第四讲 机器人的位姿描述
- 格式:ppt
- 大小:782.00 KB
- 文档页数:40
机器人技术基础实验报告班级:学号:姓名:台号: 2 课程:2.机器人空间位姿描述成绩:批改日期:教师签字:实验目的:1、认识机器人位置与姿态的描述方式2、了解多种姿态的描述方法实验设备及软件:1、珞石XB4机器人2、MATLAB实验原理:位置描述:建立坐标系后可以用一个3×1的位置矢量对坐标系中的任何点进行定位。
用三个相互正交的带有箭头的单位矢量来表示一个坐标系{A}.用一个矢量来表示一个点P A ,并且可等价地被认为是空间的一个位置矢量,或者简单地用一组有序的三个数字来表示。
矢量的各个元素用下标x,y和z 来标明:姿态描述:为了描述物体的姿态,需要在物体上固定一个坐标系并且给出此坐标系相对于参考系的表达。
用X B 、Y B和Z B来表示坐标系{B}主轴方向的单位矢量。
在用坐标系{A}的坐标表达时,写成X B A、Y B A、Z B A。
这三个单位矢量按照顺序排列组成一个3×3的矩阵,称之为旋转矩阵。
记为:R B A= [X B A Y B A Z B A]分别绕X 轴,Y轴,Z轴的旋转变换为:坐标系变换是一个坐标系描述到另一个坐标系描述的变换。
被描述的空间点本身没有改变,只是它的描述改变了。
一般情况下坐标系{A}与坐标系{B}既存在位置差异又存在姿态差异。
则相对于坐标系{B}描述的点PB在坐标系{A}下的描述为:AP A=R B A P B+P BORG为了简化表达,可改写为:[P A1]=[R B A P BORG A 01][P B 1]=T B A[P B 1] 其中T B A =[RB A P BORGA01]为4×4矩阵,称为齐次变换矩阵。
描述了坐标系{B} 相对于坐标系{A}的变换。
姿态其他描述: X-Y-Z 固定角 等效转轴表示法 X-Y-Z 欧拉角 四元素法 1、X-Y-Z 固定角:坐标系{B}的方位规则如下:最初坐标系{B}与{A}重合,转动相对固定坐标系{A}来描述,先绕X A 轴转γ 角 ,再绕Y A 轴转β角,最后绕Z A 轴转α角。