高中数学第二章平面向量2-5平面向量应用举例学案含解析新人教A版必修4
- 格式:doc
- 大小:309.50 KB
- 文档页数:10
2.5 平面向量应用举例2.5.1 平面几何中的向量方法 2.5.2 向量在物理中的应用举例学习目标:1.掌握用向量方法解决简单的几何问题、力学问题等一些实际问题.( 重点 )2.体会向量是一种处理几何问题、物理问题的重要工具.( 重点 )3.培养运用向量知识解决实际问题和物理问题的能力.( 难点 )[自 主 预 习·探 新 知]1.用向量方法解决平面几何问题的“三步曲”:( 1 )建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;( 2 )通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; ( 3 )把运算结果“翻译”成几何关系. 2.向量在物理中的应用:( 1 )物理问题中常见的向量有力,速度,加速度,位移等.( 2 )向量的加减法运算体现在力,速度,加速度,位移的合成与分解. ( 3 )动量m v 是向量的数乘运算.( 4 )功是力F 与所产生的位移s 的数量积.[基础自测]1.思考辨析( 1 )若△ABC 是直角三角形,则有AB →·BC →=0.( ) ( 2 )若AB →∥CD →,则直线AB 与CD 平行.( )( 3 )用力F 推动一物体水平运动s m,则力F 对物体所做的功为|F ||s |.( ) [详细解析] ( 1 )错误.因为△ABC 为直角三角形,∠B 并不一定是直角,有可能是∠A 或∠C 为直角.( 2 )错误.向量AB →∥CD →时,直线AB ∥CD 或AB 与CD 重合. ( 3 )错误.力F 对物体所做的功为F ·s . [正确答案] ( 1 )× ( 2 )× ( 3 )×2.已知一个物体在大小为6 N 的力F 的作用下产生的位移s 的大小为100 m,且F 与s 的夹角为60°,则力F 所做的功W =________J.300 [W =F ·s =6×100×cos 60°=300( J ).]3.设M 是线段BC 的中点,点A 在直线BC 外,|BC 2→|=16,|AB →+AC →|=|AB →-AC →|,则|AM →|=________.2 [∵|AB →+AC →|=|AB →-AC →|, ∴AB →·AC →=0,AB →⊥AC →,∴△ABC 是直角三角形,BC 为斜边, ∴|AM →|=12|BC →|=12×4=2.][合 作 探 究·攻 重 难]向量在平面几何中的应用( 1 )已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →|AB →|·CA →|AC →|=12,则△ABC 的形状是( )A .三边均不相等的三角形B .直角三角形C .等腰三角形D .等边三角形( 2 )已知四边形ABCD 是边长为6的正方形,E 为AB 的中点,点F 在BC 上,且BF ∶FC =2∶1,AF 与EC 相交于点P ,求四边形APCD 的面积.[思路探究] ( 1 )先由平行四边形法则分析AB→|AB →|+AC→|AC →|的几何意义,由数量积为0推出垂直关系,再由AB→|AB →|·CA →|AC →|=12求∠BAC ,最后判断△ABC 的形状. ( 2 )先建系设点P 坐标,再根据A ,P ,F 和C ,P ,E 分别共线求点P 坐标,最后求四边形APCD 的面积.( 1 )C [( 1 )由⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,得∠A 的平分线垂直于BC ,所以AB =AC ,设AB →,CA →的夹角为θ,而AB→|AB →|·CA →|AC →|=cos θ=12, 又θ∈[0,π],所以∠BAC =π-π3=23π,故△ABC 为等腰三角形.( 2 )以A 为坐标原点,AB 为x 轴AD 为y 轴建立直角坐标系,如图所示,∴A ( 0,0 ),B ( 6,0 ),C ( 6,6 ),D ( 0,6 ),F ( 6,4 ),E ( 3,0 ),设P ( x ,y ),AP →=( x ,y ), AF →=( 6,4 ),EP →=( x -3,y ),EC →=( 3,6 ).由点A ,P ,F 和点C ,P ,E 分别共线,得⎩⎪⎨⎪⎧4x -6y =0,6x -3-3y =0,∴⎩⎪⎨⎪⎧x =92,y =3,∴S 四边形APCD =S 正方形ABCD -S △AEP -S △CEB =36-12×3×3-12×3×6=452.]母题探究:1.将本例1( 1 )的条件改为( OB →-OC → )·( OB →+OC →-2OA →)=0,试判断△ABC 的形状.[详细解析] ∵( OB →-OC → )·( OB →+OC →-2OA →)=0, ∴( OB →-OC → )·( OB →-OA →+OC →-OA →)=0, ∴CB →·( AB →+AC →)=0, ∴( AB →-AC → )·( AB →+AC →)=0, ∴AB 2→-AC 2→=0,即|AB →|2-|AC →|2=0, 所以|AB →|=|AC →|, ∴△ABC 是等腰三角形.2.将本例1( 2 )的条件“BF ∶FC =2∶1”改为“BF ∶FC =1∶1”,求证:AF ⊥DE .[证明] 建立如图所示的平面直角坐标系, 则A ( 0,0 ),B ( 6,0 ),C ( 6,6 ),D ( 0,6 ),则中点E ( 3,0 ),F ( 6,3 ),∴AF →=( 6,3 ),DE →=( 3,-6 ), ∴AF →·DE →=6×3+3×( -6 )=0, ∴AF →⊥DE →,∴AF ⊥DE . [规律方法]1向量法证明平面几何中AB ⊥CD 的方法:法一:①选择一组向量作基底;②用基底表示AB →和CD →;③证明AB →·CD →的值为0;④给出几何结论AB ⊥CD .法二:先求AB →,CD →的坐标,AB →=x 1,y 1,CD →=x 2,y 2,再计算AB →·CD →的值为0,从而得到几何结论AB ⊥CD .2用向量法证明平面几何中AB ∥CD 的方法:法一:①选择一组向量作基底;②用基底表示AB →和CD → );③寻找实数λ,使AB →=λCD →,即AB →∥CD →;④给出几何结论AB ∥CD .法二:先求AB →,CD →的坐标,AB →=x 1,y 1,CD →=x 2,y 2.利用向量共线的坐标关系x 1y 2-x 2y 1=0得到AB →∥CD →,再给出几何结论AB ∥CD .,以上两种方法,都是建立在A ,B ,C ,D 中任意三点都不共线的基础上,才有AB →∥CD →得到AB ∥CD .向量在详细解析几何中的应用已知点A ( 1,0 ),直线l :y =2x -6,点R 是直线l 上的一点,若RA →=2AP →,求点P的轨迹方程.【2265】[思路探究] 设Px ,y ,R x 0,y 0→依据 RA →=2AP →找x ,y 与x 0,y 0的关系→由点R 在直线l 得y 0=2x 0-6→消x 0,y 0得x 与y的关系即为所求[详细解析] 设P ( x ,y ),R ( x 0,y 0 ), 则RA →=( 1,0 )-( x 0,y 0 )=( 1-x 0,-y 0 ), AP →=( x ,y )-( 1,0 )=( x -1,y ).由RA →=2AP →,得⎩⎪⎨⎪⎧1-x 0=2x -1,-y 0=2y .又∵点R 在直线l :y =2x -6上,∴y 0=2x 0-6,∴⎩⎪⎨⎪⎧1-x 0=2x -2, ①6-2x 0=2y , ②由①得x 0=3-2x ,代入②得6-2( 3-2x )=2y ,整理得y =2x ,即为点P 的轨迹方程. [规律方法] 用向量方法解决详细解析几何问题的步骤:一是把详细解析几何问题中的相关量用向量表示;二是转化为向量模型,通过向量运算解决问题;三是将结果还原为详细解析几何问题.[跟踪训练]1.已知△ABC 的三个顶点A ( 0,-4 ),B ( 4,0 ),C ( -6,2 ),点D ,E ,F 分别为边BC ,CA ,AB 的中点.( 1 )求直线DE 的方程;( 2 )求AB 边上的高线CH 所在直线的方程.[详细解析] ( 1 )设M ( x ,y )是直线DE 上任意一点, 则DM →∥DE →,因为点D ,E 分别为边BC ,CA 的中点,所以点D ,E 的坐标分别为D ( -1,1 ),E ( -3,-1 ), DM →=( x +1,y -1 ),DE →=( -2,-2 ),所以( -2 )( x +1 )-( -2 )( y -1 )=0, 即x -y +2=0为直线DE 的方程.( 2 )设点N ( x ,y )是CH 所在直线上任意一点,则CN →⊥AB →,所以CN →·AB →=0, 又CN →=( x +6,y -2 ),AB →=( 4,4 ), 所以4( x +6 )+4( y -2 )=0, 即x +y +4=0为所求直线CH 的方程.平面向量在物理中的应用[探究问题]1.向量的数量积与功有什么联系?提示:物理上力作功的实质是力在物体前进方向上的分力与物体位移距离的乘积,它的实质是向量的数量积.2.用向量方法解决物理问题的一般步骤是什么?提示:用向量方法解决物理学中的相关问题,一般来说分为四个步骤:①问题转化,即把物理问题转化为数学问题;②建立模型,即建立以向量为载体的数学模型;③求解参数,即求向量的模、夹角、数量积等;④回答问题,即把所得的数学结论回归到物理问题中.( 1 )一物体在力F 1=( 3,-4 ),F 2=( 2,-5 ),F 3=( 3,1 )的共同作用下从点A ( 1,1 )移动到点B ( 0,5 ).在这个过程中三个力的合力所做的功等于________.( 2 )设作用于同一点的三个力F 1,F 2,F 3处于平衡状态,若|F 1|=1,|F 2|=2,且F 1与F 2的夹角为23π,如图251所示.图251①求F 3的大小. ②求F 2与F 3的夹角.【2266】[思路探究] ( 1 )求出合力、位移的坐标表示 →利用数量积求功( 2 )①由三个力处于平衡状态用F 1,F 2表示F 3 →用向量模的计算公式求F 3的大小②用F 1,F 2表示F 3→构造F 2·F 3→利用夹角公式求解( 1 )-40 [因为F 1=( 3,-4 ),F 2=( 2,-5 ),F 3=( 3,1 ),所以合力F =F 1+F 2+F 3=( 8,-8 ),AB →=( -1,4 ),则F ·AB →=-1×8-8×4=-40, 即三个力的合力所做的功为-40.] ( 2 )①由题意|F 3|=|F 1+F 2|,因为|F 1|=1,|F 2|=2,且F 1与F 2的夹角为23π,所以|F 3|=|F 1+F 2|=1+4+2×1×2×⎝ ⎛⎭⎪⎫-12= 3. ②设F 2与F 3的夹角为θ, 因为F 3=-( F 1+F 2 ), 所以F 3·F 2=-F 1·F 2-F 2·F 2, 所以3·2·cos θ=-1×2×⎝ ⎛⎭⎪⎫-12-4, 所以cos θ=-32, 所以θ=56π.[规律方法] 向量在物理中的应用: 1求力向量,速度向量常用的方法:一般是向量几何化,借助于向量求和的平行四边形法则求解.2用向量方法解决物理问题的步骤:①把物理问题中的相关量用向量表示;②转化为向量问题的模型,通过向量运算使问题解决; ③结果还原为物理问题. [跟踪训练]2.在静水中划船速度的大小是每分钟40 m,水流速度的大小是每分钟20 m,如果一小船从岸边O 处出发,沿着垂直于水流的航线到达对岸,则小船的行进方向应指向哪里?[详细解析] 如图所示,设向量OA →的长度和方向表示水流速度的大小和方向,向量OB →的长度和方向表示船在静水中速度的大小和方向,以OA →,OB →为邻边作平行四边形OACB ,连接OC .依题意OC ⊥OA ,BC =OA =20,OB =40, ∴∠BOC =30°.故船应向上游( 左 )与河岸夹角为60°的方向行进.[当 堂 达 标·固 双 基]1.过点M ( 2,3 ),且垂直于向量u =( 2,1 )的直线方程为( ) A .2x +y -7=0 B .2x +y +7=0 C .x -2y +4=0D .x -2y -4=0A [设P ( x ,y )是所求直线上任一点,则MP →⊥u .又MP →=( x -2,y -3 ),所以2( x -2 )+( y -3 )=0,即2x +y -7=0.]2.已知点A ( 2,3 ),B ( -2,6 ),C ( 6,6 ),D ( 10,3 ),则以ABCD 为顶点的四边形是( )【2267】A .梯形B .邻边不相等的平行四边形C .菱形D .两组对边均不平行的四边形B [因为AD →=( 8,0 ),BC →=( 8,0 ),所以AD →=BC →,因为BA →=( 4,-3 ),所以|BA →|=5,而|BC →|=8,故为邻边不相等的平行四边形.]3.已知作用在点A 的三个力f 1=( 3,4 ),f 2=( 2,-5 ),f 3=( 3,1 ),且A ( 1,1 ),则合力f =f 1+f 2+f 3的终点坐标为( )A .( 9,1 )B .( 1,9 )C .( 9,0 )D .( 0,9 )A [f =f 1+f 2+f 3=( 3,4 )+( 2,-5 )+( 3,1 )=( 8,0 ),设终点为B ( x ,y ),则( x -1,y -1 )=( 8,0 ),所以⎩⎪⎨⎪⎧x -1=8,y -1=0,所以⎩⎪⎨⎪⎧x =9,y =1,所以终点坐标为( 9,1 ).]4.坐标平面内一只小蚂蚁以速度v =( 1,2 )从点A ( 4,6 )处移动到点B ( 7,12 )处,其所用时间长短为________.3 [设所用时间长短为t ,则 AB →=t v ,即( 3,6 )=t ( 1,2 ),所以t =3.]5.已知△ABC 是直角三角形,CA =CB ,D 是CB 的中点,E 是AB 上的一点,且AE =2EB .求证:AD ⊥CE .【2268】[证明] 以C 为原点,CA 所在直线为x 轴,CB 所在直线为y 轴,建立平面直角坐标系( 略 ).设AC =a ,则A ( a,0 ),B ( 0,a ),D ⎝⎛⎭⎪⎫0,a 2,C ( 0,0 ),E ⎝ ⎛⎭⎪⎫13a ,23a . 因为AD →=⎝ ⎛⎭⎪⎫-a ,a 2,CE →=⎝ ⎛⎭⎪⎫13a ,23a ,所以AD →·CE →=-a ·13a +a 2·23a =0,所以AD →⊥CE →,即AD ⊥CE .。
第二章第五节平面向量应用举例第二课时整体设计教学分析向量与物理学天然相联.向量概念的原型就是物理中的力、速度、位移以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰.并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题的认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究.用向量研究物理问题的相关知识.(1)力、速度、加速度、位移等既然都是向量,那么它们的合成与分解就是向量的加、减法,运动的叠加亦用到向量的合成;(2)动量是数乘向量;(3)功即是力与所产生位移的数量积.用向量知识研究物理问题的基本思路和方法.(1)通过抽象、概括,把物理现象转化为与之相关的向量问题;(2)认真分析物理现象,深刻把握物理量之间的相互关系;(3)利用向量知识解决这个向量问题,并获得这个向量的解;(4)利用这个结果,对原物理现象作出合理解释,即用向量知识圆满解决物理问题.教学中要善于引导学生通过对现实原型的观察、分析和比较,得出抽象的数学模型.例如,物理中力的合成与分解是向量的加法运算与向量分解的原型.同时,注重向量模型的运用,引导解决现实中的一些物理和几何问题.这样可以充分发挥现实原型对抽象的数学概念的支撑作用.三维目标1.通过力的合成与分解的物理模型,速度的合成与分解的物理模型,掌握利用向量方法研究物理中相关问题的步骤,明了向量在物理中应用的基本题型,进一步加深对所学向量的概念和向量运算的认识.2.通过对具体问题的探究解决,进一步培养学生的数学应用意识,提高应用数学的能力.体会数学在现实生活中的重要作用.养成善于发现生活中的数学,善于发现物理及其他科目中的数学及思考领悟各学科之间的内在联系的良好习惯.重点难点教学重点:1.运用向量的有关知识对物理中力的作用、速度的分解进行相关分析和计算.2.归纳利用向量方法解决物理问题的基本方法.教学难点:将物理中有关矢量的问题转化为数学中向量的问题.课时安排1课时教学过程导入新课思路1.(章头图引入)章头图中,道路、路标体现了向量与位移、速度、力等物理量之间的密切联系.章引言说明了向量的研究对象及研究方法.那么向量究竟是怎样应用于物理的呢?它就像章头图中的高速公路一样,是一条解决物理问题的高速公路.在学生渴望了解的企盼中,教师展示物理模型,由此展开新课.思路2.(问题引入)你能举出物理中的哪些向量?比如力、位移、速度、加速度等,既有大小又有方向,都是向量,学生很容易就举出来.进一步,你能举出应用向量来分析和解决物理问题的例子吗?你是怎样解决的?教师由此引导:向量是有广泛应用的数学工具,对向量在物理中的研究,有助于进一步加深对这方面问题的认识.我们可以通过对下面若干问题的研究,体会向量在物理中的重要作用.由此自然地引入新课.应用示例例1在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?活动:这个日常生活问题可以抽象为如图1所示的数学模型,引导学生由向量的平行四边形法则,力的平衡及解直角三角形等知识来思考探究这个数学问题.这样物理中力的现象就转化为数学中的向量问题.只要分析清楚F、G、θ三者之间的关系(其中F为F1、F2的合力),就得到了问题的数学解释.图1在教学中要尽可能地采用多媒体,在信息技术的帮助下让学生来动态地观察|F|、|G |、θ之间在变化过程中所产生的相互影响.由学生独立完成本例后,与学生共同探究归纳出向量在物理中的应用的解题步骤,也可以由学生自己完成,还可以用信息技术来验证.用向量解决物理问题的一般步骤是:①问题的转化,即把物理问题转化为数学问题;②模型的建立,即建立以向量为主体的数学模型;③参数的获得,即求出数学模型的有关解——理论参数值;④问题的答案,即回到问题的初始状态,解释相关的物理现象.解:不妨设|F 1|=|F 2|,由向量的平行四边形法则、力的平衡以及直角三角形的知识,可以知道cos θ2=12|G||F 1|⇒|F 1|=|G |2cos θ2. 通过上面的式子,我们发现:当θ由0°到180°逐渐变大时,θ2由0°到90°逐渐变大,cos θ2的值由大逐渐变小,因此|F 1|由小逐渐变大,即F 1,F 2之间的夹角越大越费力,夹角越小越省力.点评:本例是日常生活中经常遇到的问题,学生也会有两人共提一个旅行包以及在单杠上做引体向上运动的经验.本例的关键是作出简单的受力分析图,启发学生将物理现象转化成模型,从数学角度进行解释,这就是本例活动中所完成的事情.教学中要充分利用好这个模型,为解决其他物理问题打下基础.得到模型后就可以发现,这是一个很简单的向量问题,这也是向量工具优越性的具体体现.图2 ,实际风速为v .端,子弹击中砂箱后,陷入箱内,使砂箱摆至某一高度h .设子弹和砂箱的质量分别为m 和M ,求子弹的速度v 的大小.图3解:设v 0为子弹和砂箱相对静止后开始一起运动的速度,由于水平方向上动量守恒,所以m |v |=(M +m )|v 0|. ①由于机械能守恒,所以12(M +m )v 20=(M +m )gh . ② 联立①②解得|v |=M +m m2gh . 又因为m 相对于M 很小,所以|v |≈M m2gh , 即子弹的速度大小约为M m2gh . 知能训练1.一艘船以4 km/h 的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h ,则经过3小时,该船实际航程为( )A .215 kmB .6 kmC.84 km D .8 km答案:B点评:由于学生还没有学习正弦定理和余弦定理,所以要通过作高来求.2.如图4,已知两个力的大小和方向,则合力的大小为________ N ;若在图示坐标系中,用坐标表示合力F ,则F =________.图4 答案:41 (5,4)3.一艘船以5 km/h 的速度向垂直于对岸的方向行驶,而该船实际航行的方向与水流方向成30°角,求水流速度与船的实际速度.答案:如图5所示,设OA →表示水流速度,OB →表示船垂直于对岸的速度,OC →表示船的实际速度,∠AOC =30°,|OB →|=5 km/h.图5因为OACB 为矩形,所以|OA →|=|AC →|·cot30°=|OB →|·cot30°=53≈8.66 km/h ,|OC →|=|OA →|cos30°=5332=10 km/h. 答:水流速度为8.66 km/h ,船的实际速度为10 km/h.点评:转化为数学模型,画出向量图,在直角三角形中解出.课堂小结1.与学生共同归纳总结利用向量解决物理问题的步骤.①问题的转化,即把物理问题转化为数学问题;②模型的建立,即建立以向量为主体的数学模型;③参数的获得,即求出数学模型的有关解——理论参数值;④问题的答案,即回到问题的初始状态,解释相关的物理现象.2.与学生共同归纳总结向量在物理中应用的基本题型.①力、速度、加速度、位移都是向量;②力、速度、加速度、位移的合成与分解对应相应向量的加减;③)动量m v 是数乘向量,冲量Δt F 也是数乘向量;④功是力F 与位移s 的数量积,即W =F·s .作业1.课本习题2.5 A 组3、4,B 组1、2.2.归纳总结物理学中哪些地方可用向量.设计感想1.本教案设计的指导思想是:由于本节重在解决两个问题,一是如何把物理问题转化成数学问题,也就是将物理量之间的关系抽象成数学模型;二是如何用建立起来的数学模型解释和回答相关的物理现象.因此本教案设计的重点也就放在怎样让学生探究解决这两个问题上.而把这个探究的重点又放在这两个中的第一个上,也就是引导学生认真分析物理现象、准确把握物理量之间的相互关系.通过抽象、概括,把物理现象转化为与之相关的向量问题,然后利用向量知识解决这个向量问题.2.经历是最好的老师.充分让学生经历分析、探究并解决实际问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决实际问题的方法就越恰当而简捷.教科书中对本节的两个例题的处理方法,都不是先给出解法,而是先进行分析,探索出解题思路,再给出解法,就足以说明这一点.3.突出数形结合的思想.教科书例题都是先画图进行分析的,本教案的设计中也突出了这一点.让学生在活动的时候就先想到画图,并在这个活动中,体会数形结合的应用,体会数学具有广泛的应用,体会向量这个工具的优越性.备课资料一、向量与重心问题假如有两个质点M 1,M 2,它们的质量分别是m 1,m 2,由物理学知识,这两个质点的重心M 在线段M 1M 2上,并且分此线段为与质量成反比例的两部分,即M 1M MM 2=m 2m 1,或m 1M 1M →=m 2MM 2→. 现设点M 1、M 2、M ,对应的向量分别是r 1、r 2、r ,则上式可以写成m 1(r -r 1)=m 2(r 2-r ).所以r =m 1r 1+m 2r 2m 1+m 2,点M 处的质量为m 1+m 2. 现求三个质点的重心问题.三个质点M 1、M 2、M 3的质量分别是m 1、m 2、m 3,所对应的向量分别是r 1、r 2、r 3,我们可设M 1,M 2的重心在点D 处,该处对应的向量为r D =m 1r 1+m 2r 2m 1+m 2,该点的质量为m 1+m 2,然后求点D 与点M 3的重心M 所对应的向量r ,易得r =m 1r 1+m 2r 2+m 3r 3m 1+m 2+m 3. 二、备用习题1.作用于同一点的两个力F 1和F 2,|F 1|=5,|F 2|=3,夹角为60°,则F 1+F 2的大小为________.答案:72.一条渔船距对岸为4 km ,现正以2 km/h 的速度向垂直于对岸的方向划去,到达对岸时,船的实际航程为8 km ,求河水的流速.答案:解:如图7所示,设AB →表示船垂直于对岸的速度,则AB →+BC →=AC →,图7 知AC →就是渔船实际航行的速度.因为航行的时间为4÷2=2(h),所以在Rt △ABC 中,|A B →|=2 km/h ,|AC →|=8÷2=4 km/h ,则|B C →|=2 3 km/h.答:河水的流速为2 3 km/h.3.在半径为15 cm 的均匀铁板上,挖出一个圆洞,已知圆洞的圆心和铁板中心相距8 cm ,圆洞的半径是5 cm ,求挖去圆洞后所剩下铁板的重心.答案:解:如图8所示,建立平面直角坐标系,两圆的圆心分别为O 1(0,0),O 2(8,0),圆O 2是挖去的圆,不妨设铁板的密度为ρ=1,则小圆的质量m 1=25π,挖去圆洞后,铁板的质量为m 2=(225-25)π=200π,设所求的重心为O 3.图8 根据物理学知识,知O 3在直线O 1O 2上,即可设O 3(x 3,0),且满足O 3O 1→=λO 1O 2→,其中λ=m 1m 2=25200=18.由定比分点坐标公式知0=x 3+18×81+18,解得x 3=-1, 即O 3(-1,0)为挖去圆洞后所剩下铁板的重心.4.如图6所示,重力为G 的均匀小球放在倾角为α的斜面上,球被与斜面夹角为θ的木板挡住,球面、木板均光滑,若使球对木板的压力最小,求木板与斜面间夹角θ的大小.图6答案:解:对小球的受力分析如图6所示,重力为G ,斜面弹力为N 2(垂直于斜面向上),木板弹力N 1(垂直于木板),其中N 1与N 2的合力的大小恒为|G ′|,方向向上,N 2的方向始终不变,随着木板的转动,N 1的方向始终垂直于木板,N 1的大小在变化,且满足|N 1|sin α=|G ′|sin θ,又|G ′|=|G |,∴|N 1|=|G |sin αsin θ.∴当sin θ取最大值1时,|N 1|min =|G |sin α,此时θ=π2.。
2.5 平面向量应用举例一、教学目标(一)核心素养会用平面向量知识解决几何问题、物理问题,体验向量在解决几何问题、物理问题中的工具作用,培养学生的创新精神和数学应用意识,提高应用数学的能力.(二)学习目标1.运用向量的有关知识解决平面几何中直线或线段的平行、垂直、相等、夹角和距离等问题.2.通过力的合成与分解、速度的合成与分解模型,掌握利用向量方法研究物理中相关问题的步骤,明了向量在物理中应用的基本题型,进一步加深对所学向量概念和运算的认识.(三)学习重点理解并能灵活运用向量加减法与向量数量积的法则解决几何和物理问题.(四)学习难点选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决.二、教学设计(一)课前设计1.预习任务(1)向量方法在几何中的应用:①证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:a∥b(b≠0)⇔a=λb⇔x1y2-x2y1=0.②证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:a⊥b⇔a·b=0⇔x1x2+y1y2=0.③求夹角问题,往往利用向量的夹角公式cos θ=⋅a ba b=④求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:|a|=x2+y2.(2)向量方法在物理中的应用:①力、速度、加速度、位移都是向量.②力、速度、加速度、位移的合成与分解就是向量的加、减运算,运动的叠加亦用到向量的合成. ③动量m ν是 数乘向量 .④功即是力F 与所产生位移s 的 数量积 . 2.预习自测(1)在△ABC 中,已知A (4,1)、B (7,5)、C (-4,7),则BC 边的中线AD 的长是( )A .2 5B .52 5C .3 5D .72 5【知识点】平面向量的模长公式.【解题过程】BC 中点为D 32(,6),AD →=5-2(,5),∴|AD →|=525.【思路点拨】先求出向量AD →的坐标,再求出模长. 【答案】B .(2)点O 是三角形ABC 所在平面内的一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的( ) A .三个内角的角平分线的交点 B .三条边的垂直平分线的交点 C .三条中线的交点 D .三条高的交点【知识点】向量的垂直关系,向量的减法运算. 【数学思想】转化思想.【解题过程】∵OA →·OB →=OB →·OC →.∴(OA →-OC →)·OB →=0.∴OB →·CA →=0. ∴OB ⊥AC .同理OA ⊥BC ,OC ⊥AB ,∴O 为垂心.【思路点拨】将关系式OA →·OB →=OB →·OC →,两边移到同侧,利用向量减法运算,得到OB →·CA →=0,从而得到OB ⊥AC .同理OA ⊥BC ,OC ⊥AB . 【答案】D .(3)用力F 推动一物体水平运动s m ,设F 与水平面的夹角为θ,则对物体所做的功为( )A .|F |·sB .F cos θ·sC .F sin θ·sD .|F |cos θ·s【知识点】向量的内积,物理中功的定义. 【解题过程】cos cos W s s s =⋅==θθF F F . 【思路点拨】利用内积公式可求得结果. 【答案】D .(4)已知作用在点A 的三个力f 1=(3,4),f 2=(2,-5),f 3=(3,1)且A (1,1),则合力f =f 1+f 2+f 3的终点坐标为( ) A .(9,1)B .(1,9)C .(9,0)D .(0,9)【知识点】向量加法的坐标运算.【解题过程】f =f 1+f 2+f 3=(3,4)+(2,-5)+(3,1)=(8,0), 设合力f 的终点为P (x ,y ),则OP→=OA →+f =(1,1)+(8,0)=(9,1). 【思路点拨】直接采用向量加法的坐标运算求解. 【答案】A . (二)课堂设计 1.知识回顾(1)平行四边形法则:把这两个向量置于同一起点上,以这两个向量为邻边作平行四边形,从公共顶点出发的对角线所对应的向量就表示这两个向量的和,它适用于不共线的两个向量求和.三角形法则:把两个向量首尾相连,以第一个向量的起点为起点,以第二个向量的终点为终点的向量就表示两个向量的和,它适用于任意两个向量作和. (2)平面向量的基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. (3)a ·b =|a ||b |cos θ,规定:零向量与任一向量的数量积为0,即0·b =0. 2.问题探究(1)水渠横断面是四边形ABCD ,12DC AB =uuu r uu u r,且AD BC =uuu r uu u r ,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系? (2)两个人提一个旅行包,夹角越大越费力.为什么?教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来.(设计意图:步步导入,吸引学生的注意力,明确学习目标.)探究一:平面向量解决平面几何中问题的优越性①平行四边形是表示向量加法和减法的几何模型,如图1,你能观察、发现并猜想出平行四边形对角线的长度与两邻边长度之间有什么关系吗?图1②你能利用所学知识证明你的猜想吗?能利用所学的向量方法证明吗?试一试可用哪些方法?③你能总结一下利用平面向量解决平面几何问题的基本思路吗?活动:①教师引导学生猜想平行四边形对角线的长度与两邻边长度之间有什么关系.利用类比的思想方法,猜想平行四边形有没有相似关系.指导学生猜想出结论:平行四边形两条对角线的平方和等于四条边的平方和.②教师引导学生探究证明方法,并点拨学生对各种方法分析比较,平行四边形是学生熟悉的重要的几何图形,在平面几何的学习中,学生得到了它的许多性质,有些性质的得出比较麻烦,有些性质的得出比较简单.让学生体会研究几何可以采取不同的方法,这些方法包括综合方法、解析方法、向量方法.证明:方法一:如图2.图2作CE⊥AB于E,DF⊥AB于F,则Rt△ADF≌Rt△BCE.∴AD=BC,AF=BE.由于AC2=AE2+CE2=(AB+BE)2+CE2=AB2+2AB·BE+BE2+CE2=AB2+2AB·BE+BC2.BD 2=BF 2+DF 2=(AB -AF )2+DF 2=AB 2-2AB ·AF +AF 2+DF 2=AB 2-2AB ·AF +AD 2=AB 2-2AB ·BE +BC 2. ∴AC 2+BD 2=2(AB 2+BC 2). 方法二:如图3.图3以AB 所在直线为x 轴,A 为坐标原点建立直角坐标系. 设B (a ,0),D (b ,c ),则C (a +b ,c ). ∴|AC |2=(a +b )2+c 2=a 2+2ab +b 2+c 2, |BD |2=(a -b )2+(-c )2=a 2-2ab +b 2+c 2. ∴|AC |2+|BD |2=2a 2+2(b 2+c 2)=2(|AB |2+|AD |2).用向量方法推导了平行四边形的两条对角线与两条邻边之间的关系.在用向量方法解决涉及长度、夹角的问题时,常常考虑用向量的数量积.通过以下推导学生可以发现,由于向量能够运算,因此它在解决某些几何问题时具有优越性,它把一个思辨过程变成了一个算法过程,学生可按一定的程序进行运算操作,从而降低了思考问题的难度,同时也为计算机技术的运用提供了方便.教学时应引导学生体会向量带来的优越性.因为平行四边形对角线平行且相等,考虑到向量关系DB→=AB →-AD →,AC →=AB →+AD →,教师可点拨学生设AB →=a ,AD→=b ,其他线段对应向量用它们表示,涉及长度问题常常考虑向量的数量积,为此,我们计算|AC→|2与|DB →|2.因此有了方法三.方法三:设AB →=a ,AD →=b ,则AC →=a +b ,DB →=a -b ,|AB →|2=|a |2,|AD →|2=|b |2.∴|AC →|2=AC →·AC →=(a +b )·(a +b )=a·a +a·b +b·a +b·b =|a |2+2a·b +|b |2. ① 同理|DB →|2=|a|2-2a·b +|b |2. ② 观察①②两式的特点,我们发现,①+②得 |AC→|2+|DB →|2=2(|a|2+|b |2)=2(|AB →|2+|AD →|2),即平行四边形两条对角线的平方和等于两条邻边平方和的两倍.至此,为解决重点问题所作的铺垫已经完成,向前发展可以说水到渠成.教师充分让学生对以上各种方法进行分析比较,讨论认清向量方法的优越性,适时引导学生归纳用向量方法处理平面几何问题的一般步骤.由于平面几何经常涉及距离(线段长度)、夹角问题,而平面向量的运算,特别是数量积主要涉及向量的模以及向量之间的夹角,因此我们可以用向量方法解决部分几何问题.解决几何问题时,先用向量表示相应的点、线段、夹角等几何元素.然后通过向量的运算,特别是数量积来研究点、线段等元素之间的关系.最后再把运算结果“翻译”成几何关系,得到几何问题的结论.这就是用向量方法解决平面几何问题的“三步曲”,即:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何关系. 探究二:平面几何在物理中的应用两个人提一个旅行包,夹角越大越费力.在单杠上做引体向上运动,两臂夹角越小越省力.这些问题是为什么?师:向量在物理中的应用,实际上就是把物理问题转化为向量问题,然后通过向量运算解决向量问题,最后再用所获得的结果解释物理现象.分析:上面的问题可以抽象为如右图所示的数学模型.只要分析清楚F 、G 、θ三者之间的关系(其中F 为F 1、F 2的合力),就得到了问题的数学解释.解:不妨设|F 1|=|F 2|, 由向量加法的平行四边形法则,理的平衡原理以及直角三角形的指示,可以得到|F 1|=||2cos2θG .通过上面的式子我们发现,当θ由0~180逐渐变大时,2θ由0~90逐渐变大,F 1F 2cos2θ的值由大逐渐变小,因此,|F 1|由小逐渐变大,即F 1、F 2之间的夹角越大越费力,夹角越小越省力.师:请同学们结合刚才这个问题,思考θ为何值时,|F 1|最小,最小值是多少?答:θ=0时,|F 1|最小,等于2G .探究三:应用示例例1.如下图,一条河的两岸平行,河的宽度d =500m ,一艘船从A 处出发到河对岸.已知船的速度|v 1|=10km /h ,水流的速度|v 2|=2km /h ,问行驶航程最短时,所用的时间是多少(精确到0.1min)?【知识点】向量的加法运算. 【数学思想】数形结合. 【解题过程】||v ==u v (km /h ),所以,60 3.1||d t v ==≈u v (min).【思路点拨】如果水是静止的,则船只要取垂直于对岸的方向行驶,就能使行驶航程最短,所用时间最短.考虑到水的流速,要使船的行驶航程最短,那么船的速度与水流速度的合速度v 必须垂直于对岸.(用《几何画板》演示水流速度对船的实际航行的影响)本例关键在于对“行驶最短航程”的意义的解释,即“分析”中给出的船必须垂直于河岸行驶,这时船的速度与水流速度的合速度应当垂直于河岸,分析清楚这种关系后,本例就容易解决了.【答案】行驶航程最短时,所用的时间是3.1 min .例2.如图4,Y ABCD 中,点E 、F 分别是AD 、DC 边的中点,BE 、BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗?图4【知识点】平面向量在平面几何中的应用. 【数学思想】转化思想,方程思想. 【解题过程】如图4,设AB→=a ,AD →=b ,AR →=r ,AT →=t ,则AC →=a +b . 由于AR→与AC →共线,所以我们设r =n (a +b ),n ∈R . 又因为EB →=AB →-AE →=a -12b ,ER →与EB →共线, 所以我们设ER→=mEB →=m (a -12b ).因为AR→=AE →+ER →,所以r =12b +m (a -12b ). 因此n (a +b )=12b +m (a -12b ),即(n -m )a +(n +m -12)b =0.由于向量a 、b 不共线,要使上式为0,必须⎩⎪⎨⎪⎧n -m =0,n +m -12=0.解得n =m =13.所以AR→=13AC →.同理TC→=13AC →.于是RT →=13AC →. 所以AR =RT =TC . 【思路点拨】为了培养学生的观察、发现、猜想能力,让学生能动态地发现图形中AR 、RT 、TC 之间的相等关系,教学中可以充分利用多媒体,作出上述图形,测量AR 、RT 、TC 的长度,让学生发现AR =RT =TC ,拖动平行四边形的顶点,动态观察发现,AR =RT =TC 这个规律不变,因此猜想AR =RT =TC .事实上,由于R 、T 是对角线AC 上的两点,要判断AR 、RT 、TC 之间的关系,只需分别判断AR 、RT 、TC 与AC 的关系即可.又因为AR 、RT 、TC 、AC 共线,所以只需判断AD →,AR→,AT →与AC →之间的关系即可.探究过程对照用向量方法解决平面几何问题的“三步曲”很容易地可得到结论.第一步,建立平面几何与向量的联系,用向量表示问题中的几何元素,将平面几何问题转化为向量问题;第二步,通过向量运算,研究几何元素之间的关系;第三步,把运算结果“翻译”成几何关系:AR =RT =TC .【答案】AR =RT =TC .例3.如图所示,在平行四边形ABCD 中,BC =2BA ,∠ABC =60°,作AE ⊥BD 交BC 于E ,求BEEC 的值.【知识点】平面向量的运算,在平面几何中的应用. 【数学思想】转化思想. 【解题过程】 方法一:(基向量法)设BA→=a ,BC →=b ,|a |=1,|b |=2. a·b =|a||b |cos 60°=1,BD→=a +b .设BE→=λBC →=λb ,则AE →=BE →-BA →=λb -a . 由AE ⊥BD ,得AE →·BD →=0.即(λb -a )·(a +b )=0.解得λ=25,∴225335BE EC ==.方法二:以B 为坐标原点,直线BC 为x 轴建立平面直角坐标系,根据条件,设B (0,0),C (2,0),A 12(,D 52(.又设E (m ,0),则52BD ⎛= ⎝uu u r ,1-2AE m ⎛= ⎝uu u r . 由AE ⊥BD ,得AE →·BD→=0.即51-022m ⎛⎫= ⎪⎝⎭,得m =45,∴425635BE EC ==.【思路点拨】利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量,一种思路是建立坐标系,求出题目中涉及到的向量的坐标.这两种思路都是通过向量的计算获得几何命题的证明. 【答案】BE EC =23.同类训练 已知两恒力F 1=(3,4),F 2=(6,-5),作用于同一质点,使之由点A (20,15)移动到点B (7,0).(1)求F 1,F 2分别对质点所做的功;(2)求F 1,F 2的合力F 对质点所做的功. 【知识点】平面几何在物理做功问题中的应用. 【解题过程】(1)AB→=(7,0)-(20,15)=(-13,-15), W 1=F 1·AB →=(3,4)·(-13,-15)=3×(-13)+4×(-15)=-99(J ), W 2=F 2·AB →=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(J ). ∴力F 1,F 2对质点所做的功分别为-99J 和-3J . (2)W =F ·AB →=(F 1+F 2)·AB →=[(3,4)+(6,-5)]·(-13,-15) =(9,-1)·(-13,-15) =9×(-13)+(-1)×(-15) =-117+15=-102(J ).∴合力F 对质点所做的功为-102 J .【思路点拨】物体在力F 作用下的位移为s ,则W =F·s =|F|·|s |cos θ.其中θ为F与s的夹角.【答案】(1)力F1,F2对质点所做的功分别为-99 J和-3 J.(2)合力F对质点所做的功为-102 J.3.课堂总结知识梳理(1)用向量方法解决平面几何问题的“三步曲”:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;③把运算结果“翻译”成几何关系.(2)利用向量解决物理问题的基本步骤:①问题转化,即把物理问题转化为数学问题;②建立模型,即建立以向量为载体的数学模型;③求解参数,即求向量的模、夹角、数量积等;④回答问题,即把所得的数学结论回归到物理问题.重难点归纳用向量知识解决平面几何、物理问题时,要注意数形结合.一般先要作出向量示意图,必要时可建立直角坐标系,再通过解三角形或坐标运算,求有关量的值.(三)课后作业基础型自主突破1.两个大小相等的共点力F1,F2,当它们夹角为90°时,合力大小为20N,则当它们的夹角为120°时,合力大小为()A.40 N B.10 2 NC.202N D.10 3 N【知识点】向量在力的合成中的应用.【解题过程】|F1|=|F2|=|F|cos45°=102,当θ=120°,由平行四边形法则知:|F合|=|F1|=|F2|=10 2 N.【思路点拨】根据平行四边形法则求解.【答案】B.2.共点力F1=(lg2,lg2),F2=(lg5,lg2)作用在物体M上,产生位移s=(2lg5,1),则共点力对物体做的功W 为( )A .lg2B .lg5C .1D .2【知识点】向量坐标运算,向量在物理做功问题中的应用.【解题过程】F 1+F 2=(1,2lg2).∴W =(F 1+F 2)·s =(1,2lg2)·(2lg5,1)=2lg5+2lg2=2.【思路点拨】运用坐标运算,先求合力,再利用功的公式求解.【答案】D .3.若O 是△ABC 所在平面内一点,且满足|OB→-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形 【知识点】向量的运算,向量在平面几何中的应用.【解题过程】∵|OB→-OC →|=|CB →|=|AB →-AC →|, |OB→+OC →-2OA →|=|AB →+AC →|, ∴|AB→-AC →|=|AB →+AC →|, ∴A ,B ,C 是同一矩形的三个顶点,且∠BAC =90°.∴△ABC 是直角三角形.【思路点拨】利用向量运算转化条件,并“翻译”为几何结论,判断三角形形状.【答案】B .4.已知点A (3,1),B (0,0),C (3,0),设∠BAC 的平分线AE 与BC 相交于E ,那么有BC→=λCE →,其中λ等于( ) A .2 B .12 C .-3 D .-13【知识点】平面向量共线.【解题过程】如图所示,由题知∠ABC =30°,∠AEC =60°,CE =33,∴|BC ||CE |=3,∴BC→=-3CE →.【思路点拨】先根据题意,画出图形,数形结合.【答案】C .5.如图所示,两根绳子把重1kg 的物体W 吊在水平杆子AB 上,∠ACW =150°,∠BCW =120°,求A 和B 处所受力的大小(绳子的重量忽略不计,g =10 N /kg).【知识点】力的合成分解,平面向量在物理中的应用.【解题过程】设A 、B 所受的力分别为f 1、f 2,10N 的重力用f 表示,则f 1+f 2=f ,以重力的作用点C 为f 1、f 2、f 的始点,作右图,使CE →=f 1,CF →=f 2,CG →=f ,则∠ECG =180°-150°=30°,∠FCG =180°-120°=60°.∴|CE →|=|CG →|·cos 30°=10×32=53.|CF →|=|CG →|·cos 60°=10×12=5.∴在A 处受力为5 3 N ,在B 处受力为5 N .【思路点拨】作出受力分析,结合向量的平行四边形法则求解.【答案】在A 处受力为5 3 N ,在B 处受力为5 N .6.如图所示,已知矩形ABCD ,AC 是对角线,E 是AC 的中点,过点E 作MN 交AD 于点M ,交BC 于点N ,试运用向量知识证明AM =CN .【知识点】平面向量坐标运算.建立如图所示的直角坐标系,设BC =a ,BA =b ,则C (a ,0),A (0,b ),E (a 2,b 2).又设M (x 2,b ),N (x 1,0),则AM →=(x 2,0),CN →=(x 1-a ,0). ∵ME →∥EN →,ME →=(a 2-x 2,-b 2),EN →=(x 1-a 2,-b 2), ∴(a 2-x 2)×(-b 2)-(x 1-a 2)×(-b 2)=0.∴x 2=a -x 1.∴|AM →|=x 22=|x 2|=|a -x 1|=|x 1-a |. 而|CN →|=(x 1-a )2=|x 1-a |, ∴|AM→|=|CN →|,即AM =CN . 【思路点拨】图形非常规整,考虑先建系,利用向量的坐标运算求解,简化运算过程.【答案】略.能力型 师生共研7.如图所示,小船被绳索拉向岸边,船在水中运动时设水的阻力大小不变,那么小船匀速靠岸过程中,下列说法中正确的是________(写出正确的所有序号).①绳子的拉力不断增大;②绳子的拉力不断变小;③船的浮力不断变小;④船的浮力保持不变.【知识点】平面向量的运算,平面向量在物理中的应用.【数学思想】数形结合.设水的阻力为f ,绳的拉力为F ,F 与水平方向夹角为θ(0<θ<π2).则|F |cos θ=|f |,∴|F |=|f |cos θ.∵θ增大,cos θ减小,∴|F |增大.∵|F |sin θ增大,∴船的浮力减小.【思路点拨】根据受力分析,求出绳的拉力为F 和水的阻力为f 之间的关系式,由此分析浮力的变化情况.【答案】①③.8.如图,已知在等腰△ABC 中,BB ′、CC ′是两腰上的中线,且BB ′⊥CC ′,求顶角A 的余弦值.【知识点】向量的坐标运算,平面向量在平面几何中的应用.【数学思想】数形结合.【解题过程】建立如图所示的平面直角坐标系,取A (0,a ),C (c ,0),则B (-c ,0), OA→=(0,a ),BA →=(c ,a ),OC →=(c ,0),BC →=(2c ,0). 因为BB ′、CC ′都是中线,所以BB ′→=12(BC →+BA →)=12[(2c ,0)+(c ,a )]=(3c 2,a 2), 同理CC ′→=(-3c 2,a 2). 因为BB ′⊥CC ′,所以-94c 2+a 24=0,a 2=9c 2.所以cos A =AB AC AB AC⋅⋅uu u r uuu r uu u r uuu r =a 2-c 2a 2+c 2=9c 2-c 29c 2+c 2=45. 【思路点拨】考虑利用向量的坐标运算,能很方便建立平面直角坐标系,且图形中的各个点的坐标也容易写出,然后再利用向量的坐标运算快捷地解决问题.【答案】45.探究型 多维突破9.已知P 是正方形ABCD 对角线BD 上一点,PFCE 为矩形.求证:PA =EF 且PA ⊥EF .【知识点】向量的坐标运算,平面向量在平面几何中的应用.【数学思想】数形结合.【解题过程】证明:以D 为坐标原点,DC 所在直线为x 轴,DA 所在直线为y 轴,建立平面直角坐标系Oxy (如图所示),设正方形边长为1,|OP →|=λ,则A (0,1),P ,E (1),F ,0),于是PA →=,1(),EF →=).∵|PA →|=λ2-2λ+1, 同理|EF→|=λ2-2λ+1, ∴|PA→|=|EF →|,∴PA =EF .PA →·EF →=()1-)+()()=0, ∴PA→⊥EF →.∴PA ⊥EF . 【思路点拨】根据题意,先作图.分析可知,能很方便建立平面直角坐标系,且图形中的各个点的坐标也容易写出,然后再利用向量的坐标运算证得结论.【答案】略.10.如图,在Rt △ABC 中,已知BC =a .若长为2a 的线段PQ 以点A 为中点,问:PQ →与BC →的夹角θ取何值时,BP →·CQ →的值最大?并求出这个最大值.【知识点】向量的运算,向量在平面几何中的应用.【数学思想】数形结合.【解题过程】方法一:∵AB →⊥AC →,∴AB →·AC→=0. ∵AP→=-AQ →,BP →=AP →-AB →,CQ →=AQ →-AC →, ∴BP →·CQ →=(AP →-AB →)·(AQ→-AC →) =AP →·AQ →-AP →·AC →-AB →·AQ →+AB →·AC→ =-a 2-AP →·AC →+AB →·AP →=-a 2+AP →·(AB→-AC →) =-a 2+12PQ →·BC →=-a 2+a 2cos θ.当cos θ=1,即θ=0,PQ →与BC →的方向相同时,BP →·CQ→最大,其最大值为0. 方法二:如下图,以直角顶点A 为坐标原点,两直角边所在的直线为坐标轴,建立如图所示的平面直角坐标系.设|AB |=c ,|AC |=b ,则A (0,0),B (c ,0),C (0,b ),且|PQ |=2a ,|BC |=a .设点P 的坐标为(x ,y ),则Q (-x ,-y ).∴BP→=(x -c ,y ),CQ →=(-x ,-y -b ),BC →=(-c ,b ),PQ →=(-2x ,-2y ). ∴BP →·CQ→=(x -c )(-x )+y (-y -b )=-(x 2+y 2)+cx -by .∵cos θ=||||PQ BC PQ BC ⋅uu u r uu u r uu u r uu u r =cx -by a 2,∴cx -by =a 2cos θ. ∴BP →·CQ→=-a 2+a 2cos θ. 当cos θ=1,即θ=0,PQ →与BC →的方向相同时,BP →·CQ →最大,其最大值为0.【思路点拨】利用向量方法可以解决平面几何中的平行、垂直、夹角、距离等问题.利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量,一种思路是建立坐标系,求出题目中涉及到的向量的坐标.这两种思路都是通过向量的计算获得几何命题的证明.【答案】当cos θ=1,即θ=0,PQ →与BC →的方向相同时,BP →·CQ→最大,其最大值为0.自助餐1.如图,非零向量OA→=a ,OB →=b 且BC ⊥OA ,C 为垂足,若OC →=λa ,则λ等于( )A .a·b |a|2B .a·b |a||b|C .a·b |b |2D .|a||b|a·b【知识点】向量的运算,向量在平面几何中的应用.【解题过程】BC→=OC →-OB →=λa -b . ∵BC ⊥OA ,∴BC →·OA →=(λa -b )·a =0,即λa 2-a·b =0.∴λ=a·b |a |2. 【思路点拨】由 BC ⊥OA ,得到 BC →·OA →=(λa -b )·a =0,然后转化求解λ.【答案】A .2.已知平面上三点A 、B 、C 满足|AB →|=3,|BC →|=4,|CA →|=5.则AB →·BC →+BC →·CA→+CA →·AB →=______.【知识点】向量的运算,向量在平面几何中的应用.【解题过程】△ABC 中,B =90°,cos A =35,cos C =45,∴AB →·BC →=0,BC →·CA →=4×5×45(-)=-16; CA →·AB →=5×3×3()5=-9. ∴AB →·BC →+BC →·CA →+CA →·AB→=-25. 【思路点拨】根据模长,得出B =90°,可得到各向量之间的夹角余弦.【答案】-253.一条河宽为800 m ,一船从A 出发航行垂直到达河正对岸的B 处,船速为20 km /h .水速为12 km /h ,船到达B 处所需时间为____________.【知识点】向量的运算,向量在物理中的应用.【解题过程】v 实际=v 船+v 水=v 1+v 2|v 1|=20,|v 2|=12,∴|v |2=|v 1|2-|v 2|2=202-122=16(km /h ).∴所需时间t =0.816=0.05(小时)=3(分钟).∴该船到达B 处所需的时间为3分钟.【思路点拨】根据向量运算的平行四边形法则求解.【答案】3分钟.4.在风速为75(6-2) km /h 的西风中,飞机正以150 km /h 的速度向西北方向飞行,求没有风时飞机的飞行速度和航向.【知识点】向量的运算,向量在物理中的应用.【数学思想】数形结合.【解题过程】设风速为v 0,有风时飞机的飞行速度为v a ,无风时飞机的飞行速度为v b , 则v a =v b +v 0,且v a ,v b ,v 0可构成三角形(如图所示),∵|AB →|=|v a |=150,|BC →|=|v 0|=75(6-2),|AC →|=|v b|, 作AD ∥BC ,CD ⊥AD 于D ,BE ⊥AD 于E ,则∠BAD =45°,∴|CD→|=|BE →|=|EA →|=752, ∴|DA→|=|DE →|+|EA →|=|CB →|+|EA →|=75(6-2)+752=756, 从而tan ∠CAD =CD DAuu u r uu u r =752756=33,∴∠CAD =30°, ∴|AC →|=1502,∴v b=150 2 km /h , ∴没有风时飞机的飞行速度为150 2 km /h ,方向为北偏西60°. 【思路点拨】速度是向量,速度的合成可以转化为向量的合成问题,合成时要分清各个速度之间的关系.【答案】没有风时飞机的飞行速度为150 2 km /h ,方向为北偏西60°.5.在△ABC 中,A (4,1),B (7,5),C (-4,7),求∠A 的平分线的方程.【知识点】平面向量的坐标运算,直线的方程.【解题过程】AB→=(3,4),AC →=(-8,6), ∠A 的平分线的一个方向向量为:AB AC AB AC+uu u r uuu r uu u r uuu r =34()55,+43()55-,=17()55-,. ∵∠A 的平分线过点A .∴所求直线方程为-75(x -4)-15(y -1)=0.整理得:7x +y -29=0.【思路点拨】直线Ax +By +C =0的方向向量为v =(B ,-A ),法向量n =(A ,B ).这两个概念在求直线方程、判断两条直线位置关系.求两条直线的夹角时非常有用.【答案】7x+y-29=0.21 / 21。
课 题: 2.5.1平面几何中的向量的方法教学目的:使学生运用向量的几何背景,解决平面几何中的一些问题教学重点:运用向量的有关知识对几何问题进行相关分析和计算授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、讲解新课:1.解决平面几何问题的一般方法:综合方法——不使用其他工具,对几何元素及其关系直接进行讨论;解析方法——以数(代数式)和数(代数式)的运算为工具,对几何元素及其关系进行讨论;向量方法——以向量和向量的运算为工具,对几何元素及其关系进行讨论;分析方法2.用向量工具解决平面几何问题的“三步曲”⑴ 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;⑵ 通过向量运算,研究几元素之间的关系,如距离、夹角等问题;⑶ 把运算结果“翻译”成几何关系.二、例题讲解:例1 平行四边形是表示向量加法与减法的几何模型.如图,,AC AB AD =+,?BD AB AD =-你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗分析:,AB AD ==a b 令,则 ,,AC DB =+=-a b a b 2222, AB AD ==a b 涉及长度问题常常考虑向量的数量积. 解:()()2AC AC AC =•=+•+a b a b =•+•+•+•a a a b b a b b222 (1)=+•+a a b b 2222 (2)BD =-•+a a b b①+②得()()2222222 2 AC BD AB AD +=+=+a b平行四边形两条对角线的平方和等于两条邻边平方和的两倍.例2 如图,连接□ABCD 的一个顶点至AD 、DC 边的中点E 、F,BE 、BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗?分析:由于AR,RT,TC 在AC 上,只要判断AR,RT,TC 与AC 的关系,,.AD AR AT AC 判断与之间的关系即可解:,,,,AB AD AR AT AC =====+a b r t a b 设则() ,n n R =+∈r a b 设 又因为12EB AB AE =-=-a b ER EB 与共线,所以可以1 ,2ER mEB m m R ⎛⎫==-∈ ⎪⎝⎭a b 设∴1122m ⎛⎫=+- ⎪⎝⎭r b a b 因此()1122n m ⎛⎫+=+- ⎪⎝⎭a b b a b 即()12m n m n -⎛⎫-++= ⎪⎝⎭a b 0 ∴0102n m m n -=⎧⎪⎨-+=⎪⎩解得13n m == ∴1, 3AR AC =同理13TC AC =,于是13RT AC = 所以AR RT TC == 利用实数与向量的积证明共线、平行、长度问题.三、课堂练习:四、小结:利用向量解决平面几何中的问题方法步骤五、课后作业:六、板书设计(略)七、课后记:AR AE ER =+。
必修4模块第二单元教学设计方案第九学时~第十学时2.4.1 向量在平面几何中的应用一、教学目标1.知识与技能:运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析几何中直线或线段的平行、垂直、相等、夹角和距离等问题2.过程与方法:通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐标法3.情感、态度与价值观:通过本节的学习,让学生体验向量在解决几何问题中的工具作用,增强学生的积极主动的探究意识,培养创新精神。
二、教学重点难点重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何问题.难点:选择适当的方法,将几何问题转化为向量问题加以解决.三、教学方法本小节主要是例题教学,要让学生体会思路的形成过程,体会数学思想方法的应用。
教学中,教师创设问题情境,引导学生发现解题方法,展示思路的形成过程,总结解题规律。
指导学生搞好解题后的反思,从而提高学生综合应用知识分析和解决问题的能力。
新课引入平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来:例如,向量数量积对应着几何中的长度.如图:平行四边行ABCD中,设ABu u u v=ar,ADu u u v=br,则AC AB BC a b=+=+r ru u u v u u u v u u u v(平移),DB AB AD a b=-=-r ru u u v u u u v u u u v,222||AD b AD==ru u u v u u u v(长度).向量ADu u u v,ABu u u v的夹角为DAB∠讨论(让学生回顾学过的知识,有利于本课的顺利进行):(1)向量运算与几何中的结论"若a b=r r,则||||a b=r r,且,a br r所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例.(3)向量平行、垂直的判定方法让学生掌握用向量方法解平面几何问题的步骤:建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量.通过向量运算研究几何运算之间的关系,如距离、夹角等.把运算结果"翻译"成几何关系.应用举例例1:如图2-55,已知平行四边形ABCD中,E、F在对角线BD上,并且BE=FD,求证AECF是平行四边形。
§2.5.1平面几何中的向量方法【学习目标】1. 掌握向量理论在平面几何中的初步运用;会用向量知识解决几何问题;2. 能通过向量运算研究几何问题中点,线段,夹角之间的关系.【学习过程】一、自主学习(预习教材P109—P111) 问题1:平行四边形是表示向量加法与减法的几何模型. 如下图,AC AB AD =+,DB AB AD =-,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?结论:问题2:平行四边形ABCD 中,点E 、F 分别是AD 、DC 边的中点,BE 、BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗?结论:问题3:用向量方法解决平面几何问题的“三步曲”是怎样的?⑴ ;⑵ ;⑶ 。
二、合作探究1、在ABC ∆中,若()()0CA CB CA CB +⋅-=,判断ABC ∆的形状.2、设ABCD 是四边形,若AC BD ⊥,证明:2222AB CD BC DA +=+三、交流展示1、在梯形ABCD 中,CD ∥AB,E 、F 分别是AD 、BC 的中点,且EF =12(AB +CD ). 求证:EF ∥AB ∥CD.2、求证:直角三角形斜边上的中线等于斜边上的一半。
四、达标检测(A 组必做,B 组选做)A 组:1. 在ABC ∆中,若()()0CA CB CA CB +⋅-=,则ABC ∆为( )A.正三角形B.直角三角形C.等腰三角形D.无法确定2. 已知在ABC ∆中,()2,1A -,()3,2B ,()3,1C --,AD 为BC 边上的高, 则点D 的坐标为( )A.()1,1B.()1,1-C.()1,1-D.()1,1--3. 已知()1,2A ,()4,1B ,()0,1C -,则△ABC 的形状为 .4. 求通过点()1,2A ,且平行于向量()3,2a =的直线方程.5. 已知△ABC 是直角三角形,CA =CB ,D 是CB 的中点,E 是AB 上的一点,且AE =2EB .求证:AD ⊥CE .B 组:1. 已知直线ax +by +c =0与圆O :x 2+y 2=4相交于A 、B 两点,且|AB |=23,则OA →·OB→=________.2. (2010·江苏)在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3), C (-2,-1)(1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值.。
人教版高中数学必修4课后习题答案详解第二章 平面向量2.1平面向量的实际背景及基本概念 练习(P77)1、略.2、AB ,BA . 这两个向量的长度相等,但它们不等.3、2AB =, 2.5CD =,3EF =,22GH =4、(1)它们的终点相同; (2)它们的终点不同. 习题2.1 A 组(P77) 1、(2). 3、与DE 相等的向量有:,AF FC ;与EF 相等的向量有:,BD DA ; 与FD 相等的向量有:,CE EB .4、与a 相等的向量有:,,CO QP SR ;与b 相等的向量有:,PM DO ; 与c 相等的向量有:,,DC RQ ST5、332AD =. 6、(1)×; (2)√; (3)√; (4)×. 习题2.1 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM 同向的共有6对,与AM 反向的也有6对;与AD 同向的共有3对,与AD 反向的也有6的向量共有4对;模为2的向量有2对2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA ; (2)CB .4、(1)c ; (2)f ; (3)f ; (4)g . 练习(P87)1、图略.2、DB ,CA ,AC ,AD ,BA .3、图略. 练习(P90) 1、图略.2、57AC AB =,27BC AB =-.说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC 与AB 反向.3、(1)2b a =; (2)74b a =-; (3)12b a =-; (4)89b a =.4、(1)共线; (2)共线.5、(1)32a b -; (2)111123a b -+; (3)2ya . 6、图略.习题2.2 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km ;(3)向东北走km ;(4)向西南走;(5)向西北走;(6)向东南走km. 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km. 3、解:如右图所示:AB 表示船速,AD 表示河水的流速,以AB 、AD 为邻边作□ABCD ,则AC 表示船实际航行的速度.在Rt △ABC 中,8AB =,2AD =,所以228AC AB AD =+==因为tan4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°. 4、(1)0; (2)AB ; (3)BA ; (4)0; (5)0; (6)CB ; (7)0.5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥时,a b a b +=-9、(1)22a b --; (2)102210a b c -+; (3)132a b +; (4)2()x y b -.10、14a b e +=,124a b e e -=-+,1232310a b e e -=-+. 11、如图所示,OC a =-,OD b =-,DC b a =-,BC a b =--.12、14AE b =,BC b a =-,1()4DE b a =-,34DB a =, 34EC b =,1()8DN b a =-,11()48AN AM a b ==+.13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =,即12EF AC =;同理,12HG AC =,所以EF HG =.习题2.2 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b 不共线时它们不相等.3、证明:因为MN AN AM =-,而13AN AC =,13AM AB =, 所以1111()3333MN AC AB AC AB BC =-=-=.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.(第11题)(第12题)EHGFC AB丙乙(第1题)(第4题(2))BCD证明:∵AB DC =,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形. 证明:因为OA OB BA -=,OD OC CD -= 而OA OC OB OD +=+所以OA OB OD OC -=- 所以BA CD =,即∥.因此,四边形ABCD 为平行四边形. 2.3平面向量的基本定理及坐标表示 练习(P100)1、(1)(3,6)a b +=,(7,2)a b -=-; (2)(1,11)a b +=,(7,5)a b -=-; (3)(0,0)a b +=,(4,6)a b -=; (4)(3,4)a b +=,(3,4)a b -=-.2、24(6,8)a b -+=--,43(12,5)a b +=.3、(1)(3,4)AB =,(3,4)BA =--; (2)(9,1)AB =-,(9,1)BA =-; (3)(0,2)AB =,(0,2)BA =-; (4)(5,0)AB =,(5,0)BA =-4、AB ∥CD . 证明:(1,1)AB =-,(1,1)CD =-,所以AB CD =.所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =,得32AP PB =-(,)(2,3)(2,3)AP x y x y =-=--,(4,3)(,)(4,3)PB x y x y =--=---∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩(第4题(3))(第5题)∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题2.3 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题. 2、123(8,0)F F F ++=3、解法一:(1,2)OA =--,(53,6(1))(2,7)BC =---=而AD BC =,(1,5)OD OA AD OA BC =+=+=. 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++,(53,6(1))(2,7)BC =---=由AD BC =可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =,(2,4)AB =-. 1(1,2)2AC AB ==-,2(4,8)AD AB ==-,1(1,2)2AE AB =-=-. (0,3)OC OA AC =+=,所以,点C 的坐标为(0,3); (3,9)OD OA AD =+=-,所以,点D 的坐标为(3,9)-; (2,1)OE OA AE =+=-,所以,点E 的坐标为(2,1)-. 5、由向量,a b 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-. 6、(4,4)AB =,(8,8)CD =--,2CD AB =-,所以AB 与CD 共线. 7、2(2,4)OA OA '==,所以点A '的坐标为(2,4);3(3,9)OB OB '==-,所以点B '的坐标为(3,9)-; 故(3,9)(2,4)(5,5)A B ''=--=- 习题2.3 B 组(P101)1、(1,2)OA =,(3,3)AB =.当1t =时,(4,5)OP OA AB OB =+==,所以(4,5)P ; 当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=,所以57(,)22P ; 当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=,所以(7,8)P .2、(1)因为(4,6)AB =--,(1,1.5)AC =,所以4AB AC =-,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-,(6,8)PR =-,所以4PR PQ =,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--,(1,0.5)EG =--,所以8EF EG =,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=,得2121e e λλ=-. 所以12,e e 是共线向量,与已知12,e e 是平面内的一组基底矛盾, 因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)19OP = (2)对于任意向量12OP xe ye =+,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积 练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=. 2、当0a b ⋅<时,ABC ∆为钝角三角形;当0a b ⋅=时,ABC ∆为直角三角形.3、投影分别为0,-图略 练习(P107)1、2(3)5a =-=,252b =+=35427a b ⋅=-⨯+⨯=-.2、8a b ⋅=,()()7a b a b +-=-,()0a b c ⋅+=,2()49a b +=.3、1a b ⋅=,13a =,74b =,88θ≈︒. 习题2.4 A 组(P108)1、63a b ⋅=-222()225a b a a b b +=+⋅+=-25a b +=-2、BC 与CA 的夹角为120°,20BC CA ⋅=-.3、22223a b a a b b +=+⋅+=,22235a b a a b b -=-⋅+=. 4、证法一:设a 与b 的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λ与b ,a 与b λ的夹角都为θ,所以()cos cos a b a b a b λλθλθ⋅==()cos a b a b λλθ⋅=()cos cos a b a b a b λλθλθ⋅== 所以 ()()()a b a b a b λλλ⋅=⋅=⋅;(3)当0λ<时,a λ与b ,a 与b λ的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-()cos cos a b a b a b λλθλθ⋅==-()cos(180)cos a b a b a b λλθλθ⋅=︒-=- 所以 ()()()a b a b a b λλλ⋅=⋅=⋅; 综上所述,等式成立.证法二:设11(,)a x y =,22(,)b x y =,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+所以 ()()()a b a b a b λλλ⋅=⋅=⋅;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--,(3,4)(5,2)(2,2)BC =-=-∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=,(1,6)(2,3)(1,3)AC =-----=-∴2117(3)0AB AC ⋅=⨯+⨯-=∴AB AC ⊥,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-,(10,7)(5,2)(5,5)BC =-=∴35350BA BC ⋅=-⨯+⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=,于是可得6a b ⋅=-, 1cos 2a b a b θ⋅==-,所以120θ=︒. 8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-,(8,4)(5,2)(3,6)BC =--=,(8,4)(4,6)(4,2)DC =-=-∴AB DC =,43(2)60AB BC ⋅=⨯+-⨯=∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =,则2292x y y x⎧+=⎪⎨=⎪⎩,解得5x y⎧=⎪⎪⎨⎪=⎪⎩5x y ⎧=⎪⎪⎨⎪=-⎪⎩.于是35(,55a=或35(55a=--.11、解:设与a垂直的单位向量(,)e x y=,则221420x yx y⎧+=⎨+=⎩,解得5xy⎧=⎪⎪⎨⎪=⎪⎩或5xy⎧=-⎪⎪⎨⎪=⎪⎩.于是5(,55e=-或5(,55e=-.习题2.4 B组(P108)1、证法一:0()0()a b a c a b a c a b c a b c⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥-证法二:设11(,)a x y=,22(,)b x y=,33(,)c x y=.先证()a b a c a b c⋅=⋅⇒⊥-1212a b x x y y⋅=+,1313a c x x y y⋅=+由a b a c⋅=⋅得12121313x x y y x x y y+=+,即123123()()0x x x y y y-+-=而2323(,)b c x x y y-=--,所以()0a b c⋅-=再证()a b c a b a c⊥-⇒⋅=⋅由()0a b c⋅-=得123123()()0x x x y y y-+-=,即12121313x x y y x x y y+=+,因此a b a c⋅=⋅2、cos cos cos sin sinOA OBAOBOA OBαβαβ⋅∠==+.3、证明:构造向量(,)u a b=,(,)v c d=.cos,u v u v u v⋅=<>,所以,ac bd u v+=<>∴2222222222()()()cos,()()ac bd a b c d u v a b c d+=++<>≤++4、AB AC⋅的值只与弦AB的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB = 又cos AB AC AB AC BAC ⋅=∠,而AM BAC AC ∠=所以212AB AC AB AM AB ⋅== 5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=证明:∵AB CB CA =-∴2222()2AB CB CA CB CA CB CA =-=-⋅+. 由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅= ∴222CA CB AB +=(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+,,DB AB AD =-∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-.∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -=∴0AC DB ⋅=,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+. ∴22()()AB AD AB AD +=-,所以22AC BD =,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可.2.5平面向量应用举例习题2.5 A 组(P113)1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--,(,)(1,0)(1,0)AP x y x =-=- 由2RA AP =得11(1,)2(1,)x y x y --=-,即11232x x y y=-+⎧⎨=-⎩代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =.2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =. 2211()()3323AO BO BA BF a b a a a b =-=+=-+=+ (2)因为1()2AE a b =+ 所以23AO AE =,因此,,A O E 三点共线,而且2AO OE = 同理可知:2,2BO CO OF OD ==,所以2AO BO CO OE OF OD=== 3、解:(1)(2,7)B A v v v =-=-;(2)v 在A v 方向上的投影为135AA v v v ⋅=. 4、解:设1F ,2F 的合力为F ,F 与1F 的夹角为θ,则31F =+,30θ=︒; 331F =+,3F 与1F 的夹角为150°.习题2.5 B 组(P113)1、解:设0v 在水平方向的速度大小为x v ,竖直方向的速度的大小为y v ,则0cos x v v θ=,0sin y v v θ=.设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩为重力加速度 所以,最大高度为220sin 2v g θ,最大投掷距离为20sin 2v g θ.2、解:设1v 与2v 的夹角为θ,合速度为v ,2v 与v 的夹角为α,行驶距离为d .则1sin 10sin sin v v v θθα==,0.5sin 20sin v d αθ==. ∴120sin d v θ=. 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短.3、(1)(0,1)-O DF E A B C (第2题) (第4题)解:设(,)P x y ,则(1,2)AP x y =--. (2,22)AB =-. 将AB 绕点A 沿顺时针方向旋转4π到AP ,相当于沿逆时针方向旋转74π到AP , 于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=-- 所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==- (2)32y x=- 解:设曲线C 上任一点P 的坐标为(,)x y ,OP 绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos 44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()22()2x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩ 又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=- 第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-,1()2AD a b =+ 4、略解:2133DE BA MA MB a b ==-=-+ 2233AD a b =+,1133BC a b =+ 1133EF a b =--,1233FA DC a b ==- 1233CD a b =-+,2133AB a b =- CE a b =-+ 5、(1)(8,8)AB =-,82AB =;(2)(2,16)OC =-,(8,8)OD =-; (3)33OA OB ⋅=.(第4题)6、AB 与CD 共线.证明:因为(1,1)AB =-,(1,1)CD =-,所以AB CD =. 所以AB 与CD 共线. 7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C === 11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=,所以(2)n m m -⊥. 12、1λ=-. 13、13a b +=,1a b -=. 14、519cos ,cos 820θβ== 第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-.222()2a b a b a b a b+=+=++⋅,222()2a b a b a b a b -=-=+-⋅.因为a b ⊥,所以0a b ⋅=,于是22a b a b a b +=+=-.再证a b a b a b +=-⇒⊥.由于222a b a a b b +=+⋅+,222a b a a b b -=-⋅+由a b a b +=-可得0a b ⋅=,于是a b ⊥所以a b a b a b +=-⇔⊥. 【几何意义是矩形的两条对角线相等】3、证明:先证a b c d =⇒⊥22()()c d a b a b a b ⋅=+⋅-=-又a b =,所以0c d ⋅=,所以c d ⊥再证c d a b ⊥⇒=.由c d ⊥得0c d ⋅=,即22()()0a b a b a b +⋅-=-=所以a b = 【几何意义为菱形的对角线互相垂直,如图所(第3题)(第6题) 示】4、12AD AB BC CD a b =++=+,1142AE a b =+ 而34EF a =,14EM a =,所以1111(4242AM AE EM a b a =+=++=5、证明:如图所示,12OD OP OP =+,由于1230OP OP OP ++=,所以3OP OD =-,1OD =所以11OD OP PD == 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒ 所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,222MN AB b a ==-.7、(18=(千米/时),沿与水流方向成60°的方向前进;(2)实际前进速度大小为沿与水流方向成90︒+的方向前进. 8、解:因为OA OB OB OC ⋅=⋅,所以()0OB OA OC ⋅-=,所以0OB CA ⋅= 同理,0OA BC ⋅=,0OC AB ⋅=,所以点O 是ABC ∆的垂心.9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=; (4)d =P 2(第5题)第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=. cos(2)cos2cos sin 2sin 1cos 0sin cos παπαπαααα-=+=⨯+⨯=.2、解:由3cos ,(,)52πααπ=-∈,得4sin 5α==;所以34cos()cos cos sin sin ()44455πππααα-=+=-=3、解:由15sin 17θ=,θ是第二象限角,得8cos 17θ===-;所以8115cos()cos cos sin sin 33317217πππθθθ-=+=-⨯+=. 4、解:由23sin ,(,)32πααπ=-∈,得cos α== 又由33cos ,(,2)42πββπ=∈,得sin β== 所以32cos()cos cos sin sin ((()43βαβαβα-=+=⨯+⨯-=. 练习(P131) 1、(1; (2) (3(4)22、解:由3cos ,(,)52πθθπ=-∈,得4sin 5θ==;所以413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=. 3、解:由12sin 13θ=-,θ是第三象限角,得5cos 13θ===-; 所以5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=. 4、解:tan tan 314tan()241311tan tan 4παπαπα+++===--⨯-⋅.5、(1)1; (2)12; (3)1; (4); (5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-; (6)原式=sin 20cos70cos20sin70(sin 20cos70cos20sin70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+; (2)原式=1cos )2(sin cos cos sin )2sin()2666x x x x x πππ+=+=+; (3)原式=)2(sin cos cos sin )2sin()444x x x x x πππ=-=-; (4)原式=12(cos )cos sin sin ))2333x x x x x πππ=-=+. 7、解:由已知得3sin()cos cos()sin 5αβααβα---=, 即3sin[()]5αβα--=,3sin()5β-= 所以3sin 5β=-. 又β是第三象限角,于是4cos 5β===-. 因此55534sin()sin cos cos sin ()(()(44455πππβββ+=+=-+-=练习(P135)1、解:因为812παπ<<,所以382αππ<< 又由4cos 85α=-,得3sin 85α=-,3sin 385tan 484cos 85ααα-===- 所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-= 2222437cos cos(2)cos sin ()()48885525αααα=⨯=-=---= 2232tan 23162484tan tan(2)3482771tan 1()84αααα⨯=⨯===⨯=-- 2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--= 3、解:由sin2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得sin α=,所以sintan (2)cos ααα==-=4、解:由1tan 23α=,得22tan 11tan 3αα=-. 所以2tan 6tan 10αα+-=,所以tan 3α=-5、(1)11sin15cos15sin3024︒︒=︒=; (2)22cos sin cos 88πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=cos45︒=. 习题3.1 A 组(P137) 1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-; (2)333sin()sin cos cos sin 1cos 0sin cos 222πππαααααα-=-=-⨯-⨯=-; (3)cos()cos cos sin sin 1cos 0sin cos παπαπαααα-=+=-⨯+⨯=-; (4)sin()sin cos cos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得4sin 5α==,所以431cos()cos cos sin sin 666552πππααα-=+=⨯=.3、解:由2sin ,(,)32πααπ=∈,得cos α===又由33cos ,(,)42πββπ=-∈,得sin β===, 所以32cos()cos cos sin sin ()(43αβαβαβ-=+=-+⨯=.4、解:由1cos 7α=,α是锐角,得sin α=== 因为,αβ是锐角,所以(0,)αβπ+∈,又因为11cos()14αβ+=-,所以sin()αβ+===所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++1111()1472=-⨯= 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得4cos(30)5α︒+=-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒431552=-+⨯=6、(1) (2) (3)2-7、解:由2sin ,(,)32πααπ=∈,得cos α===又由3cos 4β=-,β是第三象限角,得sin β==.所以cos()cos cos sin sin αβαβαβ+=-32()(43=--⨯=sin()sin cos cos sin αβαβαβ-=-23()((34=⨯--⨯=8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+5312433()013513565=⨯+-⨯=-< A B π+>,不合题意,舍去∴124cos ,sin 135A B ==∴cos cos()(cos cos sin sin )C A B A B A B =-+=--1235416()13513565-⨯-⨯=- 9、解:由3sin ,(,)52πθθπ=∈,得4cos 5θ==-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯. 31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯tan()tan()tan 2tan[()()]1tan()tan()αβαββαβαβαβαβ+--=+--=++⋅-3511358-==-+⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ====∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒(第12题)13、(1))6x π+; (23sin()3x π-; (3)2sin()26x π+;(47sin()12x π-; (5)2; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9) (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得cos 0.6α===∴sin22sin cos 20.80.60.96ααα==⨯⨯= 2222cos2cos sin 0.60.80.28ααα=-=-=- 15、解:由cos 270ϕϕ=︒<<︒,得sin ϕ===∴sin 22sin cos 2((ϕϕϕ==⨯⨯=22221cos2cossin ((3ϕϕϕ=-=-=- sin 2tan 2(3)cos 23ϕϕϕ==-=-16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin 22sin cos 21313169A B B B B =︒-===⨯⨯=2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B =︒-=-=--=--=-sin 120169120tan ()cos 169119119A A A ==⨯-=-17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以sinα== ∴1sin 22sin cos 2(ααα==⨯⨯=222217cos2cos sin ()(39ααα=-=-=-∴7cos(2)cos2cos sin 2sin (4449πππααα+=-=-=19、(1)1sin2α+; (2)cos2θ; (3)1sin 44x ; (4)tan2θ.习题3.1 B 组(P138) 1、略. 2、解:∵tan ,tan A B 是x 的方程2(1)10x p x +++=,即210x px p +++=的两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cos sin(30)cos 4αααα-︒++-︒=223sin (15)cos (15)sin(15)cos(15)4αααα-︒++︒+-︒+︒=223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(cos()1)sin ()(cos cos )(sin sin )αβαβαβαβ+-++=-++ 即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换 练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12;(2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题3.2 A 组( P143) 1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ;(5)略; (6)提示:用22cos θ代替1cos2θ+;(7)提示:用22sin θ代替1cos2θ-,用22cos θ代替1cos2θ+; (8)略.2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……②(1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ= 注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===---- 1tan tan1142tan()1431tan tan 1()142πθπθπθ+-++===-⋅--⨯∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题3.2 B 组(P143) 1、略.2、由于762790+⨯=,所以sin76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得cos7︒=3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()2αβ+又tantan 22αβ=,又因为tantan 2tan()21tantan 2αβαβαβ++=-,所以tantan tan()(1tan tan )3222αααβββ+=+-= 由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+.在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=11sin sin cos22M M OM MOM αβαβ+-=∠=. 于是有 1(cos cos )cos cos222αβαβαβ+-+=, 1(sin sin )sin cos222αβαβαβ+-+= 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,662232222()sin cos (sin cos )3sin cos (sin cos )f ααααααααα=+=+-+231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5; (2))y x ϕ+,其中cos ϕϕ==所以,y ;第三章 复习参考题A 组(P146)(第4题)1、1665. 提示:()βαβα=+- 2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+--3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2; (3)2; (4) 提示:利用(1)的恒等式.5、(1)原式4sin(3010)4sin 20︒-︒==︒;(2)原式=sin10sin 40(sin 40cos10︒︒=︒ =2sin 40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=tan 70cos101)tan 70cos10︒︒-=︒ =sin702sin10sin 20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒;(4)原式=sin50(1sin50︒⋅= 2cos50sin100sin501cos10cos10︒︒=︒⋅==︒︒6、(1)95; (2)2425;(3). 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-; (4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==. 8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边(第12(2)题)(4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A -+--+=++-++ 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边 9、(1)1sin 21cos2sin 2cos222)24y x x x x x π=+++=++++递减区间为5[,],88k k k Z ππππ++∈(222,最小值为22.10、2222()(cos sin )(cos sin )2sin cos cos2sin 22)4f x x x x x x x x x x π=+--=-+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin 22)14f x x x x x x x π=+=-+=-+(1)最小正周期是π21;(2)()f x 在[,]22ππ-上的图象如右图:12、()3sin cos 2sin()6f x x x a x a π=++=++.(1)由21a +=得1a =-;(2)2{22,}3x k x k k Z πππ+∈≤≤.13、如图,设ABD α∠=,则CAE α∠=,2sin h AB α=,1cos hAC α=所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<<当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=, αh 1h 2l 2l 1BDE AC(第13题)13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-,sin(2)sin 2cos cos2sin 44450πππααα-=-=. 解法二:由1sin cos 5αα-= 得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=. 又由1sin cos 5αα-=,得sin()4πα-=.因为[0,]απ∈,所以3[,]444πππα-∈-.而当[,0]44ππα-∈-时,sin()04πα-≤;当3[,]444πππα-∈时,sin()4πα->所以(0,)44ππα-∈,即(,)42ππα∈所以2(,)2παπ∈,7cos225α=-.sin(2)4πα-=2、把1cos cos 2αβ+=两边分别平方得221cos cos 2cos cos 4αβαβ++=把1sin sin 3αβ+=两边分别平方得221sin sin 2sin sin 9αβαβ++=把所得两式相加,得1322(cos cos sin sin )36αβαβ++=,即1322cos()36αβ+-=,所以59cos()72αβ-=-3、由sin()sin 3παα++= 可得3sin 2αα=4sin()65πα+=-. 又02πα-<<,所以366πππα-<+<,于是3cos()65πα+=.所以cos cos[()]66ππαα=+-4、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos x x x x x x x x x x x x x x +++==---1tan sin 2sin 2tan()1tan 4x x x x x π+==+-由177124x ππ<<得5234x πππ<+<,又3cos()45x π+=,所以4sin()45x π+=-,4tan()43x π+=-所以cos cos[()]cos()cos sin()sin 444444x x x x ππππππ=+-=+++=,sin 10x =-,7sin 22sin cos 25x x x ==, 所以2sin 22sin 281tan 75x x x +=--, 5、把已知代入222sin cos (sin cos )2sin cos 1θθθθθθ+=+-=,得22(2sin )2sin 1αβ-=.变形得2(1cos2)(1cos2)1αβ---=,2cos2cos2αβ=,224cos 24cos 2αβ= 本题从对比已知条件和所证等式开始,可发现应消去已知条件中含θ的三角函数.考虑sin cos θθ+,sin cos θθ这两者又有什么关系?及得上解法. 5、6两题上述解法称为消去法6、()21cos22sin(2)16f x x x m x m π=+++=+++.由 [0,]2x π∈ 得72[,]666x πππ+∈,于是有216m ++=. 解得3m =.()2sin(2)4()6f x x x R π=++∈的最小值为242-+=,此时x 的取值集合由322()62x k k Z πππ+=+∈,求得为2()3x k k Z ππ=+∈7、设AP x =,AQ y =,BCP α∠=,DCQ β∠=,则tan 1x α=-,tan 1y β=- 于是2()tan()()x y x y xyαβ-++=+-又APQ ∆的周长为2,即2x y +,变形可得2()2xy x y =+- 于是2()tan()1()[2()2]x y x y x y αβ-++==+-+-.又02παβ<+<,所以4παβ+=,()24PCQ ππαβ∠=-+=.8、(1)由221sin cos 5sin cos 1ββββ⎧+=⎪⎨⎪+=⎩,可得225sin 5sin 120ββ--=解得4sin 5β=或3sin 5β=-(由(0,)βπ∈,舍去)所以13cos sin 55ββ=-=-,于是4tan 3β=-(2)根据所给条件,可求得仅由sin ,cos ,tan βββ表示的三角函数式的值,例如,sin()3πβ+,cos22β+,sin cos 2tan βββ-,sin cos 3sin 2cos ββββ-+,等等.。
高中数学第二章平面向量2.5 平面向量应用举例学案新人教A版必修4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章平面向量2.5 平面向量应用举例学案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章平面向量2.5 平面向量应用举例学案新人教A版必修4的全部内容。
2。
5平面向量应用举例课前预习学案一、预习目标预习《平面向量应用举例》,体会向量是一种处理几何问题、物理问题等的工具,建立实际问题与向量的联系。
二、预习内容阅读课本内容,整理例题,结合向量的运算,解决实际的几何问题、物理问题.另外,在思考一下几个问题:1.例1如果不用向量的方法,还有其他证明方法吗?2.利用向量方法解决平面几何问题的“三步曲"是什么?3.例3中,⑴θ为何值时,|F1|最小,最小值是多少?⑵|F1|能等于|G|吗?为什么?三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习内容1.运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析几何中直线或线段的平行、垂直、相等、夹角和距离等问题。
2.运用向量的有关知识解决简单的物理问题。
二、学习过程探究一:(1)向量运算与几何中的结论"若a b=,则||||a b=,且,a b所在直线平行或重合"相类比,你有什么体会?(2)举出几个具有线性运算的几何实例.例1.证明:平行四边形两条对角线的平方和等于四条边的平方和.已知:平行四边形ABCD .求证:222222AC BD AB BC CD DA +=+++.试用几何方法解决这个问题利用向量的方法解决平面几何问题的“三步曲”? (1) 建立平面几何与向量的联系,(2) 通过向量运算,研究几何元素之间的关系, (3) 把运算结果“翻译”成几何关系。
2.5.1平面几何中的向量方法自主学习知识梳理1.向量方法在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:a∥b(b≠0)⇔________⇔____________.(2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:a⊥b ⇔__________⇔__________.(3)求夹角问题,往往利用向量的夹角公式cos θ=_______________=_______________.(4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:|a|=______.2.直线的方向向量和法向量(1)直线y=kx+b的方向向量为____________,法向量为__________.(2)直线Ax+By+C=0的方向向量为__________,法向量为__________.自主探究在平行四边形中有下列的结论:平行四边形两条对角线的平方和等于两条邻边平方和的2倍.请用向量法给出证明.对点讲练知识点一利用向量证明平行问题例1如图所示,若ABCD为平行四边形,EF∥AB,AE与BF相交于点N,DE与CF 相交于点M.求证:MN∥AD.回顾归纳(1)本题利用平行向量基本定理证明两直线平行,解题时要注意灵活运用已知条件.(2)向量法证明直线平行,恰是向量平行问题的一种存在形式—它们的基线无公共点.与前面例1比较,最大的区别在于,此处共线的两个向量没有公共端点.变式训练1△ABC中,M、N分别为AB、AC的中点.求证:MN∥BC.知识点二 利用向量证明垂直问题例2 如图所示,在平行四边形ABCD 中,BC =2BA ,∠ABC =60°,作AE ⊥BD 交BC于E ,求BEEC的值.回顾归纳 利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量,一种思路是建立坐标系,求出题目中涉及到的向量的坐标.这两种思路都是通过向量的计算获得几何命题的证明.变式训练2 已知P 是正方形ABCD 对角线BD 上一点,PFCE 为矩形.求证:P A =EF 且P A ⊥EF .知识点三 直线方向向量的应用例3 在△ABC 中,A (4,1),B (7,5),C (-4,7),求∠A 的平分线的方程.回顾归纳 直线Ax +By +C =0的方向向量为v =(B ,-A ),法向量n =(A ,B ).这两个概念在求直线方程、判断两条直线位置关系.求两条直线的夹角时非常有用.变式训练3 在直角坐标系xOy 中,已知点A (0,1)和点B (-3,4),若点C 在∠AOB 的平分线上且|OC →|=2,则OC →=________.1.利用向量方法可以解决平面几何中的平行、垂直、夹角、距离等问题.利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量,一种思路是建立坐标系,求出题目中涉及到的向量的坐标.这两种思路都是通过向量的计算获得几何命题的证明.2.在直线l :Ax +By +C =0(A 2+B 2≠0)上任取两点P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2→就是直线l 的一个方向向量,λP 1P 2→(λ∈R 且λ≠0)也是直线l 的方向向量.所以,一条直线的方向向量有无数多个,它们都共线.同理,与直线l :Ax +By +C =0 (A 2+B 2≠0)垂直的向量都叫直线l 的法向量.一条直线的法向量也有无数多个.熟知以下结论,在解题时可以直接应用.①y =kx +b 的方向向量v =(1,k ),法向量为n =(k ,-1).②Ax +By +C =0(A 2+B 2≠0)的方向向量v =(B ,-A ),法向量n =(A ,B ).课时作业一、选择题1.在△ABC 中,已知A (4,1)、B (7,5)、C (-4,7),则BC 边的中线AD 的长是( )A .2 5 B.52 5 C .3 5 D.7252.点O 是三角形ABC 所在平面内的一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的( )A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点3.如图,非零向量OA →=a ,OB →=b 且BC ⊥OA ,C 为垂足,若OC →=λa ,则λ等于( )A.a·b |a|2B.a·b |a||b|C.a·b |b |2D.|a||b|a·b4.若O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形5.已知点A (3,1),B (0,0),C (3,0),设∠BAC 的平分线AE 与BC 相交于E ,那么有BC →=λCE →,其中λ等于( )A .2 B.12 C .-3 D .-13二、填空题6.过点(1,2)且与直线3x -y +1=0垂直的直线的方程是 ____________.7.已知平面上三点A 、B 、C 满足|AB →|=3,|BC →|=4,|CA →|=5.则AB →·BC →+BC →·CA →+CA →·AB →=______.8.设平面上有四个互异的点A 、B 、C 、D ,已知(DB →+DC →-2DA →)·(AB →-AC →)=0,则△ABC 的形状一定是______.三、解答题9. 如图所示,已知四边形ABCD 是菱形,AC 和BD 是它的两条对角线. 求证:AC ⊥BD .10.三角形ABC 是等腰直角三角形,∠B =90°,D 是BC 边的中点,BE ⊥AD ,延长BE 交AC 于F ,连结DF .求证:∠ADB =∠FDC .§2.5 平面向量应用举例 2.5.1 平面几何中的向量方法答案知识梳理1.(1)a =λb x 1y 2-x 2y 1=0 (2)a·b =0 x 1x 2+y 1y 2=0(3)a·b|a||b | x 1x 2+y 1y 2x 21+y 21 x 22+y 22(4)x 2+y 22.(1)(1,k ) (k ,-1) (2)(B ,-A ) (A ,B ) 自主探究证明 在平行四边形ABCD 中, AC →=AB →+AD →,BD →=AD →-AB → ∴AC →2=(AB →+AD →)2=AB →2+AD →2+2AB →·AD →; BD →2=(AD →-AB →)2=AD →2+AB →2-2AB →·AD →. ∴AC →2+BD →2=2AB →2+2AD →2. 即|AC →|2+|BD →|2=2(|AB →|2+|AD →|2).∴平行四边形两条对角线的平方和等于两条邻边平方和的2倍. 对点讲练例1 证明 ∵EF ∥AB ,∴△NEF ∽△NAB ,设AB →=μEF →(μ≠1),则AN EN=μ,AE →=(μ-1)EN →,同理,由EF →∥CD →,可得DE →=(μ-1)EM →, ∴AD →=ED →-EA →=AE →-DE →=(μ-1)MN →,∵μ≠1,令λ=μ-1,∴AD →=λMN →,∴AD ∥MN .变式训练1 证明 设AB →=a ,AC →=b ,则BC →=AC →-AB →=b -a ,又M 、N 分别为AB 、AC 的中点.∴AM →=12a ,AN →=12b .△AMN 中,MN →=12b -12a =12(b -a ),∴MN →=12BC →,即MN →与BC →共线,∴MN ∥BC .例2 解 方法一 (基向量法) 设BA →=a ,BC →=b ,|a |=1,|b |=2.a·b =|a||b |cos 60°=1,BD →=a +b . 设BE →=λBC →=λb ,则AE →=BE →-BA →=λb -a .由AE ⊥BD ,得AE →·BD →=0. 即(λb -a )·(a +b )=0.解得λ=25,∴BE EC =2535=23.方法二 以B 为坐标原点,直线BC 为x 轴建立平面直角坐标系,根据条件,设B (0,0),C (2,0),A ⎝⎛⎭⎫12,32,D ⎝⎛⎭⎫52,32.又设E (m,0),则BD →=⎝⎛⎭⎫52,32,AE →=⎝⎛⎭⎫m -12,-32.由AE ⊥BD ,得AE →·BD →=0.即52⎝⎛⎭⎫m -12-32×32=0, 得m =45,∴BE EC =4565=23.变式训练2 证明以D 为坐标原点,DC 所在直线为x 轴,DA 所在直线为y 轴,建立平面直角坐标系Oxy (如图所示),设正方形边长为1,|OP →|=λ,则A (0,1),P ⎝⎛⎭⎫2λ2,2λ2,E ⎝⎛⎭⎫1,22λ,F ⎝⎛⎭⎫22λ,0, 于是P A →=⎝⎛⎭⎫-22λ,1-22λ,EF →=⎝⎛⎭⎫22λ-1,-22λ.∵|P A →|=⎝⎛⎭⎫-22λ2+⎝⎛⎭⎫1-22λ2=λ2-2λ+1,同理|EF →|=λ2-2λ+1, ∴|P A →|=|EF →|,∴P A =EF .P A →·EF →=⎝⎛⎭⎫-22λ⎝⎛⎭⎫2λ2-1+⎝⎛⎭⎫1-22λ⎝⎛⎭⎫-22λ=0,∴P A →⊥EF →.∴P A ⊥EF .例3 解 AB →=(3,4),AC →=(-8,6), ∠A 的平分线的一个方向向量为: AB →|AB →|+AC →|AC →|=⎝⎛⎭⎫35,45+⎝⎛⎭⎫-45,35 =⎝⎛⎭⎫-15,75. ∵∠A 的平分线过点A .∴所求直线方程为-75(x -4)-15(y -1)=0.整理得:7x +y -29=0.变式训练3 ⎝⎛⎭⎫-105,3105解析已知A (0,1),B (-3,4), 设E (0,5),D (-3,9), ∴四边形OBDE 为菱形.∴∠AOB 的角平分线是菱形OBDE 的对角线OD .设C (x 1,y 1),|OD →|=310,∴OC →=2310OD →.∴(x 1,y 1)=2310(-3,9)=⎝⎛⎭⎫-105,3105,即OC →=⎝⎛⎭⎫-105,3105.课时作业1.B [BC 中点为D ⎝⎛⎭⎫32,6,AD →=⎝⎛⎭⎫-52,5, ∴|AD →|=525.]2.D [∵OA →·OB →=OB →·OC →.∴OB →·CA →=0.∴OB ⊥AC .同理OA ⊥BC , OC ⊥AB ,∴O 为垂心.]3.A [BC →=OC →-OB →=λa -b .∵BC ⊥OA ,∴BC →·OA →=(λa -b )·a =0,即λa 2-a·b =0.∴λ=a·b|a |2.]4.B [∵|OB →-OC →|=|CB →|=|AB →-AC →|, |OB →+OC →-2OA →|=|AB →+AC →|, ∴|AB →-AC →|=|AB →+AC →|,∴A ,B ,C 是同一矩形的三个顶点,且∠BAC =90°. ∴△ABC 是直角三角形.] 5.C[如图所示,由题知∠ABC =30°,∠AEC =60°,CE =33,∴|BC ||CE |=3,∴BC →=-3CE →.] 6.x +3y -7=0解析 设P (x ,y )是所求直线上任一点,直线3x -y +1=0的方向向量为(-1,-3), 由(x -1,y -2)·(-1,-3)=0得x +3y -7=0. 7.-25解析 △ABC 中,B =90°,cos A =35,cos C =45,∴AB →·BC →=0,BC →·CA →=4×5×⎝⎛⎭⎫-45=-16; CA →·AB →=5×3×⎝⎛⎭⎫-35=-9. ∴AB →·BC →+BC →·CA →+CA →·AB →=-25. 8.等腰三角形解析 ∵(DB →+DC →-2DA →)·(AB →-AC →)=[(DB →-DA →)+(DC →-DA →)]·(AB →-AC →) =(AB →+AC →)·(AB →-AC →)=AB →2-AC →2 =|AB →|2-|AC →|2=0, ∴|AB →|=|AC →|,∴△ABC 是等腰三角形.9.证明 ∵四边形ABCD 是菱形,∴|AB →|=|AD →|,又∵AC →=AB →+AD →,BD →=AD →-AB →, ∴AC →·BD →=(AB →+AD →)·(AD →-AB →)∴AC →⊥BD →,即AC ⊥BD . 10.证明如图所示,建立直角坐标系,设A (2,0),C (0,2),则D (0,1),于是AD →=(-2,1), AC →=(-2,2),设F (x ,y ),由BF →⊥AD →, 得BF →·AD →=0, 即(x ,y )·(-2,1)=0, ∴-2x +y =0①又F 点在AC 上,则FC →∥AC →, 而FC →=(-x,2-y ),因此2×(-x )-(-2)×(2-y )=0, 即x +y =2.②由①、②式解得x =23,y =43,∴F ⎝⎛⎭⎫23,43,DF →=⎝⎛⎭⎫23,13,DC →=(0,1) DF →·DC →=13,又DF →·DC →=|DF →||DC →|cos θ=53cos θ,∴cos θ=55,即cos ∠FDC =55,又cos ∠ADB =|BD →||AD →|=15=55,∴cos ∠ADB =cos ∠FDC , 故∠ADB =∠FDC .。
高中数学第二章平面向量2-5平面向量应用举例学案含解析
新人教A版必修4
[导入新知]
1.用向量方法解决平面几何问题的“三步曲”
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
2.向量在物理中的应用
(1)物理问题中常见的向量有力、速度、位移等.
(2)向量的加减法运算体现在一些物理量的合成和分解中.
(3)动量mv是向量的数乘运算.
(4)功是力F与位移s的数量积.
[化解疑难]
向量法在平面几何中的应用
用向量法解决平面几何问题,一般来说有两个方向:
(1)几何法:选取适当的基底(基底中的向量尽量已知模或夹角),将题中涉及的向量用基底表示,利用向量的运算法则、运算律或性质计算;
(2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、平行等问题转化为代数运算.
一般地,存在坐标系或易建坐标系的题目适合用坐标法.
[例1]
AC 上任一点,PE⊥AB,PF⊥BC,垂足分别为E ,F ,连接
DP ,EF ,求证:DP⊥EF.
[证明] 设正方形ABCD 的边长为1,AE =a(0<a<1),
则EP =AE =a ,PF =EB =1-a ,AP =a ,
∴·=(+)·(+)DP EF DA AP EP PF
=·+·+·+·DA EP DA PF AP EP AP PF
=1×a×cos 180°+1×(1-a)×cos 90°+a×a×cos 45°+a×(1-a)×cos 45°=-a +a2+a(1-a)=0.
∴⊥,即DP ⊥EF.DP EF
[类题通法]
利用向量解决垂直问题
对于线段的垂直问题,可以联想到两个向量垂直的条件(向量的数量积为0),而对于这一条件的应用,可以考虑向量关系式的形式,也可以考虑坐标的形式.
[活学活用]
如图,在正方形ABCD 中,E ,F 分别为AB ,
BC 的中点.求证:AF⊥DE(利用向量证明).
证明:设=a ,=b ,AB AD 则=a +b ,=b -a ,AF ED
∴·=·AF ED ⎝ ⎛⎭⎪⎫b -12a =b2-a2+a·b.
又∵⊥,且||=||,AB AD AB AD
∴a2=b2,a ·b =0,。