平面向量基本定理系数的等值线法
- 格式:docx
- 大小:1.09 MB
- 文档页数:8
平面向量基本定理系数的等值线法一、适用题型在平面向量基本定理的表达式中,若需研究两系数的和差积商、线性表达式及平方和时,可以用等值线法.二、基本理论(一)平面向共线定理已知OC OB OA μλ+=,若1=+μλ,则C B A ,,三点共线;反之亦然 (二)等和线平面内一组基底OB OA ,及任一向量OP , ),(R OB OA OP ∈+=μλμλ,若点P 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线成为等和线(1)当等和线恰为直线AB 时,1=k ;(2)当等和线在O 点和直线AB 之间时,)1,0(∈k ; (3)当直线AB 在O 点和等和线之间时,),1(+∞∈k ; (4)当等和线过O 点时,0=k ;(5)若两等和线关于O 点对称,则定值k 互为相反数; (6)定值k 的变化与等和线到O 点的距离成正比. (三)等差线平面内一组基底OB OA ,及任一向量OP , ),(R OB OA OP ∈+=μλμλ, C 为线段AB 的中点,若点P 在直线OC 上或在平行于OC 的直线上,则k =-μλ(定值);反之也成立,我们把直线OC 以及与直线OC 平行的直线称为等差线 (1)当等差线恰为直线OC 时,0=k ; (2)当等差线过A 点时,1=k ; (3)当等差线在直线OC 与点A 之间时,)1,0(∈k ; (4)当等差线与BA 延长线相交时,),1(+∞∈k ;(5)若两等差线关于直线OC 对称,则两定值k 互为相反数. (四)等积线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,若点P 在以直线OB OA ,为渐近线的双曲线上,则λμ为定值k ,反之也成立,我们把以直线OB OA ,为渐近线的双曲线称为等积线(1)当双曲线有一支在AOB ∠内肘,0>k ;(2)当双曲线的两支都不在AOB ∠内吋,0<k ;(3)特別的,若),(b a OA =,),(b a OB -=,点P 在双曲线)0,0(12222>>=-b a by a x 上时,41=k (五)等商线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,若点P 在过O 点(不与OA 重合)的直线上,则k =μλ(定值),反之也成立,我们把过点O 的直线(除OA 外)称为等商线(1)当等商线过AB 中点吋,1=k ;(2)当等商线与线段AC (除端点)相交时,),1(+∞∈k ; (3)当等商线与线段BC (除端点)相交时,)1,0(∈k ; (4)当等商线为OB 时,0=k ;(5)当等商线与线段BA 延长线相交时,)1,(--∞∈k ; (6)当等商线与线段AB 延长线相交时,)0,1(-∈k ; (7)当等商线与直线AB 平行时,1-=k . (六)等平方和线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,且OB OA =,若点P 在以AOB ∠角平分线为半长轴的椭圆上,则22μλ+为定值k ,反之也成立,我们把以AOB ∠角平分线为半长轴的椭圆称为等平方和线特別的,若),(b a OA =,),(b a OB -=,,点P 在椭圆)0,0(12222>>=+b a by a x 上时,21=k 三、解题步骤 1、确定等值线为1的线;2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值;3、从长度比或者点的位置两个角度,计算最大值和最小值;四、几点补充1、平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;2、若需要研究的是两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和或差;五、典型例题例1.给定两个长度为1的平面向量OA 和OB ,它们的夹角为0120,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若OB y OA x OC +=,其中R y x ∈,,则y x +的最大值是解法1:以点O 为原点,OA 为x 轴建立平面直角坐标系,则)01(,A ,)23,21(-B设θ=∠AOC ,则)sin ,(cos θθC ,所以OB y OA x OC +=)23,21()0,1()sin ,(cos -+=⇒y x θθ ⎪⎪⎩⎪⎪⎨⎧=+=⇒⎪⎪⎩⎪⎪⎨⎧=-=⇒θθθθθsin 32sin 31cos 23sin 21cos y x y y x2)6sin(2sin 3cos ≤+=+=+∴πθθθy x 当且仅当26ππθ=+即3πθ=时等号成立所以2)(max =+y x解法2:设OC 交AB 于点D ,则 当点C 在1C 处时,2)(max =+y x当点C 在A 或B 处时,1)(min =+y x]2,1[∈+∴y x例 2.在正六边形ABCDEF 中,P 是三角形CDE 内(包括边界)的动点,设AF y AB x AP +=,则y x +的取值范围解析:设AP 与BF 相交于点Q ,则 当点P 在点D 处时,4)(max =+y x ,当点P 在CE 上(不如让点P 在AD 与CE 的交点处)时,3)(min =+y x ∴]4,3[∈+y x例3.如图,在平行四边形ABCD 中,N M ,为CD 边的三等分点,S 为AM 与BN 的交点,P 为边AB 边上一动点,Q 为SMN ∆内一点(含边界),若BN y AM x PQ +=,则yx +的取值范围是 解析:作BN PT AM PR ==,,则PT y PR x BN y AM x PQ +=+=所以当点P 在S 点处时,43)(min =+y x ,当点P 在MN 上时,1)(max =+y x , 故∈+y x ]1,43[例4.梯形ABCD 中,AB AD ⊥,1==DC AD ,3=AB ,P 为三角形BCD 内一点(包括边界),AD y AB x AP +=, 则y x +的取值范围 解析:当点P 在点C 处时,34)(max =+y x 当点P 在BD 上时,1)(min =+y x∈+∴y x ]34,1[例5.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若 AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为解析:作AC DN AB DM ==,,则MN ∥BE (BE 在DMN ∆中位线上)∴DN DM AC AB DE 2121λλλλ+=+==+∴21λλ21注:此题为2013年江苏高考题第8题,但点E 为三等分的条件其实没有必要,可舍例 6.在正方形ABCD 中,E 为BC 中点,P 为以AB 为直径的半圆弧上任意一点,设AP y AD x AE +=,则y x +2的最小值为解析:取AD 的中点M ,则AP y AD x AE +=AP y AM x +=2 因为点P 在半圆上滑动,当点E 离直线MP 最近时,y x +2最小 由图可知点P 在半圆上的最高点处时,点E 离直线MP 最近 此时点E 在MP 上,所以=+min )2(y x 1例7.在正方形ABCD 中,E 为AB 中点,P 为以A 为圆心,AB 为半径的圆弧上的任意一点,设AP y DE x AC +=,则y x +的最小值为 解析:作DE AF =,则AP y DE x AC +=AP y AF x += 当点C 离PF 最近时,y x +最小所以当点P 在圆上滑到点B 处时,y x +最小为218.已知1==ON OM ,ON y OM x OP +=(y x ,为实数),若PMN ∆是以M 为直角顶点的直角三角形,则y x -取值的集合为解析:作ON OA -=,则有OA ON OM ==,所以090=∠AMN ,即P M A ,,三点共线,所以ON y OM x OP +=OA y OM x -=所以1=-y x ,故答案为{}1例9.已知椭圆E :12510022=+y x 的上顶点为A ,直线4-=y 交椭圆于C B ,(B 在C 的左侧),点P 在椭圆E 上,若BC n BA m BP +=,求n m +的最大值 解析:可知点P 为椭圆的与AC 平行的切线的切点处时,n m +最大 计算可得=+max )(n m 1813105+ 例10.已知O 为ABC ∆的外心,若)00(,A ,)02(,B ,1=AC ,32π=∠BAC ,且AC AB AO μλ+=,则=+μλ解析:过点O 作OD ∥BC 交AB 于点D ,则ABAD=+μλ O 为ABC ∆的外心⇒点O 在BC 的垂直平分线上⇒点O 的横坐标为1 )23,21(-C ,532523-=-=BCk ,7)221()23(22=--+=BC由正弦定理得3212327sin 2=⨯=⇒∠=OA BACBCOA ,所以点O 的纵坐标为332137=-,直线OD :)1(53332--=-x y ,令0=y 得点D 的坐标为)0,313( 613==+∴AB AD μλ例11.已知O 为ABC ∆的外心,若31cos =∠BAC ,AC AB AO μλ+=,则=+max )(μλ 解析:设AO 交BC 于点D ,则ODAO AOAD AO +==+μλ 当OD 最小即BC AD ⊥时,μλ+最大,此时=+μλ43所以=+max )(μλ43例12.平面内有三个向量OA 、OB 、OC ,其中OA 与OB 的夹角为0120 ,OA 与OC 的夹角为030,且1==OB OA ,32=OC ,若OB n OA m OC +=,则n m +的值为解析:设OC 交AB 于点D ,则n m +ODOC=OAD ∆中,331300=⇒==∠=∠OD OA OAD AOD , 所以OD OC =63332== 例13.如图,C B A ,,是圆O 上的三点,CO 的延长线与线段BA 的延长线交于圆O 外的点D ,若OB n OA m OC +=,则n m +的取值范围为解析:∈-=+ODOCn m )0,1(-例14.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为)0,5(,)1,2(1=e , )1,2(2-=e 分别是两条渐近线的方向向量,任取双曲线Γ上的点P ,若),(21R b a e b e a OP ∈+=,则b a ,满足的一个等式是解析:等积线:双曲线的方程为1422=-y x ,设)tan ,sec 2(θθP ,则由),(21R b a e b e a OP ∈+=⎩⎨⎧=-=+⇒⎩⎨⎧=-=+⇒-+=⇒θθθθθθtan sec tan sec 222)1,2()1,2()tan ,sec 2(b a b a b a b a b a 1tan sec )()(2222=-=--+⇒θθb a b a 41=⇒ab例15.已知1=OA ,3=OB ,0=⋅OB OA ,点C 在AOB ∠内,且030=∠AOC , 设OB n OA m OC +=,则nm的值为 答案:等商线:分别以OB OA ,为y x ,轴建立平面直角坐标系,则)3,0(),01(B A ,, OB n OA m OC +=)3,()3,0()0,1(n m n m =+=,又030=∠AOC ,所以330tan 30=⇒=nmm n例16.如图,倾斜角为θ的直线OP 与单位圆在第一象限的部分交于点P ,单位圆与坐标轴交于点)01(,-A ,点)10(-,B ,PA 与y 轴交于点N ,PB 与x 轴交于点M ,设),(R y x PN y PM x PO ∈+=,求y x +的最小值解析:设OP 交MN 于点Q ,MN 的中点为D ,则21211111=+-≥-=-==+OQ OQ PO PO PQ PO y x例17.如图,在扇形OAB 中,060=∠AOB ,C 为弧AB 上且不与A 、B 重合的一个动点,OB y OA x OC +=,若)0(>+=λλy x u 存在最大值,则λ的取值范围为解析:因为0>λ,在射线OB 上取点D ,使得OB OD λ1=,则OB y OA x OC +=OD y OA x λ+=,过点C 作CE ∥AD 交OB 于点E ,过点A 作OB AM ⊥于点M ,过点A 作弧AB 的切线交OB 于点N ,则易知当E 离D 最远时u 有最大值,而E 只能在线段MN 上,所以∈u )2,21(例18.在平面直角坐标系中,O 为坐标原点,两定点B A ,满足2=⋅==OB OA OB OA ,则点集{}R OB OA OP P ∈≤++=μλμλμλ,,1,所表示的区域面积为解析:由题意可知60=∠AOB ,设OB OD OA OC -=-=,,R OB OA OP ∈≤++=μλμλμλ,,1,,则可知点P 的轨迹为平行四边形ABCD 及其内部的部分,其面积为3460sin 44210=⨯⨯⨯例19.已知b a ,是两个互相垂直的单位向量,且1=⋅=⋅b c a c ,则对任意的正实数t ,b ta t c 1++的最小值为解析:分别以b a ,为y x ,轴方向上的单位向量,则)1,0(),0,1(==b a ,由1=⋅=⋅b c a c 知)1,1(=c ,)11,1()1,0(1)0,1()1,1(1tt t t b t a t c ++=++=++∴2212)12()2()11()1(12222≥+=+≥+++=++tt t t t t b t a t c。
第6讲 平面向量等和线定理求系数和问题【考点分析】考点一:平面向量等和线问题 ①平面向量共线定理已知OA OB OC λμ=+,若1λμ+=,则,,A B C 三点共线;反之亦然。
①平面向量等和线问题平面内一组基底,OA OB 及任一向量OP ,(,)OP OA OB R λμλμ=+∈,若点P 在直线AB 上或者在平行于AB的直线上,则k λμ+=(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。
注意:1.当等和线恰为直线AB 时,1k =;2.当等和线在O 点和直线AB 之间时,(0,1)k ∈;3.当直线AB 在点O 和等和线之间时,(1,)k ∈+∞;4.当等和线过O 点时,0k =;5.若两等和线关于O 点对称,则定值k 互为相反数; 【典型例题】题型一: 平面向量等和线求系数和问题【例1】如图,在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上,若满足AP mAB nAD =+,则n m +的最大值为( )A .3B .22C .5D .2OABCP P 1【答案】A【解析】法一:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系, 则(0,0)A ,(1,0)B ,(0,2)D ,(1,2)C ,动点P 在以点C 为圆心且与BD 相切的圆上,设圆的半径为r ,2BC =,1CD =,BD ∴∴1122BC CD BD r =,r ∴=,∴圆的方程为224(1)(2)5x y -+-=,设点P 的坐标为1θ+2)θ+,AP AB AD λμ=+,1θ∴+2)(1θλ+=,0)(0μ+,2)(λ=,2)μ,∴1θλ+=22θμ+=,2sin()2λμθθθϕ∴+=++=++,其中tan 2ϕ=,∵1)sin(1≤+≤-ϕθ,∴31≤+≤μλ,故λμ+的最大值为3,故选A .法二:由等和线性质知:APAPAD AN n m 1==+,所以当1P 在如图所示位置时,n m +取得最大值,33==+rr n m 【例2】如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP xAB y AC =+,则22x y +的最大值为( )A .83B .2C .43D .1【答案】A 【详解】作BC 的平行线与圆相交于点P ,与直线AB 相交于点E ,与直线AC 相交于点F , 设AP AE AF λμ=+,则1λμ+=, ∵BC//EF ,∴设AE AF k AB AC ==,则4[0,]3k ∈ ∴,AE k AB AF k AC ==,AP AE AF k AB k AC λμλμ=+=+ ∴,x k y k λμ==∴22x y=+8223k k λμ+=≤()故选:A.【例3】在ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN AB AC λμ=+(λ,μ∈R ),则λμ+的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .[0,1]D .[1,2]【答案】C 【解析】 【分析】设AN t AM =,()01t ≤≤,当0=t 时, 可得0λμ==,从而有0λμ+=;当01t <≤时,有B A A M AC ttλμ=+,根据M 、B 、C 三点共线,可得1t t,进而可得(]0,1t λμ+=∈,从而即可求解.【详解】解:由题意,设AN t AM =,()01t ≤≤,当0=t 时,0AN =,所以0AB AC λμ+=, 所以0λμ==,从而有0λμ+=;当01t <≤时,因为AN AB AC λμ=+(λ,μ∈R ), 所以B t A A A M C λμ=+,即B A A M AC ttλμ=+,因为M 、B 、C 三点共线,所以1t t,即(]0,1t λμ+=∈.综上,λμ+的取值范围是[0,1]. 故选:C.【例4】如图,已知点P 在由射线OD 、线段OA ,线段BA 的延长线所围成的平面区域内(包括边界),且OD 与BA 平行,若OP xOB yOA =+,当12x =-时,y 的取值范围是( )A .[]0,1B .1,12⎡⎤-⎢⎥⎣⎦C .13,22⎡⎤-⎢⎥⎣⎦D .13,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】根据向量加法的平行四边形法则,OP 为平行四边形的对角线,该四边形应是以OA 与OB 的反向延长线为两邻边,当12x =-时,要使P 点落在指定区域内,即P 点应落在EF 上,得到y 的取值范围. 【详解】∵//OD AB ,OP xOA yOB =+,由向量加法的平行四边形法则,OP 为平行四边形的对角线, 该四边形应是以OA 与OB 的反向延长线为两邻边,∴当12x =-时,要使P 点落在指定区域内,即P 点应落在EF 上,13,22CE OA CF OA ==,∴y 的取值范围为1322⎡⎤⎢⎥⎣⎦,.故选:D.【例5】在扇形OAB 中,60AOB ∠=,C 为弧AB 上的一动点,若OC xOA yOB =+,则3x y +的取值范围是_________. 【答案】[]1,3 【解析】 【分析】以O 为原点,,OA OB 分别为x ,y 轴正方向建立平面直角坐标系.向量坐标化进行坐标运算,利用三角函数求出3x y +的取值范围. 【详解】以O 为原点,,OA OB 分别为x ,y 轴正方向建立平面直角坐标系.则()11,0,2OA OB ⎛== ⎝⎭.不妨设()cos ,sin ,03OC πθθθ⎛⎫=≤≤ ⎪⎝⎭. 因为OC xOA yOB =+,所以1cos 2sin x y yθθ⎧=+⎪⎪⎨⎪=⎪⎩,解得:cos x y θθθ⎧=⎪⎪⎨⎪=⎪⎩,所以s 3co 3in x y θθ+=. 因为cos y θ=在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减,sin y θ=-在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减,所以s 3co 3in x y θθ+=在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减.所以当0θ=时33x y +=最大;当3πθ=时cos1333332x y ππ===+最小. 所以3x y +的取值范围是[]1,3. 故答案为:[]1,3. 【题型专练】1.在直角ABC 中,AB AC ⊥,2AB AC ==,以BC 为直径的半圆上有一点M (包括端点),若AM AB AC λμ=+,则λμ+的最大值为( )A .4 BC .2 D【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标表示M ,结合三角函数最值的求法,求得λμ+的最大值. 【详解】依题意在直角ABC 中,AB AC ⊥,2AB AC ==, 以A 为原点建立如图所示平面直角坐标系,()()0,2,2,0C B ,设D 是BC 的中点,则()1,1D .BC =(),M x y 满足()()22211x y -+-=,设11x y αα⎧=+⎪⎨=+⎪⎩(α为参数,π3π44α-≤≤),依题意AM AB AC λμ=+,即()()()1,12,00,2ααλμ=+,()()1,12,2ααλμ=,λμ⎧⎪⎪⎨⎪⎪⎩,π22sin π4sin 124αλμα⎛⎫++ ⎪⎛⎫⎝⎭+===++ ⎪⎝⎭, 所以当πππ,424αα+==时,λμ+取得最大值为2. 故选:C2.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3 B .CD .2【答案】A 【解析】 【详解】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+, 设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.3.如图,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心Q 在线段CD (含端点)上运动,P 是圆Q 上及其内部的动点,设向量AP mAB nAF =+(m ,n 为实数),则m +n 的最大值为______.【答案】5 【解析】 【分析】根据||||||AC AQ AD ≤≤及||1||||1AQ AP AQ -≤≤+得到1||5AP ≤≤,根据平面向量知识得到22||4()12AP m n mn =+-,利用2()4m n mn +≤可求出结果.【详解】在边长为2的正六边形ABCDEF 中,AC CD ⊥,||224AD =⨯=, 所以||||4AQ AD ≤=,当且仅当Q 与D 重合时,等号成立,又||||1AP AQ ≤+,即||415AP ≤+=,当||5AP =时,P 是AD 的延长线与圆Q 的交点,此时,由AP mAB nAF =+可知,m n =.因为AP mAB nAF =+,且2π,3AB AF <>=, 所以22222||||2||||||AP m AB mn AB AF n AF =⋅+⋅⋅+⋅22144222()2m n mn =++⋅⋅⋅-22444m n mn =+- 24()12m n mn =+-,所以2211()||312mn m n AP =+-,结合图形可知,0,0m n >>,由2()0m n -≥,得2m n mn +≥,即2m n mn +≥,即2()4m n mn +≤,当且仅当m n =时等号成立,所以22211()()||3124m n m n AP ++-≤,所以||m n AP +≤,又||5AP ≤,时,等号成立, 所以5m n +≤,当且仅当m n =时,等号成立. 即m +n 的最大值为5. 故答案为:5.4.已知ABC 的外接圆圆心为O ,120A ∠=,若AO x AB y AC =+(x ,y R ),则x y +的最小值为( )A .12 B .23C .32D .2【答案】D 【解析】 【分析】设OA 与BC 交点为E ,则AE AB AC λμ=+其中1λμ+=,由于()RAO xAB y AC AB AC R OEλμ=+=+-,得()R R x y R OE R OE λμ+=+=--,因为2ROE R ≤< 故x y +的最小值可得.【详解】设OA 与BC 交点为E ,设OE m =,圆的半径为R ,D 为BC 中点,如图所示:则RAO AE R m=-,设AE AB AC λμ=+,因为,,B C E 三点共线,则1λμ+= 所以()R AO xAB y AC AB AC R m λμ=+=+-,故()R Rx y R m R mλμ+=+=-- 因为120A ∠=︒,则60COD ∠=︒所以1cos602OD R R =︒=则2R m R ≤< ,故22R RR R m R ≥=-- 所以x y +的最小值为2 故选:D 【点睛】设AE AB AC λμ=+,因为,,B C E 三点共线,则1λμ+=,得()R Rx y R m R mλμ+=+=--是解题的关键. 5.给定两个长度为1的平面向量OA 和OB ,它们的夹角为23π,如图所示点C 在 以O 为圆心的圆弧AB 上运动,若OC xOA yOB =+,其中x ,y R ∈,则x y +的取值范围为( )A .(1,2]B .[1,2]C .[1,2)D .[2-,2]【答案】B解析:由等和线性质知:连接AB ,当C 点在B A 或点时,()1min =+y x ;作AB 的平行线,当与AB 相切时,当C 点在切点时,()2max =+y x6.已知O 是ABC ∆内一点,且0OA OB OC ++=,点M 在OBC ∆内(不含边界),若AM AB AC λμ=+,则2λμ+的取值范围是A .51,2⎛⎫ ⎪⎝⎭B .()1,2C .2,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭ 【答案】B【解析】根据0OA OB OC ++=可知O 为ABC ∆的重心;根据点M 在OBC ∆内,判断出当M 与O 重合时,2λμ+最小;当M 与C 重合时,2λμ+的值最大,因不含边界,所以取开区间即可.【详解】因为O 是ABC ∆内一点,且0OA OB OC ++=所以O 为ABC ∆的重心M 在OBC ∆内(不含边界),且当M 与O 重合时,2λμ+最小,此时 ()21113233AM AB AC AB AC AB AC λμ⎡⎤=+=⨯+=+⎢⎥⎣⎦ 所以11,33λμ==,即21λμ+= 当M 与C 重合时,2λμ+最大,此时AM AC =所以0,1λμ==,即22λμ+=因为M 在OBC ∆内且不含边界所以取开区间,即()21,2λμ+∈所以选B【点睛】本题考查了向量在三角形中的线性运算,特殊位置法的应用,属于难题. 7.在直角ABC 中,A ∠为直角,1,2AB AC ==,M 是ABC 内一点,且12AM =,若AM AB AC λμ=+,则23λμ+的最大值为_________. 【答案】54【解析】【分析】由12AM =得出22144λμ+=,即224+161λμ=,且由0λ>,0μ>,设1cos 2λθ=,1sin 042πμθθ⎛⎫=<< ⎪⎝⎭,然后利用辅助角公式可求出23λμ+的最大值.【详解】 2A π∠=,1AB =,2AC =,AM AB AC λμ=+,则0AB AC ⋅=,且12AM =, 则()222222221244AM AB AC AB AB AC AC λμλλμμλμ=+=+⋅+=+=, 点M 在ABC 内,则0λ>,0μ>,设1cos 2λθ=,1sin 042πμθθ⎛⎫=<< ⎪⎝⎭, ()3523cos sin sin 44λμθθθϕ∴+=+=+,其中4tan 3ϕ=, 因此,4λμ+的最大值为54. 故答案为:54. 8.如图,扇形的半径为1,且0OA OB ⋅=,点C 在弧AB 上运动,若OC xOA yOB =+,则2x y +的最大值是__________【解析】【分析】根据题意将OC xOA yOB =+,两边同时平方可得221x y =+,再三角代换cos sin [0,]2x y πααα==∈,,,利用三角函数的性质即得.【详解】由题意得,0OA OB ⋅=,1OA OB ==,1OC =,由OC xOA yOB =+,等式两边同时平方,得2OC =22222x OA y OB xy ++OA OB ⋅, 所以221x y =+,令AOC α∠=,则cos sin [0,]2x y πααα==∈,,,则22cos sin )x y αααθ+=+=+,其中sin cos [0,]2πθθθ==∈, 因为2πθαθθ≤+≤+,sin()1αθ≤+≤,所以1)αθ≤+≤即2x y +。
平面向量的基本概念与运算法则平面向量是解决几何问题的重要工具之一,它能够描述物体在平面内的方向和大小,能够进行加减乘除等基本运算,为我们解决问题提供了很大的便利。
本文将介绍平面向量的基本概念和运算法则,帮助读者理解和运用平面向量。
1. 平面向量的定义平面向量是具有大小和方向的量,用箭头来表示。
平面向量通常用线段AB来表示,方向由起点A指向终点B,记作→AB或者AB。
2. 平面向量的表示和坐标平面向量可以使用坐标来表示。
设向量AB的起点为原点O,终点为点P(x,y),则向量→AB可以表示为(x,y)。
其中,x表示向量在x轴上的投影,y表示向量在y轴上的投影。
3. 平面向量的运算法则平面向量有多种基本运算法则,下面依次介绍:(1) 向量的加法:设向量→AB的终点为P(x1,y1),向量→CD的终点为Q(x2,y2),则向量→AB + →CD的终点为R(x1+x2 , y1+y2)。
也就是说,将两个向量的x轴和y轴分量分别相加,得到新的向量的坐标。
(2) 向量的减法:设向量→AB的终点为P(x1,y1),向量→CD的终点为Q(x2,y2),则向量→AB - →CD的终点为R(x1-x2 , y1-y2)。
也就是说,将两个向量的x轴和y轴分量分别相减,得到新的向量的坐标。
(3) 向量的数量乘法:设向量→AB的终点为P(x,y),数k为实数,则k × →AB的终点为R(kx, ky)。
也就是说,将向量的每个分量分别乘以实数k,得到新的向量的坐标。
(4) 向量的点乘法:设向量→AB的终点为P(x1,y1),向量→CD的终点为Q(x2,y2),则→AB · →CD = x1 x2 + y1 y2。
也就是说,将两个向量的x轴和y轴分量分别相乘,再将结果相加,得到点乘法的结果。
4. 平面向量的性质平面向量有一些重要的性质,下面列举几个常用的性质:(1) 平行向量的性质:如果两个向量→AB和→CD平行,则它们可以表示为→AB = k × →CD,其中k为实数。
平面向量5类解题技巧(“爪子定理”、系数和(等和线)、极化恒等式、奔驰定理与三角形四心问题、范围与最值问题)技法01“爪子定理”的应用及解题技巧“爪子定理”是平面向量基本定理的拓展,用“爪子定理”能更快速求解,需同学们重点学习掌握知识迁移形如AD =xAB +yAC 条件的应用(“爪子定理”)“爪”字型图及性质:(1)已知AB ,AC 为不共线的两个向量,则对于向量AD ,必存在x ,y ,使得AD =xAB +yAC 。
则B ,C ,D 三点共线⇔x +y =1当0<x +y <1,则D 与A 位于BC 同侧,且D 位于A 与BC 之间当x +y >1,则D 与A 位于BC 两侧x +y =1时,当x >0,y >0,则D 在线段BC 上;当xy <0,则D 在线段BC 延长线上(2)已知D 在线段BC 上,且BD :CD =m :n ,则AD =n m +n AB +m m +nAC1(全国·高考真题)设D 为△ABC 所在平面内一点,且BC =3CD ,则()A.AD =-13AB +43ACB.AD =13AB -43ACC.AD =43AB +13ACD.AD =43AB -13AC 2(2023江苏模拟)如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =mAB +211AC ,则实数m 的值为()A.911 B.511 C.311 D.2111(2022·全国·统考高考真题)在△ABC 中,点D 在边AB 上,BD =2DA .记CA =m ,CD =n ,则CB =()A.3m -2nB.-2m +3nC.3m +2nD.2m +3n2(全国·高考真题)在△ABC 中,AB =c ,AC =b .若点D 满足BD =2DC ,则AD =()A.23b +13c B.53c -23b C.23b -13c D.13b +23c 3(2020·新高考全国1卷·统考高考真题)已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB =a ,AD =b ,则EF 等于()A.12a +bB.12a -bC.12b -aD.12a +b 4(全国·高考真题)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =()A.34AB -14AC B.14AB -34AC C.34AB +14AC D.14AB +34AC 5(江苏·高考真题)设D 、E 分别是ΔABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC . 若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值是技法02系数和(等和线)的应用及解题技巧近年,高考、模考中有关“系数和(等和线)定理”背景的试题层出不穷,学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高,而向量三点共线定理与等和线巧妙地将代数问题转化为图形关系问题,将系数和的代数运算转化为距离的比例运算,数形结合思想得到了有效体现,同时也为相关问题的解决提供了新的思路,大家可以学以致用知识迁移如图,P 为ΔAOB 所在平面上一点,过O 作直线l ⎳AB ,由平面向量基本定理知:存在x ,y ∈R ,使得OP =xOA +yOB下面根据点P 的位置分几种情况来考虑系数和x +y 的值①若P ∈l 时,则射线OP 与l 无交点,由l ⎳AB 知,存在实数λ,使得OP =λAB 而AB =OB -OA ,所以OP =λOB -λOA ,于是x +y =λ-λ=0②若P ∉l 时,(i )如图1,当P 在l 右侧时,过P 作CD ⎳AB ,交射线OA ,OB 于C ,D 两点,则ΔOCD ∼ΔOAB ,不妨设ΔOCD 与ΔOAB 的相似比为k由P ,C ,D 三点共线可知:存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +k (1-λ)OB所以x +y =kλ+k (1-λ)=k(ii )当P 在l 左侧时,射线OP 的反向延长线与AB 有交点,如图1作P 关于O 的对称点P ,由(i )的分析知:存在存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +(1-λ)OB 所以OP =-kλOA +-(1-λ)OB于是x +y =-kλ+-k (1-λ)=-k 综合上面的讨论可知:图中OP 用OA ,OB 线性表示时,其系数和x +y 只与两三角形的相似比有关。
平面向量中重要定理总结(非常经典)1、共线向量定理向量a (a ≠0)与b 共线,当且仅当存在唯一一个实数λ,使b =λa .2、三点共线的证明方法若存在非零实数λ,使得AB →=λAC →或AB →=λBC →或AC →=λBC →,则A ,B ,C 三点共线.3、平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ1e 1+λ2e 2.4、奔驰定理:已知O 是ABC ∆内一点,则0=⋅+⋅+⋅∆∆∆OC S OB S OA S AOB AOC BOC推论:已知O 是ABC ∆内一点,若=⋅+⋅+⋅z y x ,则z y x S S S AOB AOC BOC ::::=∆∆∆5、极化恒等式定理:平行四边形的对角线的平方和等于相邻两边平方和的两倍. 即:)|||(|2|AD ||AB |2222BO AO +=+ 设.,b AD a AB == 则,,b a DB b a AC -=+= 极化恒等式:[]22)()(41b a b a b a --+=⋅,即:=⋅6、三点共线定理:已知OB y OA x OC +=,且1=+y x ,则C B A ,,三点共线 OABC向量等和线: 平面内一组基底,及任意向量,21λλ+=,若点P 在直线AB 上或在与AB 平行的直线上,则k =+21λλ(||OC k =反之也成立,我们把直线AB 以及与AB 平行的直线称为基底系数等和线7、三角形各“心”的概念介绍重心:三角形的三条中线的交点,重心将中线长度分成2∶1;垂心:三角形的三条高线的交点,垂线与对应边垂直;内心:三角形的三个内角角平分线的交点(三角形内切圆的圆心),内心到三角形三边的距离相等;外心:三角形的三条边的垂直平分线的交点(三角形外接圆的圆心),外心到三角形各顶点的距离相等.三角形各“心”的向量表示(1)O 是△ABC 的重心⇔OA →+OB →+OC →=0.(2)O 是△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(3)O 是△ABC 的外心⇔|OA →|=|OB →|=|OC →|(或OA →2=OB →2=OC →2).(4)O 是△ABC 的内心⇔OA →·⎝ ⎛⎭⎪⎪⎫AB →|AB →|-AC →|AC →|=OB →·⎝ ⎛⎭⎪⎪⎫BA →|BA →|-BC →|BC →|=OC →·⎝ ⎛⎭⎪⎪⎫CA →|CA →|-CB →|CB →|=0.注意:向量λ((AB →|AB →|+AC →|AC →|)(λ≠0)所在直线过△ABC 的内心(是∠BAC 的角平分线所在直线).。
专题6.2 平面向量的基本定理及坐标表示(知识点讲解)【知识框架】【核心素养】1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养. 3.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.【知识点展示】(一)平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. (二)平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a | (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.(三)平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中a ≠0,b ≠0,a ,b 共线⇔x 1y 2-x 2y 1=0. (四)平面向量数量积的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉. 结论 几何表示 坐标表示模 |a |=a ·a |a |=x 21+y 21数量积 a ·b =|a ||b |cos θ a ·b =x 1x 2+y 1y 2 夹角 cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22a ⊥ba ·b =0 x 1x 2+y 1y 2=0 |a ·b |与|a ||b |的关系|a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22设非零向量a =(x 1,y 1),b =(x 2,y 2).数量积 两个向量的数量积等于__它们对应坐标的乘积的和__,即a·b =__x 1x 2+y 1y 2__两个向量垂直a ⊥b ⇔__x 1x 2+y 1y 2=0__12211212(六)常用结论1.若a 与b 不共线,且λa +μb =0,则λ=μ=0.2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22.3.已知△ABC 的重心为G ,若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则G ⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33【常考题型剖析】题型一:平面向量基本定理的应用例1.(2015·四川·高考真题(理))设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3,2BM MC DN NC ==,则AM NM ⋅=( )A .20B .15C .9D .6【答案】C 【解析】 【分析】根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,AM NM ⋅ 2()AM AM AN AM AM AN =⋅-=-⋅,结合向量的数量积求解即可.【详解】因为四边形ABCD 为平行四边形,点M 、N 满足3,2BM MC DN NC ==,∴根据图形可得:3344AM AB BC AB AD =+=+, 2233AN AD DC AD AB =+=+,NM AM AN ∴=-,2()AM NM AM AM AN AM AM AN ⋅=⋅-=-⋅,22239216AM AB AB AD AD =+⋅+, 22233342AM AN AB AD AD AB ⋅=++⋅, 6,4AB AD ==, 22131239316AM NM AB AD ∴⋅=-=-=, 故选C.例2.(2017·天津·高考真题(文))在ABC 中,60A ∠=︒,3AB =,2AC =. 若2BD DC =,()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________.【答案】311【解析】 【详解】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ ,则 122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=.【总结提升】平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决. 题型二:平面向量的坐标运算例3.(2022·全国·高考真题(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+=a b .故选:D例4.(2022·全国·高考真题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例5.(2018·全国·专题练习)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为( )A .3B .CD .2【答案】A【解析】 【详解】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径5r =C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+, 设12x z y =-+,即102x y z -+-=,点(),Px y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.例6.(2018·江苏·高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 【答案】3 【解析】 【详解】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【总结提升】平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量的加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.要注意点的坐标和向量的坐标之间的关系,一个向量的坐标等于向量终点的坐标减去始点的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 题型三:平面向量共线的坐标表示例7.(2021·全国·高考真题(文))已知向量()()2,5,,4a b λ==,若//a b ,则λ=_________.【答案】85【解析】 【分析】利用向量平行的充分必要条件得到关于λ的方程,解方程即可求得实数λ的值. 【详解】由题意结合向量平行的充分必要条件可得:2450λ⨯-⨯=, 解方程可得:85λ=.故答案为:85.例8.(2021·江苏·沛县教师发展中心高三阶段练习)已知()1,3A ,()2,2B -,()4,1C . (1)若AB CD =,求D 点的坐标;(2)设向量a AB =,b BC =,若ka b -与3a b +平行,求实数k 的值. 【答案】(1)4(5,)D - (2)13k =-【解析】 【分析】(1)根据题意设(,)D x y ,写出,C AB D 的坐标,根据向量相等的坐标关系求解;(2)直接根据向量共线的坐标公式求解即可. (1)设(,)D x y ,又因为()()()1,3,2,2,4,1A B C -, 所以=(1,5),(4,1)AB CD x y -=--, 因为=AB CD ,所以4115x y -=⎧⎨-=-⎩,得54x y =⎧⎨=-⎩,所以4(5,)D -. (2)由题意得,(1,5)a =-,(2,3)b =, 所以=(2,53)ka b k k ----,3(7,4)a b +=, 因为ka b -与3a b +平行,所以4(2)7(53)0k k ----=,解得13k =-.所以实数k 的值为13-.【总结提升】平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(2)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若1122()()a x y b x y =,,=,,则//a b 的充要条件是1221x y x y =”解题比较方便. 题型四:平面向量数量积的运算例9.【多选题】(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP = B .12AP AP = C .312OA OP OP OP ⋅=⋅ D .123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】 【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误. 【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP ==,2||(cos 1OP==,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin|2AP α===,同理2||(cos 2|sin|2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC例10.(2019·天津·高考真题(文)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A∠=︒ ,点E 在线段CB 的延长线上,且AEBE =,则BD AE ⋅=__________.【答案】1-. 【解析】 【分析】建立坐标系利用向量的坐标运算分别写出向量而求解. 【详解】建立如图所示的直角坐标系,则B ,5)2D . 因为AD∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BEy x=-,直线AE的斜率为y =.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-, 所以1)E -. 所以35(,)(3,1)122BD AE =-=-.例11.(2020·北京·高考真题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【答案】 1-【解析】 【分析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系,求得点P 的坐标,利用平面向量数量积的坐标运算可求得PD 以及PB PD ⋅的值. 【详解】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-,因此,(PD =-()021(1)1PB PD ⋅=⨯-+⨯-=-.1-. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解. 2.总结提升:公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解. 题型五:平面向量的模、夹角例12.(2022·四川省内江市第六中学模拟预测(理))已知向量()1,2a =,5a b ⋅=,8a b +=,则b =( ) A .6 B .5 C .8 D .7【答案】D 【解析】 【分析】先求出||a ,再将8a b +=两边平方,结合数量积的运算,即可求得答案. 【详解】由()1,2a =得:2||12a =+,由8a b +=得2222251064a b a a b b b +=+⋅+=++=, 即得249,||7b b ==,故选:D例13.(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .√3−1 B .√3+1 C .2 D .2−√3 【答案】A 【解析】设a =(x,y),e =(1,0),b =(m,n),则由⟨a,e ⟩=π3得a ⋅e =|a|⋅|e|cos π3,x =12√x 2+y 2,∴y =±√3x , 由b 2−4e ⋅b +3=0得m 2+n 2−4m +3=0,(m −2)2+n 2=1, 因此|a −b|的最小值为圆心(2,0)到直线y =±√3x 的距离2√32=√3减去半径1,为√3−1.选A.【思路点拨】先确定向量a,b 所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.例14.(2021·湖南·高考真题)已知向量(1,2)a =-,(3,1)b =-,则|2|a b +=___________【分析】利用向量模的坐标表示,即可求解.【详解】()21,3a b +=,所以2213a b +=+=例15.(2019·全国·高考真题(文))已知向量(2,2),(8,6)a b ==-,则cos ,a b =___________.【答案】【解析】【分析】根据向量夹角公式可求出结果.【详解】22826cos ,102a ba b a b ⨯-+⨯<>===-+.例16.(2017·山东·高考真题(理))已知1e ,2e 是互相12e - 与1e +λ2e 的夹角为60°,则实数λ的值是_ _.【解析】【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【详解】解:由题意,设1e =(1,0),2e =(0,1),12e -=1), 1e +λ2e =(1,λ);又夹角为60°,12e -)•(1e +λ2e )=λ=2cos60°,λ=解得λ=【总结提升】 1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系;(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法(1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解.题型六:两个向量垂直问题例17.(2016·全国·高考真题(理))已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8B .−6C .6D .8【答案】D【解析】【分析】由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-,又()a b b +⊥,∴3×4+(﹣2)×(m ﹣2)=0,解得m =8.故选D .例18.(2022·全国·高考真题(文))已知向量(,3),(1,1)a m b m ==+.若a b ⊥,则m =______________.【答案】34-##0.75- 【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-. 故答案为:34-. 例19.(2022·全国·高三专题练习)已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()20a c b c -⋅-=,则c 的最大值是_________.【解析】【分析】由题意可设,a b 的坐标,设(,)c x y =,利用()()20a c b c -⋅-=求得(,)c x y =的终点的轨迹方程,即可求得答案.【详解】因为,a b 是平面内两个互相垂直的单位向量,故不妨设(1,0),(0,1)a b ==,设(,)c x y =,由()()20a c b c -⋅-=得:(1,)(2,12)0x y x y --⋅--=,即2(1)(12)0x x y y ----=,即22115()()2416x y -+-=,则c 的终点在以11(,)24故c 的最大值为=例20.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【解析】 由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.. 【规律方法】1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值(涉及向量垂直问题为高频考点)根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.3.已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.。
平面向量基本定理系数的等值线法一、适用题型在平而向量搖本崖理的表达式中.若需研究两系数的和差积商、线性表达式及平方和时.可以用等值线法・二基本理论(一)平面向*共线定理已知鬲=久西+“況.若久十“ = I, UIUB.C三点共线:反之亦然(二)等和线平面内一俎慕底oNoS及任一向量亦.亦二人花+ 〃亦(人若 0 P在直线朋上或在平行于肋的直线上,则2+“ =尿定值)仮Z也成孙我们把直线*〃以及与宜线.4B 平行的直线成为等和线。
(1)当等和线恰为直线时.A=l:⑵ 当等和线在O点和直线朋之间时.仁(0,1);(3)当住线M在O点和等和线之间时"<仏+00);(4>当等和线过O点时.^ = 0;(5)若两等和线关于O点对称.则左值《互为相反数:(6)泄值人-的变化与等和线到O点的師离成正比:(三)等差仪平面内一组慕底OA,OB及任一向量帀・帀“鬲+ “亦亿C为线段的中点.若点P在直线0C上或在平行于CC的買线上.则八戸=灿上值八反Z也成匕我们把fL线"以及线OC半行的直线称为等差线.(1)当等荃线恰为直线OC时,A=0:(2)斗等差线过X点时.A=l:(4)当等差线与阳延长线相交时.2(1卄8);⑶ 当等差线在直线0C与点/之何时.JtG(0,l):(5>若两等差线关于直线OC对称.则两足为相反数:(四)等积线平面内一组基底OA.OBJ^任一向&OP ・ 丽=几刃+ “亦(入“wR )・若 点P 在以苴线OA.OB 为渐近线的女曲线上.则“为足值I 反Z 也成必 我们 把以直线OA.OB 为渐近线的双曲线称为%积线(1) 当双曲线有一支金厶103内时,k>0t(2) 当双曲线的两支都不在乙4OB 内时.X <0:(3) 特别的.若tU=(a 上讥加= (“,"),点P 住双曲线(五)等商线点P 在过O 点(不与0/1重合〉的直线上,则虫=川定值),反之也成立。