平面向量常用的方法技巧
- 格式:doc
- 大小:2.94 MB
- 文档页数:4
掌握初中数学中的平面向量解题技巧平面向量是初中数学中的一个重要内容,解题技巧的掌握对于学生来说显得尤为关键。
在本文中,我们将分享一些帮助学生掌握初中数学中平面向量解题技巧的方法。
一、平面向量的定义和基本性质平面向量是一个有大小和方向的有序数对,通常表示为箭头。
在平面向量的研究中,我们需要关注以下几个关键概念:1. 向量的表示方法:向量可以使用坐标表示法、分解表示法或单位向量表示法进行表示。
每种表示方法都有其特定的应用场景和计算思路。
2. 向量的加法与减法:向量的加法与减法规律是平面向量的基本性质。
通过理解与运用这些规律,可以简化题目的计算过程。
3. 向量的数量乘法:向量的数量乘法包括正数乘法和零向量的乘法。
这些操作能够对向量的大小和方向产生影响,需要注意运算法则。
二、平面向量的应用领域平面向量解题技巧在初中数学中广泛应用于以下几个领域:1. 向量的平行与垂直关系:通过向量的点积和叉积,可以判断两个向量之间的平行关系或垂直关系。
这种技巧在解决几何问题时尤为常见。
2. 向量的共线与共面关系:通过向量的线性运算和共面性质,可以判断多个向量之间的共线关系或共面关系。
这种技巧在解决多个向量同时出现的问题时非常有效。
3. 向量的位移与坐标计算:通过向量的位移计算和坐标运算,可以求解物体在平面上的运动问题。
这种技巧在解决位移、速度和加速度等物理问题时被广泛应用。
三、平面向量解题技巧的实例分析为了更好地理解和应用平面向量解题技巧,以下是几个实际问题的解析:1. 平面向量的加法与减法:已知向量A和向量B的坐标分别为(A1,A2)和(B1,B2),则向量A加向量B的结果为(A1+B1, A2+B2)。
根据这个规律,我们可以解决诸如平行四边形对角线相等问题等。
2. 平面向量垂直关系的判断:已知向量A的坐标为(A1, A2),如果A1×A2=0,则向量A与坐标轴正方向垂直。
这个技巧常在解决两条线段是否垂直或平行的问题时使用。
高中数学必备技巧平面向量的共线与垂直性质高中数学必备技巧:平面向量的共线与垂直性质在高中数学学习中,平面向量是一个重要的概念,它能够帮助我们更好地理解空间中的几何问题。
平面向量不仅有方向和大小,还有一些特殊的性质,其中包括共线与垂直性质。
本文将重点介绍平面向量的共线与垂直性质,并提供一些解题技巧。
一、共线性质1. 定义:设有两个非零向量a和b,如果存在实数k,使得a=kb,那么我们称向量a和b共线。
2. 共线判定:有两种判定方式可以确定向量的共线性:a) 坐标判定法:设向量a的坐标表示为(a₁, a₂),向量b的坐标表示为(b₁, b₂),则向量a和b共线的充要条件是a₁/b₁ = a₂/b₂。
b) 分向量判定法:设向量a的两个分向量为a₁和a₂,向量b的两个分向量为b₁和b₂,则向量a和b共线的充要条件是a₁/b₁ =a₂/b₂。
3. 共线向量的性质:如果向量a和b共线,则存在实数k,使得a=k(b₁, b₂)。
这意味着共线的向量具有相同的方向(平行或反平行)。
解题技巧:a) 确定向量的坐标或分向量,并利用坐标判定法或分向量判定法来判断是否共线。
b) 如果两向量的坐标或分向量比例相等,则可直接判断它们共线。
二、垂直性质1. 定义:设有两个非零向量a和b,如果a·b = 0,即它们的数量积为零,那么我们称向量a和b垂直。
2. 垂直判定:有两种判定方式可以确定向量的垂直性:a) 坐标判定法:设向量a的坐标表示为(a₁, a₂),向量b的坐标表示为(b₁, b₂),则向量a和b垂直的充要条件是a₁b₁ + a₂b₂ = 0。
b) 分向量判定法:设向量a的两个分向量为a₁和a₂,向量b的两个分向量为b₁和b₂,则向量a和b垂直的充要条件是a₁b₁ +a₂b₂ = 0。
3. 垂直向量的性质:如果向量a和b垂直,则它们的夹角为90°。
具体而言,如果向量a的坐标表示为(a₁, a₂),向量b的坐标表示为(b₁, b₂),则向量a和b垂直的充要条件是a₁b₁ + a₂b₂ = 0。
平面向量知识点学习技巧平面向量是数学中的重要概念,它在解决几何问题和代数运算中都起到了重要的作用。
掌握平面向量的知识点对于学生来说至关重要,因此在学习过程中,合理的学习技巧和方法十分必要。
本文将介绍一些平面向量的基本知识点,并结合实际学习经验,分享一些学习平面向量的技巧。
一、平面向量的基本概念和性质1. 平面向量的定义及表示方法平面向量是具有大小和方向的量,它可以用有向线段来表示。
通常用字母加上→来表示一个平面向量,如AB→表示由点A指向点B的平面向量。
平面向量还可以用坐标表示,比如AB→ = (x2 - x1, y2 - y1),其中(x1, y1)和(x2, y2)分别是点A和点B的坐标。
2. 平面向量的运算法则平面向量的运算包括加法、减法和数乘。
加法运算满足平行四边形法则,即若有两个平面向量AB→和AC→,则它们的和等于AD→,其中D是平行四边形ABCD的对角线交点。
减法运算即加法的逆运算,即AB→ - AC→ = AB→ + (-AC→)。
数乘运算即将一个平面向量乘以一个实数,如kAB→ = k(x2 - x1,y2 - y1) = (kx2 - kx1, ky2 - ky1)。
3. 平面向量的数量积和向量积数量积又称点积或内积,用来衡量两个向量之间的夹角和方向关系。
它的计算公式为AB·AC = |AB| |AC| cosθ,其中θ为AB→和AC→之间的夹角。
向量积又称叉积或外积,其结果为一个向量,用来衡量两个向量之间的平行关系和面积大小。
计算公式为AB×AC = |AB| |AC| sinθ n,其中θ为AB→和AC→之间的夹角,n为单位向量。
二、学习平面向量的技巧1. 深刻理解基本概念在学习平面向量的过程中,首先要对平面向量的定义和表示方法有一个深刻的理解,这对于后续的学习非常重要。
要善于画图,通过图示化的方法来理解和表示平面向量,可以更清晰地把握其概念和性质。
2. 熟练掌握运算法则平面向量的运算是学习的重点和难点之一。
平面向量做题技巧1. 嘿,平面向量做题的时候,要学会找关键信息呀!就像你在一堆玩具中找到你最喜欢的那个一样。
比如已知向量的模和夹角,那不是很明显要去用相关公式嘛!2. 哎呀,一定要记住向量的加减法法则哦,这可太重要啦!就好比搭积木,一块一块地往上加,或者把多余的拿走,不就清楚啦。
像那种给出几个向量让你合成的题,不就用这个嘛!3. 注意啦,向量的数量积可不能马虎!这就好像你和朋友之间的默契,要好好去感受和计算呀。
比如判断向量垂直,不就看数量积是不是零嘛!4. 嘿,在做题时别死脑筋呀,要灵活运用啊!就像跳舞要随着音乐节奏变换动作一样。
碰到复杂的向量问题,多想想有没有简便方法呀!5. 哇塞,对于那些和几何图形结合的题,要把图形看透呀!这就如同你了解一个人的性格一样重要。
比如在三角形里的向量问题,不就利用三角形的特点嘛!6. 记住哦,单位向量也有大用处呢!就好像一个小小的指南针能指引方向一样。
在一些问题里,利用单位向量来转化不就简单多啦!7. 千万别忘了向量共线的条件呀!这就好比走在同一条路上的伙伴。
看到相关条件,马上就想到共线的性质呀!8. 哎呀呀,平面向量做题技巧真的很关键呢!就像拥有一把万能钥匙能打开各种难题的门。
遇到困难别退缩,用对技巧呀!9. 注意那些隐含条件呀,别漏了它们!这就像宝藏藏在角落里,你得细心才能发现。
很多时候答案就在那些被忽略的地方呢!10. 真的,平面向量做题要多用心呀!就像对自己喜欢的事情一样充满热情。
用心去体会每一个技巧,你会发现做题越来越轻松啦!我的观点结论就是:掌握这些平面向量做题技巧,能让你在解题时更加得心应手,轻松应对各种难题,一定要好好运用哦!。
最全归纳平面向量中的范围与最值问题目录题型一:三角不等式题型二:定义法题型三:基底法题型四:几何意义法题型五:坐标法题型六:极化恒等式题型七:矩形大法题型八:等和线题型九:平行四边形大法题型十:向量对角线定理方法技巧总结技巧一.平面向量范围与最值问题常用方法:(1)定义法第一步:利用向量的概念及其基本运算将所求问题转化为相应的等式关系第二步:运用基木不等式求其最值问题第三步:得出结论(2)坐标法第一步:根据题意建立适当的直角坐标系并写出相应点的坐标第二步:将平面向量的运算坐标化第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等求解(3)基底法第一步:利用其底转化向量第二步:根据向量运算律化简目标第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等得出结论(4)几何意义法第一步:先确定向量所表达的点的轨迹第二步:根据直线与曲线位置关系列式第三步:解得结果技巧二.极化恒等式(1)平行四边形平行四边形对角线的平方和等于四边的平方和:|a +b |2+|a -b |2=2(|a|2+|b |2)证明:不妨设AB =a ,AD =b ,则AC =a +b ,DB =a -bAC 2=AC 2=a +b 2=a 2+2a ⋅b +b 2①DB 2=DB 2=a -b 2=a 2-2a ⋅b +b 2②①②两式相加得:AC 2+DB 2=2a 2+b 2=2AB 2+AD 2 (2)极化恒等式:上面两式相减,得:14a +b 2-a -b 2----极化恒等式①平行四边形模式:a ⋅b =14AC 2-DB 2几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.②三角形模式:a ⋅b =AM 2-14DB 2(M 为BD 的中点)技巧三.矩形大法矩形所在平面内任一点到其对角线端点距离的平方和相等已知点O 是矩形ABCD 与所在平面内任一点,证明:OA 2+OC 2=OB 2+OD 2.【证明】(坐标法)设AB =a ,AD =b ,以AB 所在直线为轴建立平面直角坐标系xoy ,则B (a ,0),D (0,b ),C (a ,b ),设O (x ,y ),则OA 2+OC 2=(x 2+y 2)+[(x -a )2+(y -b )2]OB 2+OD 2=[(x -a )2+y 2]+[x 2+(y -b )2]∴OA 2+OC 2=OB 2+OD 2技巧四.等和线(1)平面向量共线定理已知OA =λOB +μOC ,若λ+μ=1,则A ,B ,C 三点共线;反之亦然.(2)等和线平面内一组基底OA ,OB 及任一向量OP ,OP =λOA +μOB(λ,μ∈R ),若点P 在直线AB 上或者在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线.①当等和线恰为直线AB 时,k =1;②当等和线在O 点和直线AB 之间时,k ∈(0,1);③当直线AB 在点O 和等和线之间时,k ∈(1,+∞);④当等和线过O 点时,k =0;⑤若两等和线关于O 点对称,则定值k 互为相反数;技巧五.平行四边形大法1.中线长定理2AO 2=AB 2+AD 2-12DB 22.P 为空间中任意一点,由中线长定理得:2PO 2=PA 2+PC 2-12AC 22PO 2=PD 2+PB 2-12DB 2两式相减:PA 2+PC 2-PD 2+PB 2=AC2-BD 22=2AB ⋅AD技巧六.向量对角线定理AC ⋅BD =(AD 2+BC 2)-(AB 2+CD2)2必考题型归纳题型一:三角不等式1(2023·全国·高三专题练习)已知向量a ,b ,c 满足|a |=2,|b |=1,|c -a -b |=1,若对任意c ,(c -a )2+(c-b )2≤11恒成立,则a ⋅b 的取值范围是.2(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足:|a|=1,b ⋅a =-1,若对满足条件的任意向量b ,|c -b |≥|c -a |恒成立,则cos c +a ,a 的最小值是.3已知向量a ,b ,c 满足a =b =c =2,a ⋅b =0,若关于t 的方程ta +b2-c=12有解,记向量a ,c 的夹角为θ,则sin θ的取值范围是.1.已知e 1 ,e 2 ,e 3 是平面向量,且e 1 ,e 2 是互相垂直的单位向量,若对任意λ∈R 均有e 3 +λe 1的最小值为e 3 -e 2 ,则e 1 +3e 2 -e 3 +e 3-e 2 的最小值为.2.已知平面向量e 1 ,e 2 满足2e 2 -e 1 =2,设a =e 1 +4e 2 ,b =e 1 +e 2 ,若1≤a ⋅b ≤2,则|a|的取值范围为.3.(2023·浙江金华·统考一模)已知平面向量a ,b ,c 满足a ⋅b =74,|a -b|=3,(a -c )(b -c )=-2,则c的取值范围是.1已知向量a ,b 的夹角为π3,且a ⋅b =3,向量c 满足c =λa +1-λ b 0<λ<1 ,且a ⋅c =b ⋅c ,记x =c ⋅aa ,y =c ⋅b b,则x 2+y 2-xy 的最大值为.2(2023·四川成都·高二校联考期中)已知向量a ,b ,c 满足a =1,b=2,a ⋅b=-1,向量c -a 与向量c -b 的夹角为π4,则c 的最大值为.3(2023·浙江绍兴·高二校考学业考试)已知向量a ,b 满足a =1,b=3,且a ⊥b ,若向量c 满足c -a -b =2a -b ,则c的最大值是.1.已知向量a ,b 满足a =1,b =3,且a ⋅b =-32,若向量a -c 与b -c 的夹角为30°,则|c |的最大值是. 2.已知向量a ,b ,满足a =2b =3c =6,若以向量a ,b 为基底,将向量c 表示成c =λa+μb (λ,μ为实数),都有λ+μ ≤1,则a ⋅b的最小值为 3.已知向量a 、b 满足:a -b=4,a =2b .设a -b 与a +b 的夹角为θ,则sin θ的最大值为.1.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分在边BC ,CD 上,BE =λBC ,DF=μDC .若λ+μ=23,则AE ⋅AF 的最小值为.2.(2023·天津·高三校联考阶段练习)已知菱形ABCD 的边长为2,∠BAD =120°,点E 、F 分别在边BC ,CD 上,BE =λBC ,DF =μDC ,若2λ+μ=52,则AE ⋅AF 的最小值.3.如图,菱形ABCD 的边长为4,∠BAD =30°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ⋅AN的最大值为.4.菱形ABCD 的边长为4,∠BAD =30°,若N 为菱形内任意一点(含边界),则AB ⋅AN的最大值为.5.如图,菱形ABCD 的边长为4,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ⋅AN的最大值为.6.平面四边形ABCD 是边长为2的菱形,且∠A =120°,点N 是DC 边上的点,且DN =3NC,点M 是四边形ABCD 内或边界上的一个动点,则AM ⋅AN的最大值为.7.(2023·全国·高三专题练习)已知向量a ,b 满足a +b =3,a ⋅b =0.若c =λa+1-λ b ,且c ⋅a =c ⋅b,则c 的最大值为.8.已知平面向量a ,b ,c 满足a =2,b =1,a ⋅b =-1,且a -c 与b -c 的夹角为π4,则c 的最大值为.9.已知平面向量a 、b 、c 满足a=4,b =3,c =2,b ⋅c =3,则a -b 2a -c 2-a -b⋅a -c 2最大值为.10.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,且满足AN =λAB +μAC,则λ2+μ2的最小值为.题型四:几何意义法1(2023·全国·模拟预测)已知a ,b ,c 是平面向量,满足a -b =a +b ,a =2b =2,c +a -b=5,则向量c 在向量a上的投影的数量的最小值是.2(2023·上海浦东新·上海市建平中学校考三模)已知非零平面向量a ,b ,c 满足:a ,b 的夹角为π4,c -a与c -b 的夹角为3π4,a -b=2,c -b =1,则b ⋅c 的取值范围是.3(2023·全国·高三专题练习)已知平面向量a ,b 夹角为π3,且平面向量c 满足c -a =c -b =1,c -a ⋅c -b =-12,记m 为f t =ta +1-t b (t ∈R )的最小值,则m 的最大值是. 1.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足a ⋅b =-3,a -b=4,c -a 与c -b 的夹角为π3,则c -a -b 的最大值为. 2.(2023·四川内江·高二四川省内江市第六中学校考开学考试)已知非零平面向量a ,b ,c 满足:a ,b 的夹角为π3,c -a 与c -b的夹角为2π3,a -b =23,c -b =2,则b ⋅c 的取值范围是.3.已知非零平面向量a ,b ,c 满足a -b =2,且(c -a )⋅(c -b )=0,若a 与b 的夹角为θ,且θ∈π6,π3,则|c |的最大值是.4.(2023·全国·高三专题练习)平面向量a ,b ,c 满足:a ,b 的夹角为π3,|a -b|=|b -c |=|a -c |=23,则b ⋅c的最大值为. 5.(2023·广东阳江·高二统考期中)已知非零平面向量a ,b ,c 满足a -b =4,且a -c⋅b -c =-1,若a 与b 的夹角为θ,且θ∈π3,π2,则c 的模取值范围是. 6.(2023·浙江·高三专题练习)已知平面向量a ,b ,c ,若a =b =a -b =1,且2a -c+2b +c =23,则a -c的取值范围是.7.(2023·安徽阜阳·高三安徽省临泉第一中学校考期末)已知向量a ,b 满足a =b =1,且a ⋅b=0,若向量c 满足c +a +b=1,则c 的最大值为.8.(2023·浙江·模拟预测)已知向量a ,b ,c 满足a -b +c=2b =2,b -a 与a 的夹角为3π4,则c 的最大值为.9.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足:a -b =5,向量a与向量b 的夹角为π3,a -c=23,向量a -c 与向量b -c 的夹角为2π3,则a 2+c 2的最大值为.题型五:坐标法1(2023·全国·高三专题练习)已知向量a ,b 满足2a +b=3,b =1,则a +2a +b 的最大值为.2(2023·江苏常州·高三统考期中)已知平面向量a ,b ,c 满足|a |=2,|b |=4,a ,b 的夹角为π3,且(a -c )⋅(b -c )=2,则|c |的最大值是.3设平面向量a ,b ,c 满足a =b =2,a 与b 的夹角为2π3,a -c ⋅b -c =0则c 的最大值为.1.(2023·安徽滁州·校考三模)已知平面向量a ,b ,c 满足|a|=1,|b |=3,a ⋅b =0,c -a 与c -b 的夹角是π6,则c ⋅b -a 的最大值为.2.(2023·河北·统考模拟预测)如图,在边长为2的正方形ABCD 中.以C 为圆心,1为半径的圆分别交CD ,BC 于点E ,F .当点P 在劣弧EF 上运动时,BP ⋅DP的最小值为.3.(2023·山东·山东省实验中学校考一模)若平面向量a ,b ,c 满足a =1,b ⋅c =0,a ⋅b =1,a⋅c=-1,则b +c 的最小值为.4.(2023·四川眉山·仁寿一中校考一模)如图,在平面四边形ABCD 中,∠CDA =∠CBA =90°,∠BAD =120°,AB =AD =1,若点E 为CD 边上的动点,则AE ⋅BE的最小值为.5.(2023·安徽滁州·校考模拟预测)已知a=1,b +a +b -a =4,则b -14a 的最小值是.6.(2023·浙江·模拟预测)已知向量a ,b 满足a=3,且b -λa 的最小值为1(λ为实数),记a,b =α,a ,a -b=β,则b ⋅b -a cos α+β最大值为.7.在矩形ABCD 中,AB =4,AD =3,M ,N 分别是AB ,AD 上的动点,且满足2AM +AN =1,设AC =xAM +yAN ,则2x +3y 的最小值为()A.48B.49C.50D.51题型六:极化恒等式1(2023·山东师范大学附中模拟预测)边长为1的正方形内有一内切圆,MN 是内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM ⋅PN的取值范围是.2(2023·湖北省仙桃中学模拟预测)如图直角梯形ABCD 中,EF 是CD 边上长为6的可移动的线段,AD =4,AB =83,BC =12,则BE ⋅BF的取值范围为. 3(2023·陕西榆林·三模)四边形ABCD 为菱形,∠BAC =30°,AB =6,P 是菱形ABCD 所在平面的任意一点,则PA ⋅PC的最小值为. 1.(2023·福建莆田·模拟预测)已知P 是边长为4的正三角形ABC 所在平面内一点,且AP=λAB +(2-2λ)AC (λ∈R ),则PA ⋅PC 的最小值为()A.16B.12C.5D.42.(2023·重庆八中模拟预测)△ABC 中,AB =3,BC =4,AC =5,PQ 为△ABC 内切圆的一条直径,M 为△ABC 边上的动点,则MP ⋅MQ的取值范围为()A.0,4B.1,4C.0,9D.1,9题型七:矩形大法1已知圆C 1:x 2+y 2=9与C 2:x 2+y 2=36,定点P (2,0),A 、B 分别在圆C 1和圆C 2上,满足PA ⊥PB ,则线段AB 的取值范围是.2在平面内,已知AB 1 ⊥AB 2 ,OB 1 =OB 2 =1,AP =AB 1 +AB 2 ,若|OP |<12,则|OA |的取值范围是()A.0,52B.52,72C.52,2D.72,23(2023·全国·高三专题练习)已知圆Q :x 2+y 2=16,点P 1,2 ,M 、N 为圆O 上两个不同的点,且PM⋅PN =0若PQ =PM +PN ,则PQ的最小值为.1.设向量a ,b ,c满足|a |=|b |=1,a ⋅b =12,(a -c )⋅(b -c )=0,则|c |的最小值是()A.3+12B.3-12C.3D.1题型八:等和线1如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP =xAB +yAC,则2x +2y 的最大值为()A.83B.2C.43D.12在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN =λAB +μAC(λ,μ∈R ),则λ+μ的取值范围是()A.0,13B.13,12C.[0,1]D.[1,2]3(2023·全国·高三专题练习)如图,OM ∥AB ,点P 在由射线OM 、线段OB 及AB 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB .当x =-12时,y 的取值范围是()A.0,+∞ B.12,32C.12,+∞ D.-12,321.(2023·全国·高三专题练习)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一动点,若OC=xOA +yOB,则3x +y 的取值范围是.2.(2023·江西上饶·统考三模)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一个动点.若OC=xOA +yOB ,则2x +y 的取值范围是.3.(2023·全国·高三专题练习)在扇形OAB 中,OA =1,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB ,则x +3y 的取值范围是.4.(2023·福建三明·高二三明一中校考开学考试)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB,则x +4y 的取值范围是.5.(2023·全国·高三专题练习)如图,OM ⎳AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OP =xOA +yOB,则实数对x ,y 可以是()A.-14,34B.-15,75C.14,-12D.-23,236.如图,B 是AC 的中点,BE =2OB ,P 是平行四边形BCDE 内(含边界)的一点,且OP=xOA +yOBx ,y ∈R ,则下列结论正确的个数为()①当x =0时,y ∈2,3②当P 是线段CE 的中点时,x =-12,y =52③若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段④x -y 的最大值为-1A.1B.2C.3D.47.(2023·全国·高三专题练习)在△ABC 中,AB =AC=AB ⋅AC=2,点Q 在线段BC (含端点)上运动,点P 是以Q 为圆心,1为半径的圆及内部一动点,若AP =λAB +μAC,则λ+μ的最大值为()A.1B.33C.3+33D.328.在△ABC 中,AD 为BC 上的中线,G 为AD 的中点,M ,N 分别为线段AB ,AC 上的动点(不包括端点A ,B ,C ),且M ,N ,G 三点共线,若AM =λAB ,AN =μAC,则λ+4μ的最小值为()A.32 B.52C.2D.949.(2023·全国·高三专题练习)在ΔABC 中,AC =2,AB =2,∠BAC =120°,AE =λAB ,AF=μAC ,M 为线段EF 的中点,若AM=1,则λ+μ的最大值为()A.73B.273C.2D.21310.在扇形OAB 中,∠AOB =60o ,OA =1,C 为弧AB 上的一个动点,且OC =xOA +yOB.则x +4y 的取值范围为()A.[1,4)B.[1,4]C.[2,3)D.[2,3]11.(2023·全国·高三专题练习)如图,在扇形OAB 中,∠AOB =600,C 为弧AB 上且与A ,B 不重合的一个动点,且OC =xOA +yOB,若u =x +λy (λ>0)存在最大值,则λ的取值范围为()A.(1,3)B.13,3C.12,1D.12,2题型九:平行四边形大法1如图,圆O 是半径为1的圆,OA =12,设B ,C 为圆上的任意2个点,则AC ⋅BC 的取值范围是.2如图,C ,D 在半径为1的⊙O 上,线段AB 是⊙O 的直径,则AC ⋅BD的取值范围是.3(2023·浙江·模拟预测)已知e 为单位向量,平面向量a ,b 满足|a +e |=|b -e |=1,a ⋅b的取值范围是.1.(2023·江西宜春·校联考模拟预测)半径为1的两圆M 和圆O 外切于点P ,点C 是圆M 上一点,点B 是圆O 上一点,则PC ⋅PB的取值范围为.2.(2023·福建·高三福建师大附中校考阶段练习)设圆M ,圆N 的半径分别为1,2,且两圆外切于点P ,点A ,B 分别是圆M ,圆N 上的两动点,则PA ⋅PB的取值范围是()A.-8,12B.-16,34C.-8,1D.-16,1题型十:向量对角线定理1已知平行四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,若记a =OA⋅OB ,b =OB ⋅OC ,c =OC ⋅OD ,则()A.a <b <cB .a <c <bC .c <a <bD .b <a <c2如图,在圆O 中,若弦AB =3,弦AC =5,则AO ⋅BC的值是()A.-8B .-1C .1D .83如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥BC 若,AB =a ,AD =b ,则AC ⋅BD 等于()A.b 2-a 2B.a 2-b 2C.a 2+b 2D.a 2⋅b 2。
平面向量几何法解题技巧平面向量几何法是高中数学中的一项重要内容,它可以解决各种几何问题,包括线的垂直、平行、中点、角平分线等等。
本文将介绍平面向量几何法的基本概念、解题技巧以及应用实例,希望对读者有所帮助。
一、平面向量的基本概念平面向量是代表平面上的一定方向和大小的量,由一个有向线段和箭头来表示。
它可以表示为一个有序数对(a,b),其中a和b分别表示向量在x方向和y方向上的分量。
向量的大小表示为模长,一般用||AB||表示,其中AB 为向量的有向线段。
模长可以使用勾股定理计算:||AB||=√(a²+b²).向量的方向表示为方向角,它与x轴正方向的夹角记为α(0°≤α<360°或0≤α<2π),可以使用以下公式计算:α=arctan(b/a) (a>0)α=π+arctan(b/a) (a<0, b≥0)α=-π+arctan(b/a) (a<0, b<0)α=π/2 (a=0, b>0)α=-π/2 (a=0, b<0)二、平面向量几何法的解题技巧1. 向量的加减两个向量的加法表示以一个向量为起点,以另一个向量为终点的有向线段,公式为:AB+BC=AC。
两个向量的减法则表示从一个向量的终点到另一个向量的起点的有向线段,例如:AC-AB=BC。
2. 向量的数量积向量的数量积是一个纯量(一个数),记作a·b,它定义为a和b的模长的乘积与它们夹角的余弦值的积,也就是a·b=||a||·||b||·cosα。
向量的数量积还可以用来求两个向量之间的夹角,公式为cosα=a·b/||a||·||b||。
3. 向量的叉积向量的叉积是一个向量,它表示的是由两个向量围成的平行四边形的面积和方向。
公式为:a×b=||a||·||b||·sinα·n,其中n为满足右手定则的单位向量,其方向与两个向量所在平面垂直,且a、b、n 组成一个右手系。
高中数学平面向量模长解题技巧引言:在高中数学中,平面向量是一个重要的概念,涉及到平面几何、解析几何以及物理等多个领域。
而平面向量的模长是其中一个基本的概念,它代表了向量的长度或大小。
本文将介绍一些高中数学中常见的平面向量模长解题技巧,帮助学生更好地理解和应用这一概念。
一、模长的定义和性质模长是平面向量的一个重要性质,它可以通过向量的坐标表示或几何方法求解。
对于一个平面向量$\vec{AB}$,其模长记作$|\vec{AB}|$或$AB$,表示向量的长度或大小。
模长的计算公式为:$$|\vec{AB}|=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}$$其中$(x_A,y_A)$和$(x_B,y_B)$分别是向量起点$A$和终点$B$的坐标。
模长具有以下性质:1. 非负性:模长始终大于等于零,即$|\vec{AB}|\geq 0$。
2. 零向量的模长为零:对于零向量$\vec{0}$,其模长为$|\vec{0}|=0$。
3. 向量的模长与方向无关:向量的模长与其方向无关,只与向量的起点和终点有关。
二、模长解题技巧1. 利用坐标计算模长当向量的起点和终点的坐标已知时,可以直接利用模长的计算公式求解。
例如,已知向量$\vec{AB}$的起点$A(2,3)$和终点$B(5,7)$,求向量$\vec{AB}$的模长。
解答:根据模长的计算公式,可得:$$|\vec{AB}|=\sqrt{(5-2)^2+(7-3)^2}=\sqrt{9+16}=\sqrt{25}=5$$因此,向量$\vec{AB}$的模长为5。
2. 利用几何性质计算模长在某些情况下,可以利用几何性质来计算向量的模长。
例如,已知三角形$ABC$的顶点$A(1,2)$、$B(4,6)$和$C(7,2)$,求向量$\vec{AB}$和$\vec{AC}$的模长。
解答:根据模长的定义,可以利用两点之间的距离公式求解。
首先计算向量$\vec{AB}$的模长:$$|\vec{AB}|=\sqrt{(4-1)^2+(6-2)^2}=\sqrt{9+16}=\sqrt{25}=5$$然后计算向量$\vec{AC}$的模长:$$|\vec{AC}|=\sqrt{(7-1)^2+(2-2)^2}=\sqrt{36}=6$$因此,向量$\vec{AB}$的模长为5,向量$\vec{AC}$的模长为6。
高考平面向量题型归纳总结在高考数学考试中,平面向量是一个常见的考点,也是学生普遍认为较为困难的部分之一。
平面向量题型包括向量的加减、数量积、向量方向等。
本文将对高考平面向量题型进行归纳总结,帮助学生更好地掌握此类题型。
一、向量的加减1. 向量的加法向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
在解题过程中,可以利用向量的平移性质,将向量平移至同一起点,再连接终点得到新的向量。
2. 向量的减法向量的减法可以转化为加法进行处理,即a - b = a + (-b)。
其中,-b表示b的反向量,即方向相反的向量,模长相等。
二、数量积数量积又称为内积或点积,记作a·b。
1. 定义对于两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积a·b = x₁x₂ +y₁y₂。
另外,数量积还可以表示为向量模长和夹角的乘积,即a·b =|a| · |b| · cosθ,其中θ为a与b的夹角。
2. 性质(1) 交换律:a·b = b·a(2) 分配律:a·(b + c) = a·b + a·c(3) 结合律:k(a·b) = (ka)·b = a·(kb),其中k为实数(4) 若a·b = 0,则a与b垂直或其中一个为零向量(5) 若a·b > 0,则夹角θ为锐角;若a·b < 0,则夹角θ为钝角。
三、向量方向向量的方向可以用两种方式来表示:1. 向量的方向角:向量a(x, y)的方向角为与x轴正方向之间的夹角α,其中-π < α ≤ π。
2. 方向余弦:向量a(x, y)的方向余弦为与x轴的夹角的余弦值cosα,与y轴的夹角的余弦值cosβ。
在解决平面向量题型时,可以利用这两种方式来确定向量的方向。
初中数学解题技巧迅速解决复杂的平面向量题目平面向量作为初中数学中的重要内容之一,在解题过程中可能会遇到一些较为复杂的题目。
本文将介绍一些解题技巧,帮助同学们快速解决这些复杂的平面向量题目。
一、快速计算向量的模和方向在解决平面向量题目时,经常需要计算向量的模和方向。
为了方便计算,我们可以使用平面向量的坐标表示法。
假设有一个向量AB,设点A的坐标为(A₁, A₂),点B的坐标为(B₁, B₂),则向量AB的坐标表示为(B₁ - A₁, B₂ - A₂)。
通过坐标表示法,我们可以快速计算向量的模和方向。
向量的模可以通过使用勾股定理计算得到,即向量的模为√((B₁ -A₁)² + (B₂ - A₂)²)。
向量的方向可以通过使用反正切函数计算得到,即向量的方向为arctan((B₂ - A₂) / (B₁ - A₁))。
二、夹角的计算在解决平面向量题目时,有时需要计算向量之间的夹角。
我们可以使用向量的点积来计算夹角。
设有两个向量A和B,它们的夹角记为θ,则有cosθ = (A·B) / (|A|·|B|)。
通过这个公式,可以快速计算出向量之间的夹角。
三、向量共线与共面判断在解决平面向量题目时,有时需要判断向量是否共线或共面。
可以通过计算向量的比值来判断。
1. 共线判断:如果向量A与向量B共线,那么它们的对应坐标之间的比值应该相等。
即 (B₁/A₁) = (B₂/A₂) = k。
如果向量A与向量B共线,那么我们可以通过求两个坐标之间的比值,判断出它们是否共线。
2. 共面判断:如果向量A、B和向量C共面,那么向量A与向量B的叉积与向量A与向量C的叉积应该平行。
即A×B = λ(A×C),其中λ是一个实数。
通过判断两个向量的叉积是否平行,我们可以判断出它们是否共面。
四、平面向量的运算在解决平面向量题目时,有时需要进行向量的运算。
以下是一些常见的向量运算规则:1. 向量的加法:设有向量A和向量B,它们的和记为A + B。
平面向量求解技巧平面向量是解决平面几何问题的重要工具之一。
在应用平面向量求解问题时,以下技巧或方法可以帮助我们更快速、准确地解决问题。
1. 确定坐标系:在解决平面向量问题时,通常需要确定一个相应的坐标系。
常用的坐标系有直角坐标系和极坐标系。
选择合适的坐标系可以简化问题,并使计算更加方便。
2. 表示向量:向量是带有方向的量,可以使用一个有序的数对来表示。
在直角坐标系中,一个向量可以表示为(x, x),其中x和x分别表示该向量在x轴和x轴上的分量。
在极坐标系中,一个向量可以表示为(x, x),其中x表示向量的长度,x表示向量与正半轴的夹角。
3. 向量的加法:向量的加法满足平行四边形法则,即将两个向量的起点放在一起,然后将它们的箭头相连接,连接后的向量为原向量的和。
在直角坐标系中,向量的加法可以通过将两个向量的对应分量相加得到。
4. 向量的减法:向量的减法可以看作是向量的加法的逆运算。
即,将被减向量进行取负操作,再将该向量与减向量进行加法运算。
在直角坐标系中,向量的减法可以通过将减向量的对应分量取负,然后与被减向量的对应分量相加得到。
5. 向量的数量乘法:向量的数量乘法是将一个向量的长度与一个标量相乘,得到一个新的向量。
数量乘法会改变向量的大小,但不会改变向量的方向。
6. 向量的点乘:向量的点乘也称为内积或数量积。
点乘的结果是一个标量,不带有方向。
点乘可以用来求解两个向量的夹角、判断两个向量是否垂直等。
7. 向量的叉乘:向量的叉乘也称为外积或向量积。
叉乘的结果是一个新的向量,方向垂直于原始向量组成的平面,并遵循右手定则。
向量的叉乘可以用来求解平行四边形的面积、判断三个向量的共面性等。
8. 解决几何问题:应用平面向量求解平面几何问题时,我们通常可以将几何问题抽象为向量问题。
通过将几何问题转化为向量问题,我们可以利用向量的性质和计算方法快速求解。
9. 利用向量运算化简问题:在求解平面向量问题时,可以利用向量运算的性质化简问题。
备考方略<3平面向量常用的方法技文K灼*>\i^i北京市陈经纶中学周明芝--特别提示:【解】对于①於+3=0平面向量具有代數几何双重身份,从近几年对于②ASXS+S?5(XJ+c5)a5a5o==的高考试题看对向量的考查力度在逐年加大并且对于③强调了向量的知识性与工具性,重点考查向量的四对于④+(g种运算、两个充要条件等核心知识,考查向量的几M=NP+前=〇P何形式与代教形式的相互转化技能有些问题的处理,综上知应填①②③④对变形技巧要求高,具有定的难度因此,要想在【小结】向量的加减法法则是解题的基础在运用时平面向量试题的求解中取得高分,必须在理解向量要注意交换律和结合律的使用熟练四种运算和两个充要条件应用的基础上概念、例2(2011湖南)在边长为1的正三角形ABC中认真梳理常用的方法和技巧逐步提高解题能力设则X5?【分析】利用边长为1和正三角形内角度数?并注意4把和进行拆分方法一、分解合成法由题意沒rs技瓦&茂【解】=j=分解是指把个向量拆成几个向量有利于处理向量前面的系数合成是指利用向量加减运算多项合成c¥=yC^cS项减少项数从而达到化简的目的在解题时要灵活运用向量加法法则和首尾相连的向量和为零等技巧例1化简下列各式①万2十否f+亡芳②疋§1=+=+節成③孩前+滅④胡+前威cJc%2364结果为零向量的序号是【小结】根据加、减法法则灵活地进行合理拆分是解[分析】对于化简题,应灵活运用加法交换律,尽可题的关键能使之变为首尾相连的向量然后再运用向量加法结合律练习1在AABC中=cf=cf若点D满足訪=2万P则力5=()求和201717cceev名师导航cy6Tcdt6+tc练习2已知O是AABC所在平面内点D为BC边中点且芳+St0那么('=AAf;=〇SBAt)=2WCaT;=3〇SD2Ad=〇S4方法二、充要条件法例3已知向量a(l2)6(23).若向量ft满==足(c+a)/^&c丄(a+办),则c=()?A(TT)B(ciT)D:u)(,(【分析】设出所求向量,再利用两向量平行、垂直的充要条件来求解【解】不妨设C==w"则flC=1+,《2+7Zfl+,)()b=31)c+d/6,得3l+m22+对由()/=())又由c丄a丁ft),得3"7”=0解得/?=j,《=故选D【小结】此题主要考查了平面向量的坐标运算以及两向量平行和垂直的相互关系,体现了平面向量平行、垂直的充要条件在解决具体问题中的重要作用例4(2010全国)已知圆〇的半径为1PAPB为该圆的两条切线为两个切点那么戶方?M的最小值为()A4+#B3+72C4+2^2D3+2^2【分析】本小题主要考查向量的数量积运算,同时也考查了考生综合运用数学知识解题的能力【解】把圆心放在坐标原点则可得圆的方程为x2+y=设:y!)以々,M)PfjT。
,〇),则=(xx〇y)?(xj:0,y=x22xX{xyj,l)i〇〇CM丄丄(々3).(〇了。
%)=0=>rfjtjc〇+x0=1PA?R§=xi2rix〇\x〇yi=j:i2ij:〇(1rf)=2:r?+x§3為2>/^3?故选D【小结】本题解法较多可以设PA=PB=:rU>0>ZAPOa贝=aPO==1J2VTT?sna71+7将前_表示为i的函数后求解也可设=〇<0<7t将M表示为0的关系式再求解但这两种解法的求解过程都较复杂而建系后利用平行、垂直的充要条件结合二次函数求解,相比之下较为简捷练习3(2011北京)已知向量a=(a/11)6=〇1),C=(々V^)若lf2办与c共线则々=4方法三、数形结合法例5已知向量满足d=66=4且a与&的夹角为6〇°求a+ft和a36【分析】如图?根据条件利用向量的加、减法法则作出图形,直接作出a6和a3办?然后再求模冬1图2【解】如图1所示,成二则?由lfj的夹角为60°知ZAOC=60°ZBAO=120°在AAOB中由余弦定理得,a+b=〇5=v/62+422X4X6cos120°=2^19如图2所示同理可求得a36=歹£=6#【小结】用数形结合思想构造几何图形求解使解题过程变得非常简捷避免了大量繁杂的计算例6(2011全国)设向量a、&、c满足a=h=l??c>=60°,贝Jc的最大值等于()A2B>/3C72D1【分析】根据题目中a、6、c的关系,构造出满足条件1Q2017〇cceev■^备考方略的图形来求解【解】如图3设XS=a,A5=bAt=c又设&的夹角为9则a?b1C〇s9a6Y所以0=120°即ZBAD=120。
阁3°又ZBCD=60故ZjBAL?+ZBCD=180°所以AB,CD四点共圆因此当AC为圆的直径时c最大此时AABC是直角三角形ZACJ3=3〇°,所以AC=2AB=2即k的最大值是2选A【小结】本题主要考查平面向量的数量积运算、向量加减法、四点共圆的条件用数形结合的方法,巧妙构造出圆的内接四边形来求解是个省时省力的好方法-练习4设P是AABC所在平面内的点=2節则()ATX+T^^OBPf+P^=0CP^+Pt'0DP^+R§+Pf=0练习5已知a=l,M=2c=lf+&c丄a则fl与办的夹角大小为(AfB譬CfDf4方法四、特值处理法例7设平面向量fl、的和lf+lf2十A二0?如果向量匕、込、h满足M=2A且a顺时针旋转30°后与6同向其中^=123则(Ab\b+=0Bb62h63=0Cb\b2^0Db+bj+/h=0【分析】本题主要考查向量加法的几何意义、向量的模以及两向量夹角等基本概念【常规解法】??+lf30?+2a2+2a=0.?a+a2=,??2lf3因为=2a,且fl顺时针旋转30°后与h同向故2a必与办重合即私=2a故h+h+h:0,故选D【特殊值法】令a=〇则七=化关〇由题意知h=〇h=込关〇从而排除Bc同理排除A故选D【小结】特殊值法巧在取特值A=〇使问题简单化对于选择和填空题应用特值法进行化简,结合排除往往能事半功倍练习6已知向量a、fc不共线c==6如果那么()A务=1且c与d同向B々=1且c与d反向C々=1且c与d同向D6=1且c与d反向 ̄方法五、平方去模法例8平面向量lf与6的夹角为60°lf=(20)4=1则lf+26=)AV3B2^/3C4D12【分析】可对a+2&先求平方?再把已知条件代入求解【解】由已知a2W=1注意到fl与的夹角=为60。
则a+2&=+4a?&=4+4X2X1Xcos60°+4=12/?a+26=2#,故选Ba2=fl2是向量数量积的重要性质之它【小结】沟通了向量与实数间的相互联系充分利用这性质可以将向量模长的计算问题转化为向量的运算问题.练习7已知向量fl=(2l)ci.&=10,lf+6=5#则…=()?A^5Byi〇C5D254方法六、“四心结论”法例9已知《NP在AABC所在平面内且成=?5S=ofKX+yS+Nt'=osp^?732=pE?pt梵T!则点0A依次是的()=5TPA重心外心垂心B重心外心内心C外心重心垂心D外心重心内心【分析】此题考查了三角形的内心、外心、重心和垂心的概念,由已知条件中的向量关系式出发进行推导,并结合三角形内心、外心、重心和垂心的几何特征即可获解20719cceev名师导航【解】由孩卜成=泛知〇为AABC的外心由M+7^+7^=0知JV为厶ABC'的重心:TX?p^=rB?pt,p^pt?rBo?=.??沒.沛=〇.?沒丄戒同理好丄Sf???P为AABC的垂心故选C小结考查三角形内心、外心、重心和垂心的试题【】在近几年高考中较为常见求解这类问题需要掌握这些心” 的判断条件和相关的向量关系式常见的向量"四心结论"有① 〇是aabc的重心<^S5+?jS+or=o② 〇是aabc的垂心技成.=?DP=Df?成③O是AASC的外心⑶M=DS=DP(或m2=qS2=ot2)④ O是AABC内心的充要条件是/cAcSor-\]cXT^T)=〇晶W⑤ 向量a+AtU关0)所在直线过AABC(的内心(是ZBAC的角平分线所在直线)练习8在AABC中M是的中点AM=1点P在AM上且满足A,=2M则?FS+Pf等于()A+B|C|D+练习9已知O为AABC内点且D方+Sf+2D¥0则AAOC与AABC的面积之比是()A1:2B1:3C2:3D11练习10(2010湖北)已知AABC和点M满足M?+g+Mf=o若存在实数w使得;成立则w=()A2B3C4D.5练习题参考答案1解析如图4所示在AABC中由=2得痛=2(於沛3A3=ASh2At=ch2bXt5=+c+吾6?故选A2解析jM+DS+Dfs20X+dS+oS)+dPhoS)=ovdS=dP阍4???2成+2S5=0/.Xf)=^5故选A3解析fl2&万3)由26与c共线得#W=?=3々=>灸=1心解析因为:^+:^二之:^^所以点尸为线段焱厂的中点戶r+瓦¥=〇所以应该选b5解析如图5W=fl+6c丄〇,构成个三角形且PA2所以可以推知a与的夹角为¥故选D解析取〇=0)6=(01若厶=1则〇=〇+办6(1)11)</〇6(11)显然〇与6不平行排除八、=二=B若々=1贝jc=a6二(lld=lf办=,(11),即c//(/且c与d反向排除C故选D解析??50=n+62=lf2+2fl?H&2=#+207&2,???办=5?故选C8解析由=知P为△ABC的重心根据向量加法法贝F^i=2ApPi^c〇S〇〇=2XyXyXl=y.A9解析设AC的中点为D则?+?5f=2755.?.a^+?5f+2〇2=2〇S+2a§=o.,.o5=o2即点O为AC边上的中线BD的中点=AABC匕故选A10解析由条件可知M为△ABC的重心连接AM并延长交于D则减=+訪①因为为中线,则XS+X?=2瓦5=mg即2M=mA]^②联立①②可得,《=3故选B*201720cceev。