线性代数第三章行列式例题
- 格式:ppt
- 大小:242.50 KB
- 文档页数:17
线性代数练习册第三章部分答案(本)第三章⾏列式及其应⽤§3-1 ⾏列式的定义⼀、填空题。
1、⾏列式a bc d=__ad bc -___;112213141---=____-24____. 2、⾏列式111112121200000a a a ab bc cd d =______0_____. 3、已知⾏列式1111111111111111D -=-----,则32M =___4__;32A =___-4__. 4、已知排列2145697m n 为奇排列,则m =__8_;n =__3_. 5、4阶⾏列式中含1331a a 且符号为负的项是____13223144a a a a -____.⼆、选择题。
1、⽅程0110001x x x=的实根为__C___. (A )0; (B )1; (C )-1; (D )2.(A )18; (B )19; (C )20; (D )21 4、n 阶⾏列式00102000D n = 的值为__D ___.(A )!n ; (B )!n -; (C )(1)!nn -; (D )(1)2(1)!n n n --.5、⾏列式312111321111x x x x x--中4x 的系数为__A____.(A )-1; (B )1; (C )2; (D )3.三、计算下列⾏列式1、12110001- 解:3331212110(1)(1)111001r +--=-按展开2、1010120012301234解:44432101010112004(1)120123012312341014120243、1132101123011002-- 解:414113211310111013223012303100210001300133033c c --------=--按r 展开四、设排列12n a a a 的逆序数为k ,证明排列11n n a a a - 的逆序数为(1)2n n k --. 证明:设i a 在排列12n a a a 的逆序数为i k ,则12n k k k k +++= ,且i a 在排列11n n a a a - 的逆序数为i t ,则i i i k t n a +=-,所以,i i i t n a k =--,所以,排列11n n a a a - 的逆序数为12112122122(1)()()2n n n n n n a k n n n t t t n a k n a k a a k k a k k ---=--+++=--+--++++++++=-(另解:因为12n a a a 中的任两个不同的元素,i j a a 必在排列12n a a a或排列11n n a a a - 中构成逆序且只能在其中⼀个中构成逆序,所以排列12n a a a 和11n n a a a - 的逆序数之和等于从n 个元素中任取两个不同数的组合数kn C ,即11n n a a a - 的逆序数为(1)§3-2 ⾏列式的性质与计算⼀、填空题。
高等代数《行列式》部分习题及解答例1:决定以下9级排列的逆序数,从而决定它们的奇偶性: 1).134782695;2).217986354;3).987654321. 答:1). ()134782695=10τ,134782695是一个偶排列;2). ()217986354=18τ,217986354是一个偶排列; 3). ()987654321=36τ,987654321是一个偶排列. 例2:写出把排列12435变成排列25341的那些对换.答:()()()()()()()12154,312435214352543125341−−→−−→−−−→.例3:如果排列121...n n x x x x -的逆序数为k ,排列121...n n x x x x -的逆序数是多少?答:()112n n k --例4:按定义计算行列式: 000100201).0100000n n - 010000202).0001000n n -001002003).1000000n n-答:1).原行列式()()()()1,1,,2,121!1!n n n n n n τ--=-=-2).原行列式()11!.n n -=-3).原行列式()()()1221!n n n --=-.例5:由行列式定义计算()212111321111x x x f x x x-=中4x 与3x 的系数,并说明理由. 答:()f x 的展开式中x 的4次项只有一项;2,x x x x ⋅⋅⋅故4x 的系数为2;x 的3次项也只有一项()()213411,x x x τ-⋅⋅⋅故3x 的系数为-1.例6:由111111=0111,证明:奇偶排列各半.证明:由于12n j j j 为奇排列时()()121n j j j τ- 为-1,而偶排列时为1,.设有k 个奇排列和l 个偶排列,则上述行列式()()()()12121212110.n n nnj j j j j j j j j j j j l k ττ=-+-=-=∑∑ 即奇偶排列各占一半.例7:证明1111111112222222222b cc a a b a b c b c c a a b a b c b c c a a b a b c ++++++=+++. 证明:111111111111111111122222222222222222222222.2b cc a a bac aa baa b a cab c b c c a a b a c a a b a a b a c a b c b c c a a b a c a a b a a b a c a b c +++-+++++++=-++=++=+++-++++ 例8:算出行列式:121401211).00210003-;1122).321014-的全部代数余子式. 答:111213142122232431323334414243441).6,0;12,6,0;15,6,3,0;7,0,1, 2.A A A A A A A A A A A A A A A A =-====-=====-=-=====-1112132122233132332).7,12,3;6,4,1;5,5, 5.A A A A A A A A A ==-====-=-== 例9:计算下面的行列式:111121131).12254321-;11112112132).1111321112---;01214201213).135123312121035-- 答:1111111111110115011501151).= 1.011400010012012300120001---------==-=-------原式132).12-3).483-. 例10:计算下列n 级行列式: 0000001).;000000x y x y x yyx1112121222122).n nn n n na b a b a b a b a b a b a b a b a b ---------122222223).;2232222n1231110004)..02200011n n n n-----答:()()110000000000000001).11.000000000000000n n n n xy xy yx y x xy x y x y x y x yy yxxxy++=+-=+-2).当1n =时,为11a b -;当2n =时,为()()1212a a b b --;当3n ≥时,为零.()12221000222222223).22!223200102220002n n n -==-⋅--(利用第2行(列)的特点)()()11231110001!4).1.02200211n n nn n n---+=---- (从左起,依次将前一列加到后一列) 例11:用克拉默法则解线性方程组1234123412341234232633325323334x x x x x x x x x x x x x x x x -++=⎧⎪-++=⎪⎨--+=⎪⎪-+-=⎩.答:2132333270031123131d --==-≠----,所以可以用克拉默法则求解.又因16132533270;31124131d --==-----22632353270;33123431d ==---32162335270;31323141d --==----42136333570;31133134d --==----所以此线性方程组有唯一解,解为1234 1.x x x x ====例12:求12121212111222,n nnnj j j j j j j j j nj nj nj a a a a a a a a a ∑这里12nj j j ∑是对所有n 级排列求和.答:对每个排列12n j j j ,都有:()()121212121111112122221222121.n n nnj j j n j j j j j j nn n nnnj nj nj a a a a a a a a a a a a a a a a a a τ=- 因为在全部n 级排列中,奇偶排列个数相同,各有!2n 个.所以121212121112220n n nnj j j j j j j j j nj nj nj a a a a a a a a a =∑.例13:计算n 级行列式:12222122221212111.nnn n n nnn n nx x x x x x x x x x x x ---答:作范德蒙德行列式:1212222121111111211211111.n n n n n n n n n n nnn nn n x x x x x x x x D x x x x x x x x ++----++=将这个行列式按最后一列展开,展开式中11n n x -+的系数的()11n n++-倍就是所求行列式D ,因为()111,ji i j n D xx ≤<≤+=-∏所以()()()()11111111.nnn nji k ji k k k i j n i j n D xx x xx x ++==≤<≤+≤<≤+=---=-∑∑∏∏。
习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。
3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。
(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TTTB A B A +=+)( TTkA kA =)( TTTA B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 初等变换不改变矩阵的可逆性 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
【课堂例题】例1.用对角线法则计算下列行列式,并化简:(1)302213231-- (2)123456789例2.求证:ad g d a g be h eb h cfif c i=-例3.利用行列式解方程组:632752215x y z x y z x y z ++=⎧⎪-+=⎨⎪++=⎩(选用)课堂练习1.用对角线法则展开下列行列式,并化简:(1)101111111aa-+-;(2)000a b c d e f2.求关于,,x y z 的方程组13x y mz x my z m x y z ++=⎧⎪++=⎨⎪-+=⎩有唯一解的条件,在此条件下写出方程组的解.【知识再现】1.行列式111222333a b c a b c a b c = . (按对角线法则展开)2.关于,,x y z 的三元线性方程组111122223333a x b y c z d a x b y c z d a x b y c z d++=⎧⎪++=⎨⎪++=⎩的系数行列式D =,若记x D =,y D =,z D =,当D 时,方程有唯一解:x = ,y = ,z = . 【基础训练】1.把下列行列式按对角线法则展开并求值:(1)123142301-= = ; (2)123012331-= = . 2.计算:201010=- . 3.按对角线法则展开下列行列式,并化简:(1)000a bba ab = = ; (2)000xyzp q r= = .4.已知齐次线性方程组111222333000a x b y c z a x b y c z a x b y c z ++=⎧⎪++=⎨⎪++=⎩,若系数行列式1112223330a b c a b c a b c ≠, 则方程组的解是 .5.用行列式解线性方程组:273514223x y z x y z x y z -+=⎧⎪-+=⎨⎪--=⎩6.利用三阶行列式,证明下列行列式的性质I :(只需证明“列”的情况,并且(1)(2)(3)只需证明一种情形,其余情况不必证明) (1)行列式A 的某一列(行)的元素全为0,则0A =; (2)行列式A 的两列(行)相同,则0A =;(3)互换行列式A 的两列(行),则行列式的值变为原来的相反数.7.用行列式解关于,,x y z 的方程组x y z a x y z b x y z c -+=⎧⎪+-=⎨⎪-++=⎩【巩固提高】8.已知1112223330a b c a b c a b c =但它的所有元素均不为零且没有两行或两列的元素相同, 试写出这样的一个行列式.(课堂例题中出现过的行列式不得使用)9.当a 为何值时,关于,,x y z 的三元一次方程组2112x y z x y az x ay a z ⎧++=⎪++=⎨⎪++=⎩有唯一解?在此条件下写出该方程组的解.(选做)10.阅读题:余子式与代数余子式以三阶行列式111213212223313233a a a a a a a a a 为例,划去第i 行第j 列的的全部元素后,剩余元素所构成的二阶行列式称为元素ij a 的余子式,记为ij M ,例:21a 的余子式1213213233a a M a a =,把(1)i jij M +-称为元素ij a 的代数余子式,记为ij A ,例:21a 的代数余子式212121(1)A M +=-.(1)写出23a 的余子式与代数余子式; (2)求证: 111213111121213131212223313233a a a a A a A a A a a a a a a ⋅+⋅+⋅=; 1112212231320a A a A a A ⋅+⋅+⋅=; (3)模仿(2)再写出两个相仿的等式.【温故知新】11.线性方程组273514223x y z x y z x y z -+=⎧⎪-+=⎨⎪--=⎩用矩阵乘法可以表示为 .【课堂例题答案】 例1.(1)-40 (2)0例2.证:左=aei dhc bfg ceg afh bdi ++---,右=()dbi ahf ecg fbg dch aei -++---aei dhc bfg ceg afh bdi =++---=左 证毕 例3.1,2,3x y z === 【课堂练习答案】 1.(1)2a a + (2)adf2.1m ≠±时有唯一解:344,,11m x y z m m -===-++ 【知识再现答案】1.123231312321132213a b c a b c a b c a b c a b c a b c ++---2.111111111111222222222222333333333333,,,x y z a b c d b c a d c a b d D a b c D d b c D a d c D a b d a b c d b c a d c a b d ====0,,,y x zD D D D D D≠ 【习题答案】1.(1)141322(1)03343102(1)21⨯⨯+⨯⨯+-⨯⨯-⨯⨯-⨯⨯--⨯⨯,-18 (2)1113(2)20333131230(2)1⨯⨯+⨯-⨯+⨯⨯-⨯⨯-⨯⨯-⨯-⨯,-262.03.(1)000000a b b a a b a a a b b b ⨯⨯+⨯⨯+⨯⨯-⨯⨯-⨯⨯-⨯⨯,33a b -- (2)00000x z r p y q p z x q a y r ⨯⨯+⨯⨯+⨯⨯-⨯⨯-⨯⨯-⨯⨯,xzr4.000x y z =⎧⎪=⎨⎪=⎩ 5.213x y z =⎧⎪=-⎨⎪=⎩6.证:(1)1122233112213213330000000000b c b c b c b c b c b c b c b c b c =⨯+⨯+⨯-⨯-⨯-⨯= (2) 1112221232313123211322133330a a c a a c a a c a a c a a c a a c a a c a a c a a c =++---= (3) 111111222123231312321132213222333333a cb a bc a c b a c b a c b a c b a c b a c b a c b a b c a c b a b c =++---=- 证毕 7.,,222a b b c a cx y z +++===8.答案不唯一 1234567899.当1a ≠时有唯一解,21,,011a x y z a a -===-- 10.(1)1112111223232331323132,(1)a a a a M A a a a a +==- (2)证:222312131213112131323332333223a a a a a a a a a a a a a a a -+=111213112233211332311223113223211233312213212223313233a a a a a a a a a a a a a a a a a a a a a a a a a a a ++---=212311131113112131313331332123a a a a a a a a a a a a a a a -+-=1121331131232111332131133111233121130a a a a a a a a a a a a a a a a a a -++--+=(3)111213121222223232212223131223233333313233,0a a a a A a A a A a a a a A a A a A a a a ++=++=,答案不唯一 11.1217351142213x y z -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭。
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和nnn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ〔奇偶〕排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
〔转置行列式〕TD D =②行列式中*两行〔列〕互换,行列式变号。
推论:假设行列式中*两行〔列〕对应元素相等,则行列式等于零。
③常数k 乘以行列式的*一行〔列〕,等于k 乘以此行列式。
推论:假设行列式中两行〔列〕成比例,则行列式值为零;推论:行列式中*一行〔列〕元素全为零,行列式为零。
④行列式具有分行〔列〕可加性⑤将行列式*一行〔列〕的k 倍加到另一行〔列〕上,值不变行列式依行〔列〕展开:余子式、代数余子式ij M ijji ij M A +-=)1( 定理:行列式中*一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式时,有唯一解:0≠D )21(n j DD x j j ⋯⋯==、 齐次线性方程组 :当系数行列式时,则只有零解01≠=D 逆否:假设方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:jiij a a =③反对称行列式:奇数阶的反对称行列式值为零ji ij a a -=④三线性行列式: 方法:用把化为零,。
化为三角形行列式333122211312110a a a a a a a 221a k 21a ⑤上〔下〕三角形行列式:行列式运算常用方法〔主要〕行列式定义法〔二三阶或零元素多的〕化零法〔比例〕化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:〔零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵)n m A * 矩阵的运算:加法〔同型矩阵〕---------交换、结合律数乘---------分配、结合律n m ij ka kA *)(= 乘法注意什么时候有意义nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑== 一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0转置A A TT =)(TTTBA B A +=+)((反序定理)T T kA kA =)(T T T A B AB =)(方幂:2121k k k kA AA += 几种特殊的矩阵:对角矩阵:假设AB 都是N 阶对角阵,k 是数,则kA 、A+B 、AB 都是n 阶对角阵数量矩阵:相当于一个数〔假设……〕 单位矩阵、上〔下〕三角形矩阵〔假设……〕对称矩阵反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,假设存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)B A =-1 初等变换1、交换两行〔列〕2.、非零k 乘*一行〔列〕3、将*行〔列〕的K 倍加到另一行〔列〕初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的〔对换阵 倍乘阵 倍加阵〕等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 假设A 可逆,则满秩假设A 是非奇异矩阵,则r 〔AB 〕=r 〔B 〕初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵,行列式n ij n ij a k ka )()(=nijn nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④假设A 可逆,则其逆矩阵是唯一的。