-=e 分别是两条渐近线的方向向量,任取双曲线Γ上的点P ,若),(21R b a e b e a OP ∈+=,则b a ,满足的一个等式是解析:等积线:双曲线的方程为1422=-y x ,设)tan ,sec 2(θθP ,则由),(21R b a e b e a OP ∈+=⎩⎨⎧=-=+⇒⎩⎨⎧=-=+⇒-+=⇒θθθθθθtan sec tan sec 222)1,2()1,2()tan ,sec 2(b a b a b a b a b a 1tan sec )()(2222=-=--+⇒θθb a b a 41=⇒ab例15.已知1=OA ,3=OB ,0=⋅OB OA ,点C 在AOB ∠内,且030=∠AOC , 设OB n OA m OC +=,则nm的值为 答案:等商线:分别以OB OA ,为y x ,轴建立平面直角坐标系,则)3,0(),01(B A ,, OB n OA m OC +=)3,()3,0()0,1(n m n m =+=,又030=∠AOC ,所以330tan 30=⇒=nmm n例16.如图,倾斜角为θ的直线OP 与单位圆在第一象限的部分交于点P ,单位圆与坐标轴交于点)01(,-A ,点)10(-,B ,PA 与y 轴交于点N ,PB 与x 轴交于点M ,设),(R y x PN y PM x PO ∈+=,求y x +的最小值解析:设OP 交MN 于点Q ,MN 的中点为D ,则21211111=+-≥-=-==+OQ OQ PO PO PQ PO y x例17.如图,在扇形OAB 中,060=∠AOB ,C 为弧AB 上且不与A 、B 重合的一个动点,OB y OA x OC +=,若)0(>+=λλy x u 存在最大值,则λ的取值范围为解析:因为0>λ,在射线OB 上取点D ,使得OB OD λ1=,则OB y OA x OC +=OD y OA x λ+=,过点C 作CE ∥AD 交OB 于点E ,过点A 作OB AM ⊥于点M ,过点A 作弧AB 的切线交OB 于点N ,则易知当E 离D 最远时u 有最大值,而E 只能在线段MN 上,所以∈u )2,21(例18.在平面直角坐标系中,O 为坐标原点,两定点B A ,满足2=⋅==OB OA OB OA ,则点集{}R OB OA OP P ∈≤++=μλμλμλ,,1,所表示的区域面积为解析:由题意可知60=∠AOB ,设OB OD OA OC -=-=,,R OB OA OP ∈≤++=μλμλμλ,,1,,则可知点P 的轨迹为平行四边形ABCD 及其内部的部分,其面积为3460sin 44210=⨯⨯⨯例19.已知b a ,是两个互相垂直的单位向量,且1=⋅=⋅b c a c ,则对任意的正实数t ,b ta t c 1++的最小值为解析:分别以b a ,为y x ,轴方向上的单位向量,则)1,0(),0,1(==b a ,由1=⋅=⋅b c a c 知)1,1(=c ,)11,1()1,0(1)0,1()1,1(1tt t t b t a t c ++=++=++∴2212)12()2()11()1(12222≥+=+≥+++=++tt t t t t b t a t c。
多元函数的等值线多元函数的等值线是指在二维或三维坐标系中表示多元函数的等值的曲线或曲面。
在二维坐标系中,我们可以将多元函数表示为z = f(x, y),其中x和y是自变量,z是因变量。
因此,等值线就是满足f(x, y) = c的曲线,其中c是常数。
例如,对于函数f(x, y) = x^2 + y^2,等值线就是满足x^2 + y^2 = c的圆。
c的值越大,圆的半径就越大。
在三维坐标系中,我们可以将多元函数表示为z = f(x, y, z),其中x、y和z是自变量。
等值线就是满足f(x, y, z) = c的曲面,其中c是常数。
例如,对于函数f(x, y, z) = x^2 + y^2 + z^2,等值线就是满足x^2 + y^2 + z^2 = c的球面。
c的值越大,球的半径就越大。
等值线在可视化多元函数时非常有用。
通过绘制等值线,我们可以直观地看到函数在不同自变量取值下的变化趋势。
在二维坐标系中,等值线可以将函数的值划分为不同的区域。
在三维坐标系中,等值线可以将函数的值划分为不同的表面。
通过分析等值线的形状和密度,我们可以得到关于函数的一些重要信息。
等值线还可以用来计算多元函数的最大值和最小值。
考虑一个有界的函数,等值线在相应的区域内会形成一个封闭曲线或曲面。
函数的最大值和最小值一定会出现在这个封闭曲线或曲面上。
因此,通过绘制等值线并找到最大最小值所在的曲线或曲面,我们可以确定函数的最大值和最小值。
在实际应用中,等值线可以用于地理学、物理学、经济学等领域。
例如,在地理学中,等值线可以用来表示地形的高度。
通过绘制等值线图,我们可以看到山脉、山谷等地形特征。
在物理学中,等值线可以用来表示电势分布、地磁场分布等。
在经济学中,等值线可以用来表示收入分布、物价分布等。
总之,多元函数的等值线是表示多元函数在二维或三维坐标系中的等值的曲线或曲面。
通过绘制等值线,我们可以直观地了解函数的变化趋势,并计算函数的最大值和最小值。
多元函数的等值线多元函数的等值线是指在多元函数的定义域中,取定一个特定的函数值,将函数的定义域中相应的点连接起来形成的曲线或曲面。
等值线的形状和分布可以反映出函数在定义域内的变化规律,具有重要的物理和几何意义。
对于二元函数,即定义在二维平面上的函数,其等值线可以形成一条曲线或多条曲线。
例如,对于方程f(x,y)=c,其中c为常数,可以将f(x,y)视为z轴上的高度,等值线就是该曲面与xoy平面的交线。
等值线的高度等于常数c,因此等值线可以看作是在平面上表示函数f(x,y)取常数值c的点的集合。
这些点可以是连续的曲线,也可以是孤立的点。
不同的常数c对应不同的等值线,通过改变c的值,可以得到函数在二维平面上的等值线分布情况。
对于三元函数,即定义在三维空间中的函数,其等值线可以形成一条曲线、多条曲线或曲面。
例如,对于方程f(x,y,z)=c,其中c为常数,可以将f(x,y,z)视为空间中的等值面,等值线就是该等值面在xoy平面、yoz平面或xoz平面上的交线。
等值线的高度等于常数c,因此等值线可以看作是在空间中表示函数f(x,y,z)取常数值c的点的集合。
这些点可以是连续的二维曲线或三维曲面,也可以是孤立的点。
不同的常数c对应不同的等值线,通过改变c的值,可以得到函数在三维空间中的等值线分布情况。
等值线的形状和特征反映了函数在定义域内的变化规律。
对于二元函数,等值线的密集程度和曲线的陡峭程度表示了函数在该区域内的变化速率和梯度大小。
等值线的密集表示函数变化较快,而等值线的稀疏表示函数变化较慢。
曲线的陡峭程度表示函数的斜率和变化方向。
在物理学中,等值线可以用来表示电场、温度场、地形图等,从而揭示出这些量在空间中的分布情况。
对于三元函数,等值线的形状和分布更加复杂。
等值线的特征可以用来表示函数的梯度和曲率。
梯度表示函数在某一点处的变化率和变化方向,等值线在梯度方向上的投影越长,表示函数的变化越剧烈;而曲率表示函数曲线的弯曲程度,等值线的曲率越大,表示函数的变化越快。
技巧八平面向量基本定理系数的等值线法一、适用题型在平面向量基本定理的表达式中,若需研究两系数的和差积商、线性表达式及平方和时,可以用等值线法。
二、基本理论(一)平面向量共线定理三点共线;反之亦然,则若已知C B A ,,1,=++=μλμλ(二)等和线平面内一组基底OB OA ,及任一向量OP ,()R ∈+=μλμλ,,若点P 在直线AB 上或在平行于AB 的直线上,则)(定值k =+μλ,反之也成立,我们把直线AB 以及与直线AB 平行的直线成为等和线。
(1)当等和线恰为直线AB 时,1=k ;(2)当等和线在O 点和直线AB 之间时,()1,0∈k ;(3)当直线AB 在O 点和等和线之间时,()∞+∈,1k ;(4)当等和线过O 点时,0=k ;(5)若两等和线关于O 点对称,则定值k 互为相反数;(6)定值k 的变化与等和线到O 点的距离成正比;(三)等差线平面内一组基底,及任一向量OP ,()R OB OA OP ∈+=μλμλ,,C 为线段AB 的中点,若点P 在直线OC 上或在平行于OC 的直线上,则)(定值k =-μλ,反之也成立,我们把直线OC 以及与直线OC 平行的直线称为等差线。
(1)当等差线恰为直线OC 时,0=k ;(2)当等差线过A 点时,1=k ;(3)当等差线在直线OC 与点A 之间时,()1,0∈k ;(4)当等差线与BA 延长线相交时,()∞+∈,1k ;(5)若两等差线关于直线OC 对称,则两定值k 互为相反数;(四)等积线平面内一组基底OB OA ,及任一向量OP ,()R OB OA OP ∈+=μλμλ,,若点P 在以直线OB OA ,为渐近线的双曲线上,则λμ为定值k ,反之也成立,我们把以直线OB OA ,为渐近线的双曲线称为等积线(1)当双曲线有一支在AOB ∠内时,0>k ;(2)当双曲线的两支都不在AOB ∠内时,0<k ;(3)特别的,若()()b a OB b a OA -==,,,,点P 在双曲线)0,0(12222>>=-b a b y a x 时,41=k ;(五)等商线平面内一组基底OB OA ,及任一向量OP ,()R OB OA OP ∈+=μλμλ,,若点P 在过O 点(不与OA 重合)的直线上,则)(定值k =μλ,反之也成立。
平面向量基本定理系数的等值线法r适用题型在平面向绘甚本定理的表达式中.若需研究两系■数的和•墓积商、线性表达式及平方和时•可以足等值线法.二、基本理论<-)平面向量共绘定理己知忑±2亦十“況‘若久十戸=1,眦丑,c三点共线;反之亦然{二>等和线平而内一组基底及任—向量莎*。
尸二兄刀+左3?(九严$代).若点戸在直线佃上或在平行于血的直线上*则八戸=肌逹值)仮之也成立,我们把直线ABVX及芍苴线AB平行的直线成为零和纯c(1)当等和线恰为直线宓时,血=仁(2)与等和线右匸点和直线』占之间吋.A E(OJ):(3)兰直线AB^O点和等和线之间时M胡卄知;(4)当等和线过O点时,&=3<5)若两答和线关于O点对称*则是置丘互为相反数:C6)定值R的变化与等和线到卍点的距离成正比;(三》等差线平面内一组琏底OA^OBJk任一向<5P,OP=AOA±pOS{A.jU G R],匸为线段月E的中点*若点尸在直线OC上或在平疔干g的直线上,则门-出=帆崔值)仮之也成立,我忙[把直线Of以及与直线GC平行的直线称为等羞线.(1)当等差线恰沟直线OC1时,k=Oi⑵当等螯线过/点时I^=1¥(3)兰雑菱线在直线OC点/上间时,kw(M);<4)为筹差线与氏1延张线相交时,2(1卄}:(5)若两等差线关于直线OQ对称r则两宦值丘互为相反数;CB3)鞭线平面内一组基底刃、励及任一向童存’帀=衣方+”审(扎声€町’若点P住IX賣线gOH为渐近线的双曲线上’1U戸为定值I反之也成立.我们把以总线Q4QB聞渐近线的双曲线称为答积线m当鞭曲线有—辿厶OR内时’^>0;(“当双曲线的两龙部不性"OR内时+20七(3)特别的Iiff OA={a,b\OB=►点尸在双曲线^l_Zl=](fl>o^>o)肘.丄:a~肝4(H>誓商线平面内一组菇底鬲“血及任一向蜀亦,=2玉十"0巩无輕蓟若点尸在过O点〔不与阳重合)的直线上.则±=削定值),反之也成址我们把过点O的直线(除64外)称为驛商线-<1)当零商线过曲中点时*k=l,⑵当等商线与线段犹(除端点)相交时,柴山+讪C3)-J|等冏统与缄段BE{除端点〉村交时*^E(OJ),(4)当馨裔线即为时,k=Oz⑸勻等商绣与线段民I延长;统相交时.圧日-叫-小(G与等冏线与线段拙延长线相交时’止買一⑼;(7)当馨帰绘与直线宓平柠时*—g尊平方和找平面内一组毘底6L丽及任一向童d OP^AOA十卫丽认且€町・且石卜阿卜若点戸在以厶03角平分线为半长釉的帏圆上’则犷为宦值I反之也戍立,我们把以以厶角平分线为半长轴的橢圆称为零呼方和线*<.如硼、*•—2工特别的.若尿(询显仏孙点尸在双椭畤琲刊小小三. 解题步骤k确宦等值线为]的线;艺平楼慌转或伸缩)该线’结合动点的可行燃分析何处取得蚩大值和最小ffi:儿从长度比或苦点的位置两伞猎度,汁算最大值和壘小值’四. 几点补充k平面向蟄其线址理的表达式中的三个向鱼的起点劳必一致*若邓一致.本着少数魔从多数的原则,优先平移同定的向童*2.若需哩研究的提蒋疾数的线性琢则需要iffiil变换基底向霾,使胃需婪研究的代数式为基底的系数和或苣:五r典型例题例1给罡两个辰度対1的平面向量石和亦,它们的夹角为120°.如图所-示*J9“■.点C在以o为圆心的圆弧倉上变动t^OC=xOA^yOB i其中齐yw.则-Y+7的席犬值是.M2在正兴边形ABCDEF中*尸危三他形EDE內(包括边界)的动点*设乔=工乔+y乔,則时y的取值范訪I答案t[3.4]例3如圏.在平行M^ABCD'|LM、N M CD边旳三導分戊.SAMBN的父点*P対边4B边上一动直I Q7J ASMN内一克(會边界h若PQ=T』Af+.!-ff.V、则A+丁的取值范用足例4^ABCD中,彳D丄AS.AD=DC=},括边界h AP=xA&^yAD.则“尸的取值范围R5设门上分別^MSC的边貝&別?上的点,AD=-AB,B£=-BC^DE=^Aff^^AC(l,JL为实数},则占+&的值为(注:此題为13江苏斶垮也總R題+但点E为三解分的無件英实没有必塑I可舍):"'16任正方形卫肚D屮・E为M中点.尸为毀肿为直後的半風弧上任意一点, T^AE=X AJ>+vAPf刚2X+F的最小值为静:1的任意—乩设: 対匚则",的虽小值曲闵9已知#6圜E:5VIO+13AO=ZAB^pAC.则A+ju=答案:例7任正方ABCD11r,E为AB'l T点i尸为以冲为阀心’AE、h半律的関弧上制gLife]OM=ON=\t OP=jc(M^yOM(x,y为实数).若是U1M为直/fi顶点的Fi角三的底,则r-V収fjl的Sift.zj =1的上顶点为/・直线y=^交椭圆于艮f(月在C的左侧),点尸在懦圆E上'若市=忌5匸,求的堀大值例10己知O为的外心*l^(0.0k5(2,0k J4C-LZ5JC=答案:6,0容案:4衣I例H 如閣■乂EC 足圖O 上的三点,CO 的延快线场线段加旌延底线交于風O 卜卜例1【已知O 为山初C ■的外心,ScosZ^C =-1AO =AAB^^iAC^\例12平面内有三个向蜀鬲、Qi.DC ,K 中与刃与而的夹角为120"»OA 与况的夬他为3『『且I 631=I 面1=1,I 龙|=鮎仔,若OC =mOA+nOB f+n 的值为夕卜的点Q.^OC^mOA+nOB.则加十但的取值范圉为例14在平ffll/fj 坐标系中’双曲找「的中心&原点’它的一个焦点坐标为 (75,0)T et=(2^>忑=(2.-1)分别是两条渐近贱的方向向虽任恥观曲统「上的点儿若丽=亦+意(口"左尺人则°』满足的一个等式是__例15已知石=1亦=石+鬲•亦=0*点C 在厶(9B 内*且厶OC =30叫设 ■-——一™■=F ?TOC =mOA+nOB ・则一的讥如.n答案:3邀心浅沛梢 答鑒:(-ho)」•汝心渤瑞 M 16如IU 倾斜角対B 的宜线°尸号肚偷圆左第一彖限的部分交于点尸・单位 园与坐标轴交于怎心忆点占®"J 旳与F 轴交于詁、阳与工轴龙于 点M,设tyPN^yeR}^求x+y 的最屮值‘例门如国・在扇形ZAOB=60Q ,C 为弧AR 上且不与」B 重合的一个动点,OC=itOA^yOS 9若«=.u+2yU>0)存在最大值,则丸的取值范围为-的区域而职为. 答案:4^3例19已知和是两个互相垂直的单位向星且c-a =H =l t 则对任意的正实 数f*|t'+fa+-6的最小值头F . 答案:2^2 鋼洽住平面直角坐标系中,O 为坐标原点*两足点』』满足。