分立元件逻辑门共44页
- 格式:ppt
- 大小:3.90 MB
- 文档页数:44
实验一分立元件(由二极管三极管组成的)逻辑门电路一、实验目的1.熟悉并掌握由二极管、三极管组成的逻辑门电路。
2.掌握数字电路实验装置及示波器的使用方法。
二、实验仪器与器材1.数字电路实验装置2.双踪示波器三、预习要求1.复习二极管、三极管的开关特性。
2.了解双踪示波器的使用方法。
四、实验内容与步骤(一)二极管与门电路实验步骤:1、按图-1所示连接电路2、检查无误后,按表-1所列的真值表设置开关K、2K的状态,1开关闭合表示为“0”,开关断开或发光二极管亮表示为“1”,然后检测每次的输出端的状态填入表-1中,应符合逻辑关系式Y=AB。
(注:K=A,2K=B,Y代表发光二极管。
下同)13、根据真值表和逻辑关系式Y=AB,总结二极管与门电路的功能为“全高则高,有低则低”。
图-1 二极管与门电路表-1 真值表(二)二极管或门电路 实验步骤:1、按图-2所示连接电路。
2、检查无误后,按表-2所列的真值表设置开关1K 、2K 的状态,开关闭合表示为“1”,开关断开表示为“0”,发光二极管亮表示为“1”,然后检测每次的输出端的状态填入表-1中,应符合逻辑关系式Y=A+B 。
图-2 二极管或门电路 表-2 真值表3、根据真值表和逻辑关系式Y=A+B ,总结二极管或门电路的功能为“全低则低,有高则高”。
(三)三极管非门电路实验步骤:1、按图-3所示连接电路2、检查无误后,按表-3所列的真值表设置开关K 的状态,开关闭合表示为“1”, 开关断开表示为“0”,发光二极管亮表示为“1”,然后检测每次的输出端的状态填入表-3中,应符合逻辑关系式Y=A 。
3、根据真值表和逻辑关系式Y=A ,总结三极管非门电路的功能相当于反相器“是低则高,是高则低”。
(注:K=A )图-3 三极管非门电路 表-3 真值表(四)三极管与非门电路实验步骤:1、按图-4所示连接电路2、检查无误后,按表-4所列的真值表设置开关1K 、2K 的状态,开关闭合表示为“0”,开关断开或发光二极管亮表示为“1”,然后检测每次的输出端的状态填入表-1中,应符合逻辑关系式Y=AB 。
分立元件逻辑门的级联在数字电路设计中,分立元件逻辑门的级联是一种常见的组合逻辑方法。
分立元件逻辑门包括与门、或门、非门等基本逻辑门,通过合理地连接这些逻辑门,可以实现复杂的数字逻辑电路。
级联是将多个逻辑门按照一定的方式相互连接,以实现更丰富的功能。
首先,我们来了解一下分立元件逻辑门的原理及应用:1. 与门:与门(AND gate)接收两个或多个输入信号,当所有输入信号都为高电平(通常表示为1)时,输出为高电平;否则,输出为低电平(通常表示为0)。
与门广泛应用于组合逻辑电路的设计中。
2. 或门:或门(OR gate)接收两个或多个输入信号,当任意一个输入信号为高电平时,输出为高电平;只有当所有输入信号都为低电平时,输出才为低电平。
或门常用于构建多路选择器、编码器等电路。
3.非门:非门(NOT gate)只接收一个输入信号,输出信号与输入信号相反。
非门常用于信号反相、时序控制等场合。
在了解了基本逻辑门的工作原理后,我们可以将它们级联以实现更复杂的逻辑功能。
以下是一个分立元件逻辑门级联的例子:假设我们有一个输入信号A和两个输出信号Y和Z。
我们可以通过以下逻辑电路实现输出Z与输入A的反相(即Z= NOT A):1. 将输入信号A接入非门(NOT gate)的输入端,得到输出信号B(B= NOT A)。
2. 将输出信号B与输入信号A接入与门(AND gate),得到输出信号C(C= A·B)。
3. 将输出信号C接入非门(NOT gate),得到输出信号Z(Z= NOT C = NOT(A·B))。
通过这个级联电路,我们实现了输出信号Z与输入信号A的反相。
此外,我们还可以通过调整逻辑门的连接方式,实现其他复杂的逻辑功能。
分立元件逻辑门的级联在数字电路设计中具有重要意义。
掌握这种方法,有助于我们更好地理解数字逻辑电路的工作原理,并灵活地设计出满足实际需求的数字电路系统。
同时,分立元件逻辑门的级联也是学习现代数字电子技术的基础,对于深入理解计算机原理、嵌入式系统等领域具有重要意义。
分立元件基本逻辑门电路1、二极管与门电路图1(a)所示是二极管与门电路,它有两个输入端A和B,一个输出端Y。
也可以认为A和B是它的两个输入信号或称输入变量,Y是输出信号或称输出变量。
图1(b)和(c)所示分别为与门电路的规律符号和波形图。
(a)电路(b)规律符号(c)波形图图1 二极管与门电路当输入变量A和B全为1时(设两个输入端的电位均为3V),电源+5V 的正端经电阻R向两个输入端流通电流(电源的负端接“地”,图中未标出),和两管都导通,输出端Y的电位略高于3V(因二极管的正向电压降有零点几伏),因此输出变量Y为1。
当输入变量不全为1,而有一个或两个全为0时,即该输入端的电位在0V四周。
例如A为0,B为1,则优先导通。
这时输入端Y的电位也在0V四周,因此Y为0。
因承受反向电压而截止。
只有当输入变量全为1时,输出变量Y才为1,这合乎与门的要求。
与规律关系式为(1)图1(a)有两个输入端,输入信号有1和0两种状态,共有四种组合,因此可用表1完整地列出四种输入、输出规律状态。
它可和图12.2(c)的波形图相对比。
表1 与门规律状态表ABY000010100111 2、二极管或门电路图2(a)所示是二极管或门电路。
比较一下图1(a)和图2(a)就可看出,后者二极管的极性与前者接得相反,其阴极相连经电阻R接“地”。
(a)电路(b)规律符号(c)波形图图2 二极管或门电路当输入变量只要有一个为1时,输出就为1。
例如A为1,B为0,则优先导通,输出变量Y也为1。
因承受反向电压而截止。
只有当输入变量全为0时,输出变量Y才为0,此时两只二极管都截止。
或规律关系式为(2)表2是或门的输入、输出规律状态表,它可和图2(c)的波形图相对比。
图2(b)是或门电路的规律符号。
表2 或门规律状态表ABY000011101111 3、晶体管非门电路图3(a)所示是晶体管非门电路。
晶体管非门电路不同于放大电路,管子的工作状态或从截止转为饱和,或从饱和转为截止。