第三章行列式B
- 格式:ppt
- 大小:2.11 MB
- 文档页数:95
第三章 行列式及其应用§3-1 行列式的定义一、填空题。
1、行列式a b c d=__ad bc -___;112213141---=____-24____. 2、行列式1111121212000000a a a a b b c c d d =______0_____.3、已知行列式1111111111111111D -=-----,则32M =___4__;32A =___-4__.4、已知排列2145697m n 为奇排列,则m =__8_;n =__3_.5、4阶行列式中含1331a a 且符号为负的项是____13223144a a a a -____.二、选择题。
1、方程0110001x x x=的实根为__C___.(A )0; (B )1; (C )-1; (D )2.2、若n 阶行列式中零元素的个数大于2n n -,则此行列式的值为__A__.(A )0; (B )1; (C )-1; (D )2. 3、排列396721584的逆序数为__C__.(A )18; (B )19; (C )20; (D )214、n 阶行列式00102000D n =的值为__D ___.(A )!n ; (B )!n -; (C )(1)!nn -; (D )(1)2(1)!n n n --.5、行列式312111321111x xx x x--中4x 的系数为__A____.(A )-1; (B )1; (C )2; (D )3.三、计算下列行列式1、12110001-解:3331212110(1)(1)111001r +--=-按展开2、1010120012301234解:44432101010112004(1)12012301231234101412024003r r +--=按c 展开3、11321011230112--解:4141132113010111013223012303102101300133033c c --------=--按r 展开四、设排列12n a a a 的逆序数为k ,证明排列11n n a a a - 的逆序数为(1)2n n k --. 证明:设i a 在排列12n a a a 的逆序数为i k ,则12n k k k k +++= ,且i a 在排列11n n a a a - 的逆序数为i t ,则i i i k t n a +=-, 所以,i i i t n a k =--,所以,排列11n n a a a - 的逆序数为12112122122(1)()()2n n n n n n a k n n n t t t n a k n a k a a k k a k k ---=--+++=--+--++++++++=-(另解:因为12n a a a 中的任两个不同的元素,i j a a 必在排列12n a a a或排列11n n a a a - 中构成逆序且只能在其中一个中构成逆序,所以 排列12n a a a 和11n n a a a - 的逆序数之和等于从n 个元素中任取两个 不同数的组合数kn C ,即11n n a a a - 的逆序数为(1)2n n k --.)§3-2 行列式的性质与计算一、填空题。
大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。
第三节 行列式的性质内容要点一、行列式的性质将行列式D 的行与列互换后得到的行列式,称为D 的转置行列式,记为T D 或'D ,即若,212222111211nnn n n n a a a a a a a a a D=则 nnnnn n T a a a a a a a a a D212221212111=.性质1 行列式与它的转置行列式相等, 即.T D D =注 由性质1知道,行列式中的行与列具有相同的地位,行列式的行具有的性质,它的列也同样具有.性质2 交换行列式的两行(列),行列式变号.推论 若行列式中有两行(列)的对应元素相同,则此行列式为零. 性质3 用数k 乘行列式的某一行(列), 等于用数k 乘此行列式, 即.2121112112121112111kD a a a a a a a a a k a a a ka ka ka a a a D nnn n in i i n nnn n in i i n ===第i 行(列)乘以k ,记为k i ⨯γ(或k C i ⨯).推论1 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面. 推论2 行列式中若有两行(列)元素成比例,则此行列式为零. 性质4 若行列式的某一行(列)的元素都是两数之和, 例如,nnn n inin i i i i n a a a c b c b c b a a a D21221111211+++=.则21212111211212111211D D a a a c c c a a a a a a b b b a a a D nnn n in i i n nnn n in i i n +=+=.性质5 将行列式的某一行(列)的所有元素都乘以数k 后加到另一行(列)对应位置的元素上, 行列式不变.注: 以数k 乘第j 行加到第i 行上,记作j i kr r +; 以数k 乘第j 列加到第i 列上,记作j i kc c +.二、行列式的计算计算行列式时,常用行列式的性质,把它化为三角形行列式来计算. 例如化为上三角形行列式的步骤是:如果第一列第一个元素为0, 先将第一行与其它行交换使得第一列第一个元素不为0; 然后把第一行分别乘以适当的数加到其它各行,使得第一列除第一个元素外其余元素全为0;再用同样的方法处理除去第一行和第一列后余下的低一阶行列式,如此继续下去,直至使它成为上三角形行列式,这时主对角线上元素的乘积就是所求行列式的值.例题选讲例1若21101321-=D , 则.213102011D D T=-=例2(1)012121110012110121---=--(第一、二行互换). (2)12110211012110121---=--(第二、三列(3)072501111=(第一、二两行相等) (4)0337224112=---(第二、三列相等)例3(1)02222510211=--因为第三行是第一行的2倍.(2)07541410053820141=---因为第一列与第二列成比例,即第二列是第一列的4倍.例4 若121013201--=D , 则D 2121013201)2(121013402-=---=---- 又 D412101320141240112204=--=--.例5 设,1333231232221131211=a a a a a a a a a 求.53531026333231232221131211a a a a a a a a a ----解 利用行列式性质,有33323123222113121153531026a a a a a a a a a ----=3332312322211312115353522a a a a a a a a a ---5)3(2⋅-⋅-=333231232221131211a a a a a a a a a15)3(2⋅⋅-⋅-=.30=例6 证明奇数阶反对称行列式的值为零. 证 设反对称行列式D 0000321323132231211312nnnn n n a a a a a a a a a a a a ------=其中),(时j i a a ji ij ≠-=).(0时j i a ij == 利用行列式性质1及性质3的推论1,有D TD=0000)1(321323132231211312nnnn nn na a a a a a a a a a a a -------=,)1(D n-=当n 为奇数时有,D D -=即.0=D例7(1).110111311103111132+=++=(2)()1)2(1272305)2(11121272305211--+--++=----+122720521112730511---+--=. 例8 因为,12310403212213==++--+而15)40()29(02213123=+++=-+-.因此221312303212213-+-≠++--+.注: 一般来说下式是不成立的22211211222112112222212112121111b b b b a a a a b a b a b a b a +≠++++.例9(1)13201013113214113112----r r ,上式表示第一行乘以-1后加第二行上去, 其值不变.(2)33204103113214113113c c +--,上式表示第一列乘以1后加到第三列上去, 其值不变.例10计算行列式2150321263-=D . 解 先将第一行的公因子3提出来:,21503242132150321263-=- 再计算.1623541430201541147022154218704212718987042132150324213=⨯====----=-=D例11 计算.3351110243152113------=D解 21c c D→3315112043512131-------14125r r r r +-72160112064802131------32r r ↔72160648011202131----- 242384r r r r -+15101080011202131----3445r r +.402501080011202131=---例12 计算.3111131111311113=D解 注意到行列式的各列4个数之和都是6.故把第2,3,4行同时加到第1行,可提出公因子6,再由各行减去第一行化为上三角形行列式.D4321r r r r +++311113111131111163111131111316666= 141312r r r r r r --- .48200200002011116=注:仿照上述方法可得到更一般的结果:.)]()1([1---+=n b a b n a abbbb b a b b b b a例13计算.1111000000332211a a a a a a ---解 根据行列式的特点,可将第1列加至第2列,然后将第2列加至第3列,再将第3列加至第4列,目的是使4D 中的零元素增多.4D12c c +1121000000033221a a a a a --23c c +1321000000003321a a a a -34c c +.44321000000000321321a a a a a a =例14计算.3610363234232dc b a cb a ba ad c b a c b a b a a d c b a c b a b a a d c b aD ++++++++++++++++++=解 从第4行开始,后一行减前一行:Drr r r r r ---33412.363023200c b a b a a c b a b a a c b a b a a d c b a+++++++++3423r r r r --.20200ba aab a a ac b a b a ad c b a+++++34r r -..020004a ab a ac b a b a ad c b a=++++例15 设nnn nkn n k kk k k b b c c b b c c a a a a D1111111111110000=,,)det(,)det(1111211111nnn n ij kk k k ij b b b b b D a a a a a D====证明 .21D D D =证 对1D 作运算,j i kr r +对2D 作运算,j i kc c +可分别把1D 和2D 化为下三角形行列式.1D =kkk p p p1110;11kk p p =2D =nnn q q q1110.11nn q q =对D 的前k 行作与对1D 相同的运算,j i kr r +再对后n 列作与对2D 相同的运算,j i kc c +即把D化为下三角形行列式,且D nn kk q q p p 1111⋅=.21D D = 证毕.例16解方程.0113211232113221132111321=-+-+-+-+-------xa a a a a a a xa a a a a a a xa a a a a a a xa a a a a a a a n n n nn n n n n n n n解 从第二行开始每一行都减去第一行得),)(())((00000000000001221112211321x a a x a x a a xa xa x a x a a a a a a n n n n n n ----=---------由,0))(())((12211=------x a a x a x a a n n 解得方程的1-n 个根:.,,,,11222211----====n n n n a x a x a x a x。
第三章 行列式习题3.13-1-6.用定义计算行列式(1)()2,1,0,,,0000000222211114=≠=i d c b a d c b a d c b a D ii i i解:设444⨯=ija D 则4D 中第1行的非0元为113111,b a a a ==,故11,3j =同法可求:2342,4;1,3;2,4j j j ===∵4321,,,j j j j 可组成四个4元排列 1 2 3 4,1 4 3 2,3 2 1 4,3 4 1 2, 故4D 中相应的非0项有4项,分别为2211d b c a ,,2211c b d a -2211d a c b -,2211c a d b 其代数和即为4D 的值,整理后得 ()()122112214d c d c b a b a D --=(2)010...0002 0000...000 0n D n =M M MM解:由行列式的定义121212()12(1)n n nj j j n j j nj j j j D a a a τ=-∑L L L仅当12,,,n j j j L 分别取2,3,…,n-1,n,1 时,对应项不为零,其余各项都为零12121()(231)1212231(1)(1)(1)(1)(1)12(1)!n n n j j j n n j j nj n n n n D a a a a a a a n n ττ---=-=-=-⋅=-⋅L L L L L习题3.23.2-2.证明(1)0sin cos 2cos sin cos 2cos sin cos 2cos 222222=γγγβββααα证明:22222222222222132222222cos sin cos sin cos cos sin cos sin cos sin cos cos sin cos sin cos sin cos cos sin c c αααααααβββββββγγγγγγγ-=-+-左0= (2) 322)(11122b a b b a a b ab a -=+证明:23222212()()2()11001c c a ab ab b b a a b b a b a b c c a ba b b a b a b a b --------==---左右=-=3)(b a(3) 121211221100001000001n n n n n nn n x x x a x a x a x a x a a a a a x-------=+++++-+L L M MM O M M L L L证明: 按最后一行展开,得1211000000010001000(1)(1)00010000100101n n n n x x a a x x x ++----=-+-----L L L L O M M M M M O M M L L LL左321220000100000000100(1)(1)0001000000001001n n n x x x x a a x x +----+-++----LL L L L M M M O M M M M M O M M L L LL21100100()(1)000100nx x x a x x--++--LL M M M O M M L L222222121221(1)(1)(1)(1)()(1)n n n n n n n n n n a a x a x a x x a x ----=-+-+-++-++-L 2211221n n n n n n a a x a x a x a x x ----=++++++=L 右3=2-3.计算下列行列式 (1)11111100((1))((1))x a a a x a ax a x a x n a x n a a a xa a xx a-=+-=+--LL L LLLM M O M M M OM MM O M LLL])1([)(1a n x a x n -+-=-(2)()()()()()()111(1)211111111()1(1)(1)111111nnnn n n n n n n n n nnna a a n a a a n a a a n D a a a n a a a n a a a n ---++---------==-------L L L LM MOMMM O ML L LL(最后一行(n+1)行依次与第n,n-1,…,2,1行交换,经过n 次交换;再将新的行列式的最后一行(即原来的n 行)依次换到第二行,经过n-1次交换;。
学年论文行列式的计算方法姓名:王海洋学号:902091134院系:统计与数学学院专业:数学与应用数学指导老师:志远日期:2012年5月12日目录1.定义法2.化三角形法3.数学归纳法4.德蒙行列式5.加边法6.降阶法7.递推法8.析因法9.利用方阵特征值10.对称法行列式是研究线性代数的一个重要工具,在线性方程组,矩阵,二次型中用到行列式,在数学其它分支也常常用到行列式,因此行列式的计算显得尤其重要,但行列式的计算灵活多变,需要较强的技巧。
主要有下面几种算法:1 定义法根据行列式的定义121212()12(1)n n nj j j n j j nj j j j D a a a τ=-∑我们可以利用定义直接计算行列式,其中11()n j j j τ是11n j j j 的逆序数.例1证明111213141521222324253132414251520000000000a a a a a a a a a a D a a a a a a ==. 分析 观察行列式我们会发现有许多零,故直接用定义法.证明 由行列式的定义知除去符号差别外行列式一般项可表示为1212n j j nj a a a则 12512125()12(1)n j j j n j j nj j j j D a a a τ=-∑.(1) 其中115,,,j j j 为1,2,3,4,5的任意排列,在D 中位于后三行后三列的元素为零,而在前两行前两列中,取不同行不同列的元素只有四个,就是说(1)式中每一项至少有一个来自后三行后三列. 故D =0.注意 此方法适用于阶数较低的行列式或行列式中零的个数较多.2化三角形法化三角形是将原行列式化为上(下)三角形或对角形行列式进行计算的一种方法,是计算行列式最基本的计算方法之一,这是因为由行列式的定义我们可以直接计算上(下)三角形或对角形行列式.一般而言,对任意行列式都可化为三角形行列式,但是有的行列式化简时非常繁琐,应该先利用性质实施一些初等变换,然后再化简.例2 计算行列式12312341345121221n n n n D n n n -=--.分析 直接用化三角形法化简很烦,观察发现对于任意相邻两列中的元素,位于同一行的元素中,后面元素与前面元素相差1,因此先从第1n -列乘-1加到第n 列,第2n -列乘-1加到第1n -列, 这样做下去直到第1列乘-1加到第2列,然后再计算就显得容易.解 12312341345121221n n n n D n n n -=--1111121111311111111n n n n -=--11111100021000nn n n -=---120000100012001n n n n n n +++-=--- 000001(1)00002n nn n n n---=- (1)(2)21(1)(1)2n n n n n ---=- (1)12(1)(1)2n n n n n --+=-.问题推广在例2中1,2,,n ,这n 个数我们可以看成有限个等差数列在循环,那么对于一般的等差数列也应该适应. 计算行列式111111111111111111112(1)23234(1)(3)(2)a a d a d a n d a nda d a d a d a nd a D a d a d a d a a d a n d a a d a n d a n d+++-+++++=+++++-++-+-1111(1)2(1)(1)(1)a d d d d a d d d d n da dd d n d d a n dn dddd+-=+-+--12(1)000a d d d d d ndd ndn dnd -=---1(1)00002(1)000d n d a nnd nddndn dnd -+++-=---(1)(2)121(1)()()(1)n n n d n d a nd nn----=+++--(1)(2)1112((1))1()()(1)2n n n n a a n d nd n ---++-=--. 如果将例2中的数11a =,1d =代入(1)(2)1112((1)1()()(1)2n n n n a a n d nd n ---++-=--结论显然成立.3数学归纳法数学归纳法有两种一种是不完全归纳法,另一种是完全归纳法,通常用不完全归纳法寻找行列式的猜想,再用数学归纳法证明猜想的正确性. 基本方法1) 先计算1,2,3n =时行列式的值.2) 观察1,2,3D D D 的值猜想出n D 的值. 3) 用数学归纳法证明.例3 计算行列式000101n a bab a b ab D ab++=+.解:因为 221a b D a b a b -=+=-33222a b D a ab b a b-=++=-所以,猜想 11n n n a b D a b++-=- . (1)证明 当1n =时,(1)式显然成立.设1n k ≤-时,(1)式显然成立,则n k =时(1)000000()1k k a b ab a b ab D a b ab -++=++ (1)0000001k a b ab abab aba b -++-+12()k k a b D abD --=+-11()k k k k a b a b a b ab a b a b ----=+---11k k a b a b++-=-∴当n k =时(1)式也成立,从而得证.即 11n n n a b D a b++-=-.注意一般而言,对于给定的一个行列式,要猜想一个之比较困难,所以一般情况下是先给定其值,然后再证明.4德蒙行列式德蒙行列式1232222123111111231111n n n i j j i nn n n n nx x x x D x x x x x x x x x x ≤<≤----==-∏因此可将给定行列式化为德蒙行的形式然后直接计算.例4 计算1n -阶行列式1n D -131313222222223333336n n n n n n n n n nn n n n---------=----.解 用加边法将行列式化为德蒙行列式131311321111102222222033333360n n n n n n n D n n n nn n n n-------=-------132132132111112222233333n n nn nn n n n n n ---=5加边法利用行列式按行(列)展开的性质把n 阶行列式通过加行(列)变成与之相等的1n +阶行列式,然后计算.添加行列式的四种方法:设111212122212n n n n n nna a a a a a D a a a =.(1)首行首列111212122212n n n n n nna a a a a a D a a a =121112121222121000n nn n n nn a a a a a a a a a a a a =. (2)首行末列111212122212n n n n n nna a a a a a D a a a =111213121222321230001n n n na a a a a a a a a a a a =. (3)末行首列111212122212n n n n n nna a a a a a D a a a =1111212212223313231000n nn a a a a a a a a a a a a =. (4)末行末列111212122212n n n n n nna a a a a a D a a a =11121312122232313233301a a a a a a a a a a a a =.例5 计算123123123123(0)nnnnx a a a aa x a a aD a a x a a xa a a x a++=+≠+.解1212121212(1)(1)1nnnnn n na a ax a a aa x a aDa a aa a x a+⨯+++=+将第一行乘(1)-加到其余各行上去,得12(1)(1)11001001000100nn na a axxx+⨯+--=--将第2列,,第n列分别乘1x,全都加到第一列,得121(1)(1)10000000000000nknkn naa a axxxx=+⨯+ +=∑1111(1)n nn n nk kk kx a x x ax-===+=+∑∑.加边法是将原行列式中添加适当的行(列),构成一个新的行列式,并以此行列式为过渡来达到计算原行列式的目的.6降阶法n 阶行列式等于它的任意一行(列)各元素与其对应的代数余子式乘积的和.即1(1,2,,)nij ij j D a A i n ===∑ 或 1(1,2,,)nij ij i D a A j n ===∑.行列式按一行(列)展开将高阶转化为若干低阶行列式计算方法称为降阶法.这是一种计算行列式的常用方法.例6 计算1301301411210110D =.解 1301091102200110D -=-9111220110-=⨯-21421-==-.注意 对于一般的n 阶行列式若直接用降阶法计算量会大大加重.因此必须先利用行列式的性质将行列式的某一行(列)化为只含有一个非零元素,然后再按此行(列)展开,如此进行下去,直到二阶.7递推法递推法是根据行列式的结构利用n 阶行列式的性质,把给定的行列式n D 用与n D 有相同形式的1n D -阶行列式表示出来,然后将1n D -阶行列式再用与1n D -有相同形式的2n D -阶行列式表示出来,这样一直做下去直到n D 被有相同形式2D 的表示出来,这样n D 可被易计算的2D 表示出来,故可达到计算n D 的目的.例70001000101n D αβαβαβαβαβαβ++=++证明11,n n n D αβαβ++-=-其中αβ≠ 分析此行列式的特点是除主对角线及其上下两条对角线的元素外其余的元素都为零,这种行列式称“三条线”行列式,从行列式的左上方往右下方看即知n D 与1n D -具有相同的结构.因此可考虑用递推法证明.证明 把行列式n D 按第一行展开,得12()n n n D D D αβαβ--=+-于是有递推关系式12()n n n D D D αβαβ--=+-或 112()n n n n D D D D αβα----=- 类似有1223()n n n n D D D D αβα-----=-3221()D D D D αβα-=-. 由于1()D αβ=+ 22()D αβαβ=+-因而221()()n nn n D D αβαβαβααββ--⎡⎤-=+--+=⎣⎦. 若 0α= 时 nn D β=若 0α≠ 时11()n nn nn D D βααα--=+利用计算递推,得1212112()()()()()n n n n nn n nn n D D D D βββββααααααααα-----=+=++==+++21()()n βββααα=++++=1111()11n n n nβαβαβααβα+++--=-- 所以 11()n n n D αβαβαβ++-=≠-. 若αβ=时,从 21()()1n n D n βββααα=++++=+得到(1)nn D n α=+故 11(1)n n n n D n αβαβαβααβ++⎧-≠⎪-=⎨⎪+=⎩当 当 .8析因法基本方法:如果行列式D 中有一些元素是变量x 的多项式,那么将行列式D 当作一个多项式()f x 然后对行列式施行某些变换,求出()f x 互素的一次因式,使得()f x 与这些因式的乘积()g x 只相差一个常数因子c ,根据多项式相等的定义,比较()f x 与()g x 的某一项的系数,求出c 值,便可求得()D cg x =.例8 计算行列式221123122323152319x D x -=-分析这是一个关于x 的4次多项式,在复数围此多项式可分解成4个一次因式的乘积解 令()f x =221123122323152319x D x -=-则()f x 是关于x 的4次多项式,由行列式的性质当1,2x x =±=±时()0f x ≡.因此()f x 有四个一次因式(1),(1),(2),(2)x x x x -+-+.()g x (1)(1)(2)(2)x x x x =-⋅+⋅-⋅+于是 ()f x (1)(1)(2)(2)a x x x x =⋅-⋅+⋅-⋅+.比较D 中4x 的系数,得3a =-()D f x ==3(1)(1)(2)(2)x x x x -⋅-⋅+⋅-⋅+.注意 找一次因式时因该先观察,若行列式是关于x 的n 次多项式就相应的找n 个一次因式(重因式按重因式个数计算)而不要意味的看行列式的阶数n 相应的找n 个一次因式.9利用方阵特征值在线形变换的研究中,矩阵的特征多项式非常重要,由矩阵的特征多项式,再根据根与系数的关系式可知矩阵全体特征值的积为相应行列式的值.因此,我们可以用这个办法来计算行列式.例9 计算如下行列式的值123123123123n n n n n a a a a a a a a M a a a a a a a a λλλλ++=++.解n b bM bb=+123123123123n n n na a a a a a a a a a a a a a a a因为行列式b bbb的特征值为,,,b b b ,行列式123123123123n nn na a a a a a a a a a a a a a a a 的特征值为1,0,,0ni i a =∑.所以n M 的特征值为1,,,ni i b a b b =+∑.由行列式的特征值与行列式的关系式知11()nn n i i M ba b -==+∑.10对称法这是解决具有对称关系的数学问题的常用方法.例10计算n 阶行列式000100101n D αβαβαβαβαβαβ++=++.解 按第1行展开,得12()n n n D D D αβαβ--=+-即 112()n n n n D D D D αβα----=-由此递推,即得 1nn n D D αβ--=因为n D 中α于β对称,又有 1nn n D D βα--=αβ≠当 时,从上式两边消去1n D -,得11n n n D αβαβ++-=-αβ=当 时,112()(1)n n n n n n n D D D n βββββββ---=+=++==+.与例题7作比较可看出对于同一个行列式的计算有多种方法.因此我们在选择方法时因该遵守简单原则,这样不但可以减少计算量,而且还可以保证答案的正确性.总结以上我们介绍了计算行列式的10种方法。