2、机器人的位姿描述与坐标变换
- 格式:pdf
- 大小:77.81 MB
- 文档页数:66
机器人坐标变换原理机器人坐标变换是机器人控制中的一个重要概念,它涉及到机器人在不同坐标系下的定位和运动控制。
机器人通常使用多个坐标系来描述其运动和操作,如世界坐标系、基座坐标系、工具坐标系等。
机器人坐标变换的原理基于坐标系之间的关系和变换矩阵的计算。
下面从多个角度来解释机器人坐标变换的原理。
1. 机器人坐标系,机器人通常由多个关节组成,每个关节都有自己的坐标系。
机器人的末端执行器也有自己的坐标系。
这些坐标系之间通过关节运动相互连接,形成了机器人的整体坐标系。
2. 坐标系关系,机器人的坐标系之间存在着一定的关系,如基座坐标系与世界坐标系之间的关系、工具坐标系与末端执行器坐标系之间的关系等。
这些关系可以通过变换矩阵来描述。
3. 变换矩阵,变换矩阵是用于描述坐标系之间关系的数学工具。
对于二维情况,变换矩阵是一个2x2的矩阵,对于三维情况,变换矩阵是一个4x4的矩阵。
变换矩阵包含了平移、旋转和缩放等变换信息。
4. 坐标变换过程,机器人坐标变换的过程可以分为两个步骤,前向变换和逆向变换。
前向变换是从基座坐标系到末端执行器坐标系的变换,逆向变换是从末端执行器坐标系到基座坐标系的变换。
5. 坐标变换公式,机器人坐标变换的公式可以通过矩阵乘法来表示。
对于前向变换,可以使用连续的变换矩阵相乘的方式计算末端执行器坐标系相对于基座坐标系的变换。
对于逆向变换,可以使用逆矩阵的方式计算基座坐标系相对于末端执行器坐标系的变换。
总结起来,机器人坐标变换的原理是基于坐标系之间的关系和变换矩阵的计算。
通过变换矩阵的乘法和逆矩阵的运算,可以实现机器人在不同坐标系下的定位和运动控制。
这种坐标变换的原理在机器人控制中起着重要的作用,能够帮助机器人实现复杂的任务和精确的定位。
机器人学第二章机器人的位姿描述与坐标变换战强北京航空航天大学机器人研究所第二章机器人的位姿描述与坐标变换机器人的位姿连杆I 的位姿YX ZYi XiZi YwXwZw2-1、基本概念1) 自由度(Degree of Freedom, DOF):指一个点或一个物体运动的方式,或一个动态系统的变化方式。
每个自由度可表示一个独立的变量,而利用所有的自由度,就可完全规定所研究的一个物体或一个系统的位置和姿态。
也指描述物体运动所需的独立坐标数,3维空间需要6个自由度。
2) 操作臂(Manipulator):具有和人手臂(Arm)相似的功能、可在空间抓放物体或进行其它操作的机电装置。
----Arm3) 末端执行器(End-Effector):位于机器人腕部的末端,直接执行工作要求的装置。
如灵巧手、夹持器。
----Hand/Gripper4) 手腕(Wrist):位于执行器与手臂之间,具有支撑和调整末端执行器姿态功能的机构。
操作臂的组成部分之一。
5)手臂(Arm):位于基座和手腕之间,由操作手的动力关节和连杆等组成的组件。
能支撑手腕和末端执行器,并具有调整末端执行器位置的功能。
操作臂的组成部分。
Outdated!6) 世界坐标系(World Coordinate System):参照地球的直角坐标系。
7)机座坐标系、基坐标系(Base reference coordinate system):参照机器人基座的坐标系,即机器人末端位姿的参考坐标系。
8)坐标变换(Coordinate Transformation):将一个点的坐标描述从一个坐标系转换到另一个坐标系下描述的过程。
手腕机座手臂Yw XwZw9)位姿(Position&Pose):机器人末端执行器在指定坐标系中的位置和姿态。
10)工作空间(Working Space):机器人在执行任务时,其腕轴交点能在空间活动的范围。
由连杆尺寸和构形决定。
11)负载(Load):作用于末端执行器上的质量和力矩。