Search for Bs -- mu+mu- and Bd -- mu+mu- Decays with 2fb-1 of ppbar Collisions
- 格式:pdf
- 大小:172.58 KB
- 文档页数:7
Model CH-300Catalogue No. E-400aSEARCHLIGHT SONARRThe future today with FURUNO's electronics technology.FURUNO ELECTRIC CO., LTD.9-52 Ashihara-cho, Nishinomiya City, Japan Telephone: +81 (0)798 65-2111Telefax: +81 (0)798 65-4200, 66-4622 URL:www.furuno.co.jpTRADE MARK REGISTERED MARCA REGISTRADADual frequency, 10.4" TFT LCDWo r l d ’s 1s t ●Incorporates both a low and a highfrequency (60/153 or 85/215 kHz)transducer in one soundome ●BlackBox system configuration allows use of FURUNO or commercial monitors●CUSTOM MODE keys provide one-touch setup or short-cut key function●Variety of display modes:Horizontal and Vertical scan, Mix,Echo sounder●Compact hull unit for space saving installation (select from 250 or 400mm travel)●Pulse length automatically switched according to rangeselected, to optimize performance ●Target lock tracks selected fish schools or L/L position●Multi language menu: English,Spanish, Danish, Portuguese,French, Norwegian, Italian,Swedish and ThaiHorizontal ScanVertical ScanThe world’s first dual-frequency searchlight sonar CH-300 is designed for a wide range of commercial or sport fishing vessels. Its operating frequency can be selected from either 60/153 or 85/215 kHz, andthe transducers are incorporated in one soundome. The high frequency of, 153 and 215 kHz, gives a highly detailed search near and all around the vessel.The lower frequency, 60 and 85 kHz, enables long-range searches of over 500 m. With advantages of both high and low frequency, the CH-300 helps to search on a rough seabed and to greatly enhance fish school detection.A variety of presentation modes are available: horizontal and vertical scan, echo sounder andthe combination mode displaying horizontal and vertical scan/historical/plotter presentations. The combination of horizontal and vertical scan helps evaluate the distribution of fish schools in both the horizontal and vertical planes simultaneously.The CH-300’s unique mix mode uses the frequency characteristic that “high frequency beams receive stronger echoes from tiny fish, compared with low frequency”. By comparing the returned echo intensity of both frequencies, this mode picks out the echoes of tiny fish and displays them in discriminative colors. Other echoes are displayed in the weakest color. This helps to discriminate tiny fish such as small bait fish from other fish.The CH-300 provides two target lock modes to track a fish echo and stationary position such as a fish shelter or reef. Target Lock automatically tracks the chosen fish school. In Position Track, the beam is locked onto the L/L position specified by the target marker. Standard package consists of a 10.4" LCD, control, transceiver and compact hull units. This separated system configuration provides a flexible and space-saving installation. A BlackBox configuration (without monitor) is also available. The hull unit, whose travel or stroke can be selected at either 250 mm or 400 mm, will fit any boat where a 190 mm (7.5") internal diameter hull tube is available. Also, a previously installed CH-250 can be changed to the CH-300 without dry-docking since both models use the same size hull unit.Beam stabilization The beam, affected by pitching and rolling, fails to detect the targeted fish. the beam on the targeted fish. Stabilizer: ON Stabilizer: OFFCompact soundome contains a dual-frequency transducer. See fish targets you have never seen before!Horizontal scan with VideoPlotterdetect fish schools at any tilt,dual-frequency presentation,high/low frequency scan and Own ship track isdisplayed on the sonar image, which is ideal for purse seining or bottom trawling.The vertical scan paints the bottom profile within a user-123Cursor position data →↓B: Bearing1231Sweep indicator(Shows train position)1. Display UnitStandard:10.4" TFT color LCDBlackBox:FURUNO 15'' LCD MU-151C/155C and12.1" LCD MU-120C, recommendedor commercial monitor (640 x 480 pixels)2. ColorEcho: 16 or 8 colors (echo)Background: 3 colors selected (user setting available)3.Display ModeHorizontal scan (Normal/Expanded), Vertical scan, Mix,Echo sounderbination DisplayPlotter, Vertical scan, History5.External Data IndicationL/L, Depth, Course, Ship’s speed, Water current vector, Track, Water temperature (External IEC 61162 data required)6. Audio Monitor1000 Hz7. TX Output Power 1 kW8. Frequencies60/153 or 85/215 kHz9. Beamwidth(at -3 dB)60/153 kHz: 16°/7°(Hor), 14°/5°(Ver)85/215 kHz: 11°/5°(Hor), 10°/4°(Ver)10. Transducer ControlTilt:0°to -180°at 3°or 6°steps (Ver)+5°to -90°at 1°steps (Hor)Training Sector:Manual or automatic training at 6°or 12°steps in search sector 6°to 360°Target Lock:By L/L, Echo position11. Range scales (Feet, Fathom, Passi/Braza can be selected)Horizontal: 15 ranges customized between 10 to 1600 m Vertical: 15 ranges customized between 10 to 600 m 12.Interface (NMEA 0183 Ver 1.5, 2.0, IEC 61162-1)Input:DBS, DBT, DPT, GGA, GLL, HDG, HDM,HDT, MDA, MTW, RMA, RMC, VDR, VHW,VTG, attOutput:TLLnguageEnglish, Spanish, Danish, Portuguese, French, Norwegian,Italian, Swedish, ThaiPOWER SUPPLYTransceiver Unit:12-24 VDC; 7.0-3.5 AHull Unit:12/24 VDC; 4.7/2.3 A, 16.7/8.2 A**While raising/lowering transducer ENVIRONMENTTemperatureDisplay, Transceiver Unit:-15°C to +55°CHull Unit:0°C to +35°CWaterproofingDisplay Unit:IEC IPX5Hull Unit:IEC IPX2EQUIPMENT LISTStandard1.Display Unit MU-100C (Not included in BlackBox) 1 unit2.Control Unit CH-302 1 unit3.Transceiver Unit CH-303 1 unit4.Hull Unit 1 unitCH-304 (travel 400 mm) or CH-305 (travel 250 mm)5.Interface Unit IF-8000 (BlackBox only) 1 unit6.Installation Materials and Spare Parts 1 set Option1.Remote Controller CH-256-E2.Rectifier RU-1746B-23.Loudspeaker SC-05WR, Horn4.Transducer TankSteel: 1, 1.8, 3.5 m; FRP: 1, 1.8 m; Aluminum: 1 m5.NMEA Cable6P-6P: 5 m (MJ-A6SPF0012-050), 10 m (MJ-A6SPF0012-100) 6P-4P: 5 m (MJ-A6SPF0011-050), 10 m (MJ-A6SPF0011-100)6.Motion Sensor MS-1007.Clinometer BS-7048.Interface Unit IF-8000FURUNO U.S.A., INC. Camas, Washington, U.S.A. Phone: +1 360-834-9300Fax: +1 360-834-9400 FURUNO (UK) LIMITED Denmead, Hampshire, U.K. Phone: +44 2392-230303Fax: +44 2392-230101 FURUNO FRANCE S.A. Bordeaux-Mérignac, France Phone: +33 5 56 13 48 00Fax: +33 5 56 13 48 01。
BS4(BeautifulSoup4)的使⽤--find_all()篇注意的是:1.有些tag属性在搜索不能使⽤,⽐如HTML5中的 data-* 属性:data_soup = BeautifulSoup('<div data-foo="value">foo!</div>')data_soup.find_all(data-foo="value")# SyntaxError: keyword can't be an expression但是可以通过find_all()⽅法的attrs参数定义⼀个字典参数来搜索包含特殊属性的tag:data_soup.find_all(attrs={"data-foo": "value"})# [<div data-foo="value">foo!</div>]表达式可以是字符串、布尔值、正则表达式2.class属性要⽤class_=""find_all( , , , , )find_all()⽅法搜索当前tag的所有tag⼦节点,并判断是否符合过滤器的条件.这⾥有⼏个例⼦:soup.find_all("title")# [<title>The Dormouse's story</title>]soup.find_all("p", "title")# [<p class="title"><b>The Dormouse's story</b></p>]soup.find_all("a")# [<a class="sister" href="/elsie" id="link1">Elsie</a>,# <a class="sister" href="/lacie" id="link2">Lacie</a>,# <a class="sister" href="/tillie" id="link3">Tillie</a>]soup.find_all(id="link2")# [<a class="sister" href="/lacie" id="link2">Lacie</a>]import resoup.find(text=pile("sisters"))# u'Once upon a time there were three little sisters; and their names were\n'有⼏个⽅法很相似,还有⼏个⽅法是新的,参数中的text和id是什么含义? 为什么find_all("p", "title")返回的是CSS Class为”title”的<p>标签? 我们来仔细看⼀下find_all()的参数name 参数name参数可以查找所有名字为name的tag,字符串对象会被⾃动忽略掉.简单的⽤法如下:soup.find_all("title")# [<title>The Dormouse's story</title>]重申: 搜索name参数的值可以使任⼀类型的 ,字符窜,正则表达式,列表,⽅法或是True .keyword 参数如果⼀个指定名字的参数不是搜索内置的参数名,搜索时会把该参数当作指定名字tag的属性来搜索,如果包含⼀个名字为id的参数,Beautiful Soup会搜索每个tag的”id”属性.soup.find_all(id='link2')# [<a class="sister" href="/lacie" id="link2">Lacie</a>]如果传⼊href参数,Beautiful Soup会搜索每个tag的”href”属性:soup.find_all(href=pile("elsie"))# [<a class="sister" href="/elsie" id="link1">Elsie</a>]搜索指定名字的属性时可以使⽤的参数值包括 , , , .下⾯的例⼦在⽂档树中查找所有包含id属性的tag,⽆论id的值是什么:soup.find_all(id=True)# [<a class="sister" href="/elsie" id="link1">Elsie</a>,# <a class="sister" href="/lacie" id="link2">Lacie</a>,# <a class="sister" href="/tillie" id="link3">Tillie</a>]使⽤多个指定名字的参数可以同时过滤tag的多个属性:soup.find_all(href=pile("elsie"), id='link1')# [<a class="sister" href="/elsie" id="link1">three</a>]有些tag属性在搜索不能使⽤,⽐如HTML5中的 data-* 属性:data_soup = BeautifulSoup('<div data-foo="value">foo!</div>')data_soup.find_all(data-foo="value")# SyntaxError: keyword can't be an expression但是可以通过find_all()⽅法的attrs参数定义⼀个字典参数来搜索包含特殊属性的tag:data_soup.find_all(attrs={"data-foo": "value"})# [<div data-foo="value">foo!</div>]按CSS搜索按照CSS类名搜索tag的功能⾮常实⽤,但标识CSS类名的关键字class在Python中是保留字,使⽤class做参数会导致语法错误.从Beautiful Soup的4.1.1版本开始,可以通过class_参数搜索有指定CSS类名的tag:soup.find_all("a", class_="sister")# [<a class="sister" href="/elsie" id="link1">Elsie</a>,# <a class="sister" href="/lacie" id="link2">Lacie</a>,# <a class="sister" href="/tillie" id="link3">Tillie</a>]class_参数同样接受不同类型的过滤器 ,字符串,正则表达式,⽅法或True :soup.find_all(class_=pile("itl"))# [<p class="title"><b>The Dormouse's story</b></p>]def has_six_characters(css_class):return css_class is not None and len(css_class) == 6soup.find_all(class_=has_six_characters)# [<a class="sister" href="/elsie" id="link1">Elsie</a>,# <a class="sister" href="/lacie" id="link2">Lacie</a>,# <a class="sister" href="/tillie" id="link3">Tillie</a>]tag的class属性是 .按照CSS类名搜索tag时,可以分别搜索tag中的每个CSS类名:css_soup = BeautifulSoup('<p class="body strikeout"></p>')css_soup.find_all("p", class_="strikeout")# [<p class="body strikeout"></p>]css_soup.find_all("p", class_="body")# [<p class="body strikeout"></p>]搜索class属性时也可以通过CSS值完全匹配:css_soup.find_all("p", class_="body strikeout")# [<p class="body strikeout"></p>]完全匹配class的值时,如果CSS类名的顺序与实际不符,将搜索不到结果:soup.find_all("a", attrs={"class": "sister"})# [<a class="sister" href="/elsie" id="link1">Elsie</a>,# <a class="sister" href="/lacie" id="link2">Lacie</a>,# <a class="sister" href="/tillie" id="link3">Tillie</a>]text参数通过text参数可以搜搜⽂档中的字符串内容.与name参数的可选值⼀样, text参数接受 , , , . 看例⼦:soup.find_all(text="Elsie")# [u'Elsie']soup.find_all(text=["Tillie", "Elsie", "Lacie"])# [u'Elsie', u'Lacie', u'Tillie']soup.find_all(text=pile("Dormouse"))[u"The Dormouse's story", u"The Dormouse's story"]def is_the_only_string_within_a_tag(s):""Return True if this string is the only child of its parent tag.""return (s == s.parent.string)soup.find_all(text=is_the_only_string_within_a_tag)# [u"The Dormouse's story", u"The Dormouse's story", u'Elsie', u'Lacie', u'Tillie', u'...']虽然text参数⽤于搜索字符串,还可以与其它参数混合使⽤来过滤tag.Beautiful Soup会找到.string⽅法与text参数值相符的tag.下⾯代码⽤来搜索内容⾥⾯包含“Elsie”的<a>标签:soup.find_all("a", text="Elsie")# [<a href="/elsie" class="sister" id="link1">Elsie</a>]limitfind_all()⽅法返回全部的搜索结构,如果⽂档树很⼤那么搜索会很慢.如果我们不需要全部结果,可以使⽤limit参数限制返回结果的数量.效果与SQL中的limit关键字类似,当搜索到的结果数量达到limit的限制时,就停⽌搜索返回结果.⽂档树中有3个tag符合搜索条件,但结果只返回了2个,因为我们限制了返回数量:soup.find_all("a", limit=2)# [<a class="sister" href="/elsie" id="link1">Elsie</a>,# <a class="sister" href="/lacie" id="link2">Lacie</a>]recursive参数调⽤tag的find_all()⽅法时,Beautiful Soup会检索当前tag的所有⼦孙节点,如果只想搜索tag的直接⼦节点,可以使⽤参数recursive=False .⼀段简单的⽂档:<html><head><title>The Dormouse's story</title></head>...是否使⽤recursive参数的搜索结果:soup.html.find_all("title")# [<title>The Dormouse's story</title>]soup.html.find_all("title", recursive=False)# []像调⽤find_all()⼀样调⽤find_all()⼏乎是Beautiful Soup中最常⽤的搜索⽅法,所以我们定义了它的简写⽅法. BeautifulSoup对象和tag对象可以被当作⼀个⽅法来使⽤,这个⽅法的执⾏结果与调⽤这个对象的find_all()⽅法相同,下⾯两⾏代码是等价的:soup.find_all("a")soup("a")这两⾏代码也是等价的:soup.title.find_all(text=True)soup.title(text=True)。
山西农业科学 2023,51(9):1020-1033Journal of Shanxi Agricultural Sciences菜豆R2R3-MYB 基因家族鉴定及其在BCMV 侵染后的表达分析王古悦,唐慕宁,牛静雅,冯雪(山西农业大学 植物保护学院,山西 太谷 030801)摘要:为了明确菜豆R2R3-MYB 基因家族的成员及受到BCMV 侵染后的表达情况,利用生物信息学方法对菜豆R2R3-MYB 基因家族成员进行鉴定和系统分析,同时利用BCMV 侵染菜豆后在显症期的转录组数据筛选可能与BCMV 侵染调控相关的R2R3-MYB 基因家族成员,并对这些基因在病毒侵染不同阶段的表达模式进行实时荧光定量PCR 分析。
结果表明,菜豆R2R3-MYB 基因家族共有159个成员,不均匀分布于菜豆11条染色体上,多含有2个内含子,编码184~554个氨基酸,均为亲水性蛋白。
系统进化关系将菜豆R2R3-MYB 基因家族成员分为32个亚组(P1~P32),同一亚组成员具有高度保守的基因结构和基序。
菜豆基因组内共线性分析表明,片段复制事件和串联复制事件均进行了纯化选择。
转录组数据显示,BCMV 侵染前后菜豆接种叶和系统叶分别有20、33个差异表达基因;qRT -PCR 分析表明,这些基因在病毒侵染后表达均有变化,其中,PvMYB18、PvMYB33、PvMYB92、PvMYB93在侵染早期和显症期均呈现先升高后降低的趋势,而PvMYB29、PvMYB97、PvMYB124、PvMYB128、PvMYB134仅在侵染早期剧烈响应,这些基因的表达特点揭示其可能参与了菜豆对BCMV 侵染不同阶段应答反应的调控。
关键词:菜豆;R2R3-MYB 基因家族;BCMV ;表达分析中图分类号:S643.1 文献标识码:A 文章编号:1002‒2481(2023)09‒1020‒14Identification of R2R3-MYB Gene Family in Common Bean (Phaseolusvulgaris L.)and Expression Analysis after BCMV InfectionWANG Guyue ,TANG Muning ,NIU Jingya ,FENG Xue(College of Plant Protection ,Shanxi Agricultural University ,Taigu 030801,China )Abstract :The purpose of this study is to clarify the members of R2R3-MYB gene family in common bean and their expression after being infected by BCMV. Identification and systematic analysis of R2R3-MYB gene family members in common bean was conducted by bioinformatics method. Meanwhile, R2R3-MYB gene family members that may be related to the regulation of BCMV infection were screened by transcriptome data obtained at symptomatic stage after BCMV infection of common bean, and the expression patterns of these genes at different stages of virus infection were analyzed by qRT -PCR. The results showed that total there were 159 members of R2R3-MYB gene family in common bean, they were unevenly distributed on 11 chromosomes of common bean, most of them contained 2 introns, and encoded 184-554 amino acids, all of them were hydrophilic proteins. R2R3-MYB gene family members in common bean were divided into 32 subgroups(P1-P32) according to the phylogenetic relationship, and the same subgroup members had highly conserved gene structures and motifs. The collinearity analysis in the genome of common bean showed that both segmental replication events and tandem replication events had evolved under purifying selection. Transcriptome data showed that there were 20 and 33 differentially expressed genes in the inoculated leaves and system leaves of common bean before and after BCMV infection, respectively. qRT -PCR analysis showed that the expression of these genes changed after virus infection, among which PvMYB18, PvMYB33, PvMYB92, and PvMYB93 showed a trend of increasing first and then decreasing at the early and symptomatic stages of viral infection. However, PvMYB29, PvMYB97, PvMYB124, PvMYB128, and PvMYB134 only responded strongly at the early stage of infection. The expression characteristics of these genes suggested that they might be involved in the regulation of common bean response to BCMV infection at different stages.Key words :common bean; R2R3-MYB gene family; BCMV; expression analysisdoidoi:10.3969/j.issn.1002-2481.2023.09.07收稿日期:2023-01-28基金项目:国家自然科学基金青年项目(32202247);山西省自然科学研究面上项目(20210302123367);山西省回国留学人员科研资助项目(2020-063)作者简介:王古悦(1997-),女,山西长治人,在读硕士,研究方向:植物病毒基因功能及寄主互作关系。
正则表达式查找英文单词的方法正则表达式可以用来查找英文单词。
以下是一些查找英文单词的常用正则表达式以及它们的用法:1.查找以字母开头、由字母和数字组成的单词:\b[a-zA-Z][a-zA-Z0-9]*\b例句:- I need to find all the words in the text.- The regular expression should be able to match words like "hello" and "world".2.查找由大写字母和下划线组成的常量:\b[A-Z_]+\b例句:- The regular expression should match constants like "MAX_VALUE" and "PI".3.查找由小写字母组成的变量:\b[a-z]+\b例句:- The regular expression should match variables like "count" and "name".4.查找以大写字母开头的单词:\b[A-Z][a-zA-Z]*\b例句:- The regular expression should be able to match capitalized words like "Apple" and "Python".5.查找以数字开头的单词:\b[0-9][a-zA-Z0-9]*\b例句:- The regular expression should match words like "2020" and "3D".6.查找多个连续的大写字母组成的缩写词:\b[A-Z]{2,}\b例句:- The regular expression should match abbreviations like "HTML" and "CSS".7.查找包含连字符(-)的单词:\b[a-zA-Z]+-[a-zA-Z]+\b例句:- The regular expression should match hyphenated words like "high-quality" and "self-motivated".8.查找包含特定单词的字符串:\bword\b例句:- The regular expression should match the string "This isa word" but not "This is not a keyword".9.查找以特定单词开头的字符串:\bword\w*\b例句:- The regular expression should match strings like "wording" and "wordplay".10.查找以特定单词结尾的字符串:\b\w*word\b例句:- The regular expression should match strings like "backward" and "keyboard".11.查找包含特定字符的单词:\b\w*character\w*\b例句:- The regular expression should match words like "characterization" and "characteristics".12.查找以特定前缀开头的单词:\bprefix\w*\b例句:- The regular expression should match words like "prefixing" and "prefixation".13.查找以特定后缀结尾的单词:\b\w*suffix\b例句:- The regular expression should match words like "suffixes" and "unsuffix".14.查找包含至少一个元音字母的单词:\b\w*[aeiou]\w*\b例句:- The regular expression should match words like "apple" and "bicycle".15.查找只包含小写字母的单词:\b[a-z]+\b例句:- The regular expression should match words like "cat" and "dog".16.查找只包含大写字母的单词:\b[A-Z]+\b例句:- The regular expression should match words like "USA" and "NASA".17.查找只包含数字的单词:\b[0-9]+\b例句:- The regular expression should match words like "123" and "9876".18.查找一个或多个连续的空格:\s+例句:- The regular expression should match multiple spaces between words.19.查找以点号结尾的句子:\b[A-Za-z\s]+\.\b例句:- The regular expression should match sentences like "This is a sentence."20.查找以问号结尾的句子:\b[A-Za-z\s]+\?\b例句:- The regular expression should match sentences like "Is this a question?"21.查找包含特定字符串的句子:\b[A-Za-z\s]*word[A-Za-z\s]*\b例句:- The regular expression should match sentences like "This is a keyword."22.查找包含连续重复字符的单词:\b\w*(\w)\1\w*\b例句:- The regular expression should match words like "letter" and "bookkeeper".注意:正则表达式的具体用法可能会因编程语言或工具而有所不同,以上例句中的用法是通用的,但实际应用时可能需要适当调整。
最简单搜索引擎代码核⼼类简介先运⾏写好的索引的代码,再向下讲解各个类的作⽤,不⽤背代码。
(*)Directory表⽰索引⽂件(⽤来保存⽤户扔过来的数据的地⽅)保存的地⽅,是抽象类,两个⼦类FSDirectory(⽂件中)、RAMDirectory (内存中)。
使⽤的时候别和IO⾥的Directory弄混了。
创建FSDirectory的⽅法,FSDirectory directory =FSDirectory.Open(new DirectoryInfo(indexPath),new NativeFSLockFactory()), path索引的⽂件夹路径IndexReader对索引进⾏读取的类,对IndexWriter进⾏写的类。
IndexReader的静态⽅法bool IndexExists(Directory directory)判断⽬录directory是否是⼀个索引⽬录。
IndexWriter的bool IsLocked(Directory directory) 判断⽬录是否锁定,在对⽬录写之前会先把⽬录锁定。
两个IndexWriter没法同时写⼀个索引⽂件。
IndexWriter 在进⾏写操作的时候会⾃动加锁,close的时候会⾃动解锁。
IndexWriter.Unlock⽅法⼿动解锁(⽐如还没来得及close IndexWriter 程序就崩溃了,可能造成⼀直被锁定)。
创建索引构造函数:IndexWriter(Directorydir, Analyzer a, bool create, MaxFieldLength mfl)因为IndexWriter把输⼊写⼊索引的时候,是把写⼊的⽂件⽤指定的分词器将⽂章分词(这样检索的时候才能查的快),然后将词放⼊索引⽂件。
void AddDocument(Document doc),向索引中添加⽂档(Insert)。
Document类代表要索引的⽂档(⽂章),最重要的⽅法Add(Field field),向⽂档中添加字段。
A S O N780B设备系统培训烽火通信科技股份有限公司系统介绍 光通信专家F o n s w e a v e r780b☻F o n s W e a v e r780B设备作为一种多方向、多业务接口的综合性光传输平台,它不仅可以提供全系列速率的S D H接口和P D H接口,支持以太网及A T M业务的传输;而且具有强大的高、低阶交叉能力;同时支持各种拓扑结构的组网及保护。
设备的各种功能和各项技术指标都遵循I T U-T的相关标准和建议。
☻通过安装S m a r t W e a v e r智能软件,F o n s W e a v e r780B设备可组建具有智能特性的光网络。
这些智能特性包括链路资源的自动发现、差异化的业务、端到端的业务配置、强大的保护功能以及网管功能等,从而有效解决光网络的可扩展性、可管理性,使运营商能够快速提供满足用户需求的各种带宽业务。
光通信专家 光通信专家FonsWeaver780B简介☻极大的交叉容量:160G ,VC4☻单子架业务槽位:l 18个☻完善的MSTP 功能:l 业务接口:GE/FE/ATMl 多业务功能:交换、透传、LCAS☻设备级保护:l 硬件:交叉、时钟盘、电源、控制单元均为双备份。
l 软件:多重保护。
☻网络保护方式:l 线性1+1、1:1 、2/4纤MSP 、子网连接保护、动态恢复、保护与恢复相结合FonsWeaver780B面板结构 光通信专家FonsWeaver780B业务接口盘☻最高端口速率l10G☻槽位兼容性l群路/支路槽位兼容,可混插l18个业务槽位☻业务接口l S T M-641路/盘12槽位l S T M-161或4路/盘18槽位l S T M-44路/盘18槽位l S T M-1光8路/盘18槽位l S T M-1电8路/盘8槽位l F E+G E8路+2路18槽位l10G E10路/盘18槽位l E163路/盘8槽位 光通信专家FonsWeaver780B组网能力 光通信专家强大的业务保护能力 光通信专家多业务承载能力☻F E/G E以太网接口盘l槽位带宽2.5G;对外提供8路F E以太网电接口(L A N口)和2个G E以太网光接口,对内最大提供24个F E全双工以太网数据接口(W A N口);l支持F E到G E/F E的汇聚;汇聚比最大为24/1;l本盘直接出2G E光接口;可以通过端子板引出F E电接口(可以支持F E 电口盘保护)或者直接从面板引出G E光电接口;l支持G F P封装;支持L C A S功能;支持V C12、V C3、V C4虚级联;☻G E以太网盘l槽位带宽10G;对外提供10路G E光接口;l采用G F P数据封装格式;支持L C A S功能; 光通信专家F o n s W e a v e rP r o扩展核心节点低阶业务可与FonsWeaver780B共架安装在一个标准的2.2m机柜中 光通信专家FonsWeaver灵活的低阶业务扩展框 光通信专家 光通信专家可插槽位:W 9,W 8,W 7,W 6,E 6,E 7,E 8,E 9 (主框),W9为推荐保护槽位; 光通信专家D 0,D 1,D 2,D 3,D 4,D 5,D 6,D 7槽位(扩展框第一组)D E ,D F ,E 0,E1槽位(扩展框第二组)☻支持1:7盘保护,保护槽位任意选择,可以只保护部分槽位的工作盘☻优先级:选定一个保护盘,剩下的都可以作为工作盘,保护的优先级从保护盘的右边开始逆时针依次降低。
2024届高考英语一轮复习词汇a(n)~action学案(含答案)a(n)~action维度一:背诵版50个(a/an-action)1.a (an) [ , e ( n)] art. 一(个、件……)2.abandon [ b nd n] v. 抛弃, 舍弃, 放弃3.ability [ b l t ] n. 能力;才能4.able [ e b l] a. 能够;有能力的5.abnormal [ b n m l] a. 反常的, 变态的6.aboard [ b d] prep. 上(船, 飞机, 火车, 汽车等)7.abolish [ b l ] v. 废除, 废止8.abortion [ b n] v. 人工流产, 堕胎9.about [ ba t] ad. 大约;到处;四处prep. 关于;在各处;四处10.above [ b v] prep. 在……上面a. 上面的ad. 在……之上11.abroad [ br d] ad. 到国外12.abrupt [ br pt] a. 突然的, 意外的, 粗鲁13.absence [ bs ns] n. 不在, 缺席14.absent [ bs nt] a. 缺席, 不在15.absolute [ bs lu t] a. 完全, 全部, 绝对的16.absorb [ b s b] v. 吸收, 使全神贯注17.abstract [ bstr kt] a./ n. 抽象的(作品)18.absurd [ b s d] a.荒谬的, 怪诞不经的19.abundant [ b nd nt] a.大量,丰盛的,充裕的20.abuse [ bju z] v.(酗酒)滥用,虐待,恶语21.academic [ k dem k] a. / n. 学术的, 教学的22.academy [ k d m ] n.专科学院,私立学校23.accelerate [ k sel re t] v.使加速, 加快24.accent [ ks nt] n. 口音, 音调25.accept [ k sept] vt. 接受26.access [ kses] n. / v. 通道, 入径, 存取(文件)27.accessible [ k ses bl] a. 可到达的,易相处的)28.accident [ ks d nt] n. 事故, 意外的事29.accommodation [ k m de n] n.住宿, 膳宿30.accompany [ k mp n ] v. 陪同, 陪伴31.accomplish [ k mpl ] v. 完成32.according to [ k d t ] ad. 按照, 根据33.account [ ka nt] n. 账目;描述34.accountant [ ka nt nt] n. 会计, 会计师35.accumulate [ kju mj le t] v. 积累, 积聚36.accuracy [ kj r s ] n. 准确, 精确37.accuse [ kju z] v. 谴责, 控告38.accustomed [ k st md] a. 习惯于,惯常的39.ache [e k] vi.描述34. ________n. 会计, 会计师35. ________v. 积累, 积聚36. ________n. 准确, 精确37. ________v. 谴责, 控告38. ________a. 习惯于,惯常的39. ________vi.描述34.accountant [ ka nt nt] n. 会计, 会计师35.accumulate [ kju mj le t] v. 积累, 积聚36.accuracy [ kj r s ] n. 准确, 精确37.accuse [ kju z] v. 谴责, 控告38.accustomed [ k st md] a. 习惯于,惯常的39.ache [e k] vi.描述34. ________n. 会计, 会计师35. ________v. 积累, 积聚36. ________n. 准确, 精确37. ________v. 谴责, 控告38. ________a. 习惯于,惯常的39. ________vi. he is a child after all. Above all, he made only two mistakes in all.2.布莱恩有作曲天赋,他很有可能成为有一个贝多芬。
【Bootstrap】bootstrap-table表格组件【Bootstrap-table】 顾名思义,这个组件专注于bootstrap风格的表格的设计,并且提供了很多表格的基础和进阶的功能,给我们开发前端的表格省下很多⼒⽓。
本⽂主要参考这位博主的系列⽂章: 【/landeanfen/p/5005367.html】 有兴趣的可以移步看原版,我⾃⼰做⼀个笔记性质的东西。
■ 基本使⽤ 和⼤多数bs组件⼀样,⾸先我们要确保引⼊以下⼏个基本⽂件:<link href="/static/css/bootstrap.min.css" rel="stylesheet"/><script src="/static/js/jquery.min.js"></script><script src="/static/js/bootstrap.min.js"></script> 然后是引⼊bootstrap-table的⼀些⽂件:<link href="/static/bootstrap-table/dist/bootstrap-table.min.css" rel="stylesheet"/><script src="/static/bootstrap-table/dist/bootstrap-table.min.js"></script><script src="/static/bootstrap-table/dist/locale/bootstrap-table-zh-CN.min.js"></script> 最后⼀个是国际化显⽰⽂件,即⽀持组件显⽰中⽂。
具有定位功能的GSM网络结构LCS功能模块目前在3GPP中,已根据定位功能的要求在原GSM网络中增加了必要的物理和逻辑功能模块,设计了相关的信令协议、接口和操作程序,能将移动台估计位置以一种标准格式向用户、网络运营商、定位服务或附加业务提供者报告。
下图为LCS功能图,描述了LCS客户和LCS服务提供者在PLMN内的交互过程,PLMN利用LCS服务器内的各种LCS部件为LCS客户提供目标MS的定位信息。
LCS功能图由图可见,LCS功能的提供主要由LCS客户端和LCS服务器两大模块完成。
LCS客户端是一个逻辑功能实体,能就一个或多个目标MS的位置向PLMN内的LCS服务器提出定位请求;该实体内拥有一个或多个处理LCS客户定位请求的LCS部件——定位客户功能LCF为LCS客户和LCS服务器提供一个逻辑接口。
LCS服务器内则包含多种定位逻辑功能部件,例如LCCF、LCAF等客户处理部件,LMMF 、LSCF、LSBF、LSOF等系统处理部件,LSAF、LSPF等用户部件,PRCF、PRAF、PCF 、PSMF等定位部件。
逻辑结构与一般GSM网络相比,具有LCS功能的GSM网络主要增加了网络节点GMLC,移动定位中心SMLC以及两种定位测量单元LMU,同事定义了相应的接口。
具有LCS功能的GSM网络逻辑结构如下图所示:具有LCS功能的GSM网络结构图中,网关移动定位中心(GMLC)是外部LCS客户访问GSM网络的第一个节点,GMLC 有可能要求由Lh接口从HLR取得路径信息,完成注册后,GMLC由Lg接口向VMSC发出定位请求,并接受其返回的定位信息。
服务移动定位中心(SMLC)拥有多种支持LCS的功能模块,管理、协调和组织各种与移动台定位估计有关的资源,并完成对移动台的定位,估计定位的准确率。
目前GSM网络有两种类型的SMLC,一类是基于NSS,支持Ls接口的SMLC,另一类是基于BSS,支持Lb接口的SMLC。
Recommendation ITU-R SM.2039(08/2013) Spectrum monitoring evolutionSM SeriesSpectrum managementii Rec. ITU-R SM.2039ForewordThe role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted.The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.Policy on Intellectual Property Right (IPR)ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found.Electronic PublicationGeneva, 2013ITU 2013All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.Rec. ITU-R SM.20391RECOMMENDATION ITU-R SM.2039Spectrum monitoring evolution(Question ITU-R 235/1)(2013)ScopeThis Recommendation gives a brief introduction on the evolution of spectrum monitoring and recommends requirements and technologies to be considered to support the evolution of spectrum monitoring.The ITU Radiocommunication Assembly,consideringa) that spectrum monitoring is a key element of spectrum management;b) that radiocommunication technologies and systems are in constant and rapid evolution;c) that, among other technologies, the impact of software-defined radio and cognitive radio systems on spectrum monitoring needs to be studied;d) that spectrum use in higher frequency bands continues to increase;e) that the ITU-R Recommendations and Reports in the SM-series, as well as the ITU Handbook on spectrum monitoring (Edition 2011) provide extensive information on spectrum monitoring of existing radio communication technologies and systems;f) that the existing spectrum monitoring systems and/or methods (including fixed, mobile and transportable stations) may need to be assessed with respect to their capability for monitoring new radiocommunication technologies and systems;g) that the improvement in spectrum monitoring equipment enhances the efficiency and effectiveness of the spectrum management process;h) that the increasing amount of collected spectrum measurement results may require adaptation of the organization and handling of the data and of the spectrum monitoring techniques used,recognizinga) that the use of co-frequency multiplexing, advanced spectrum sharing techniques and other methods could improve frequency occupancy and spectrum efficiency;b) that wideband radio systems could enable faster communications, and the technology is developing very fast especially in future data networks;c) that some spectrum monitoring systems have difficulty detecting and locating low power radio devices which use modern modulation techniques,recommends1 that the evolution of spectrum monitoring makes use of systems that can extend the monitoring coverage, perform various functions and include user-friendly operation which are described in Annex 1;2Rec. ITU-R SM.20392 that the evolution of spectrum monitoring utilizes technologies, such as Detection of Weak signals, Co-frequency Signal Separation, and Multi-mode Location based on a combination of techniques, which are described in Annex 2.Annex 1Requirements of systems supporting the evolutionof spectrum monitoring1 Extending the monitoring coverageWith the continuous and rapid development of radio technologies, with higher frequencies and broader bandwidths, the more radio propagation distance decreases. It brings about a new challenge to spectrum management and monitoring. To strengthen the management and monitoring of radio spectrum, it is necessary to expand the coverage of spectrum monitoring or improve the sensitivity of the monitoring system to detect weak signals under low signal-to-noise ratio conditions. To detect weak signals, the following technologies would have to be used:–Increase of the antenna gain (e.g. directional antenna, reconfigurable antenna).–Decrease of the transmission loss (e.g. outdoor installation of equipment for minimizing RF cable loss).–Reduction of the receiver noise figure.–Reduction of the noise by signal processing (e.g. noise subtraction, correlation). However, it is not enough to cope with the decrease of radio propagation distance. An increase in the number of monitoring stations should be considered but it is not always practical to deploy large fixed monitoring networks. When considering the practical conditions, the flexible operation and deployment with various types of monitoring systems should be needed:–Monitoring systems with high performance (e.g. fixed monitoring system).–Low-priced monitoring systems for special bands/signals (e.g. monitoring system for2.4 GHz ISM band).–Monitoring systems for specific purpose/region (e.g. airport monitoring system, transportable monitoring system for major events).–Mobile and portable monitoring systems.2 Performing the various functions2.1 Multi-domainsThe monitoring system should carry out various analyses in multi-domains as shown in Table 1. Analysis of multi-domains helps operators to identify signals and to extract parameters of the signals. Specifically, analysis of the known standard data communication protocol can provide more information including transmitter identification. The existing analysis such as time/spectrum domain and amplitude/phase domain is basic and necessary. As wider signal bandwidths and shorterRec. ITU-R SM.20393 signal durations are becoming more common, this analysis may be required for performing the multi-channel direction finding in addition to a general single-channel direction finding. Development of signal processing technology makes it possible to perform the simultaneous multi-channel direction finding which can enable obtaining the spatial information of each channel. Also, direction finding of short duration signals like hopping signals is possible and direction finding results of multi-channel systems can inform whether an unknown wideband signal is the same channel or not. Furthermore, if carrying out single-channel and multi-channel direction finding at the same time, it can be expected to produce more reliable direction finding results.TABLE 1Example of various analyses in multi-domains2.2 Multi-measurementsWith high-performance measurement systems, it takes less time to measure by reducing processing overhead such as receiver setting time and signal processing time. As a result, the multi-measurements can be performed by time sharing as indicated in the following examples:–Measurement of the channel occupancy and analysis of particular frequency by time-sharing simultaneously.–When two users request the measurement and analysis of distinct frequency bands at the same time, the computation and transmission of results are possible by sharing time.2.3 Multi-receiversIf using multi-receivers, the improvement of speed and performance by concurrent measurements can be expected and the following functions can be performed:•Searching and listening by handoverOperators can search and listen to the detected signals by handover.•Direction finding and locationThe details on direction finding and location of transmitters are referred to in Chapter 4.7 of the ITU Handbook on spectrum monitoring (Edition 2011). In the case of using multi-stations for location, there are two methods which are the triangulation method using angle of arrival (AOA) of systems with multi-receivers and time difference of arrival (TDOA) method using time difference of each distributed system. Better location accuracy can be achieved through the combination of the two methods because of the complementing advantages and limitations of each method.4Rec. ITU-R SM.2039•Spatial diversityThe signal is transmitted over several different propagation paths which cause phase shifts, time delays, attenuations, and distortions that can destructively interfere with one another at the aperture of the receiving antenna. The spatial diversity is usually performed by selecting the best signal-to-noise ratio (SNR) among received signals or/and by combining signals through direct or coherent addition and can improve the signal quality and reliability of a wireless link.•Correlation detectionThe system with multi-receivers can use correlation methods. It can be possible to detect weak signals by reducing random noise sources like the white noise of receivers.2.4 Multi-userThe connection methods used between stations and operators should be changed. When controlling monitoring stations at any terminal, the connection type would be shifted from one-to-one (1:1) to one-to-many (1:N) or many-to-many (N:N) in the same manner as the transformation of telecommunication networks from circuit-switching to packet-switching. When multiple users call for measurements from arbitrary stations simultaneously, the station analyses and schedules its own resources. Next, it conducts the measurement and transmission of results on schedule. In the case of using several stations (e.g. TDOA and Cross-correlation detection), the master station (or central controller) can schedule and control measurements.3 User-friendly operationAs technology advances and various new signal types appear, the signal bandwidth is increasing and setting parameters are getting more complex for signal analysis purposes. The use of analogue modulated sounds and images has moved to digital data communications which usually use more complicated modulation methods and various coding techniques. For example, in the case of using analogue modulation, it is possible to analyse the signal by setting frequency, bandwidth and modulation type. However, when analysing digital modulation methods, analysis should include not only frequency, bandwidth and modulation methods but also standard parameters such as matched filter type, symbol rate, frame structure and various codes.As a simple domain such as spectrum and level of signals is changed into multi-domains as shown in Table 1, operators may require a user-friendly control display (often called Graphical User Interface, or GUI) which enables automatic settings of parameters and graphics for effective and convenient analysis. The useful and user-friendly display for monitoring may be equipped with functions such as automatic parameter setting according to signal types and different digital communications standards. Also, it should contain gain control depending on the received signal level and convenient diagnosis of the network and hardware. When the monitoring and measurements are performed for a long time, large amounts of data are accumulated in database. Therefore, temporal and spatial changes of signals can be effectively estimated by comparing with the existing data through easy access to database.Rec. ITU-R SM.20395Annex 2Technologies supporting the evolution ofspectrum monitoring1 Detection of weak signalsThe use of wideband devices and short range devices has been increasing rapidly in recent years, which causes difficulties for some monitoring systems without advanced processing, which have to deal with such low-power-density signals, especially to locate illegal transmitters or spurious emissions, etc. Deploying more monitoring systems will help to solve this problem, but this solution can be expensive.In many cases, detection of weak signals can be improved by using a dynamic monitoring network, which may consist of mobile systems supporting and working to complement the fixed stations. Future spectrum monitoring systems using technology for detection of weak signals will detect low-power-density signals without high cost. Typically, cross-correlation can improve sensitivity of spectrum monitoring systems 20-30 dB. Advanced technologies, such as locked-in amplifier, sampled integration, auto-correlation, cross-correlation and adaptive noise cancelling, may be used to detect low-power-density weak signals.2 Co-frequency signal separationIn order to improve frequency occupancy and spectrum efficiency, radio frequencies are utilized in different domains, including frequency domain, time domain, amplitude domain, modulation domain, space domain, etc. Traditional monitoring devices can separate different FDMA signals easily, but it can be difficult to monitor co-frequency signals, for example, co-frequency interference, TDMA, CDMA and SDMA signals.Future spectrum monitoring system using co-frequency signal separation technology can monitor signals working in different domains with ease. Just like a filter can separate signals working at non overlapping frequencies, beam-forming antenna can separate signals coming from different directions. Advanced technologies, such as strong-signal recovery, independent component analysis, spatial spectrum based beam-forming, and space-matched filtering may be used to separate signals working in different domains according to their different features.3 Multi-mode location (based on a combination of location technologies)Signals in different domains carry related location information. Correspondingly, such location information can be extracted by related technology or computer processing algorithms used in signal location. Digital signal processing (DSP) and networking capability is becoming more and more powerful. Devices based on DSP and networking are becoming more affordable. Spectrum monitoring systems based on DSP algorithms and network technology can make identification of transmitters with different characteristics working in different domains easier.Future spectrum monitoring systems using the technology of multi-mode location based on DSP and networking will improve efficiency and accuracy when monitoring signals with different characteristics. TDOA is a good example of a system based on DSP processing and networking to locate emitters using the relative arrival times of a signal at multiple receivers. TDOA systems offer flexibility in antenna selection and placement as TDOA accuracy is minimally affected by nearby reflectors, and antennas and cables are generally not integral to TDOA receivers. Available6Rec. ITU-R SM.2039advanced technologies, such as AOA (angle of arrival), TDOA, FDOA (frequency difference of arrival), POA (power of arrival), and identification data-aided techniques, may be used to locate emitters under different circumstances.。
a r X i v :0712.1708v 2 [h e p -e x ] 25 M a r 2008Search for B 0s →µ+µ−and B 0→µ+µ−Decays with 2fb −1of pJ.Naganoma,56K.Nakamura,54I.Nakano,39A.Napier,55V.Necula,16C.Neu,44M.S.Neubauer,24J.Nielsen f,28 L.Nodulman,2M.Norman,9O.Norniella,24E.Nurse,30S.H.Oh,16Y.D.Oh,27I.Oksuzian,18T.Okusawa,40 R.Oldeman,29R.Orava,23K.Osterberg,23S.Pagan Griso,42C.Pagliarone,45E.Palencia,17V.Papadimitriou,17 A.Papaikonomou,26A.A.Paramonov,13B.Parks,38S.Pashapour,33J.Patrick,17G.Pauletta,53M.Paulini,12C.Paus,32D.E.Pellett,7A.Penzo,53T.J.Phillips,16G.Piacentino,45J.Piedra,43L.Pinera,18K.Pitts,24 C.Plager,8L.Pondrom,58X.Portell,3O.Poukhov,15N.Pounder,41F.Prakoshyn,15A.Pronko,17J.Proudfoot,2F.Ptohos h,17G.Punzi,45J.Pursley,58J.Rademacker c,41A.Rahaman,46V.Ramakrishnan,58N.Ranjan,47 I.Redondo,31B.Reisert,17V.Rekovic,36P.Renton,41M.Rescigno,50S.Richter,26F.Rimondi,5L.Ristori,45 A.Robson,21T.Rodrigo,11E.Rogers,24S.Rolli,55R.Roser,17M.Rossi,53R.Rossin,10P.Roy,33A.Ruiz,11 J.Russ,12V.Rusu,17H.Saarikko,23A.Safonov,52W.K.Sakumoto,48G.Salamanna,50O.Salt´o,3L.Santi,53 S.Sarkar,50L.Sartori,45K.Sato,17A.Savoy-Navarro,43T.Scheidle,26P.Schlabach,17E.E.Schmidt,17 M.A.Schmidt,13M.P.Schmidt,59M.Schmitt,37T.Schwarz,7L.Scodellaro,11A.L.Scott,10A.Scribano,45 F.Scuri,45A.Sedov,47S.Seidel,36Y.Seiya,40A.Semenov,15L.Sexton-Kennedy,17A.Sfyria,20S.Z.Shalhout,57M.D.Shapiro,28T.Shears,29P.F.Shepard,46D.Sherman,22M.Shimojima n,54M.Shochet,13Y.Shon,58I.Shreyber,20A.Sidoti,45P.Sinervo,33A.Sisakyan,15A.J.Slaughter,17J.Slaunwhite,38K.Sliwa,55J.R.Smith,7 F.D.Snider,17R.Snihur,33M.Soderberg,34A.Soha,7S.Somalwar,51V.Sorin,35J.Spalding,17F.Spinella,45 T.Spreitzer,33P.Squillacioti,45M.Stanitzki,59R.St.Denis,21B.Stelzer,8O.Stelzer-Chilton,41D.Stentz,37 J.Strologas,36D.Stuart,10J.S.Suh,27A.Sukhanov,18H.Sun,55I.Suslov,15T.Suzuki,54A.Taffard e,24 R.Takashima,39Y.Takeuchi,54R.Tanaka,39M.Tecchio,34P.K.Teng,1K.Terashi,49J.Thom g,17A.S.Thompson,21G.A.Thompson,24E.Thomson,44P.Tipton,59V.Tiwari,aczyk,17D.Toback,52 S.Tokar,14K.Tollefson,35T.Tomura,54D.Tonelli,17S.Torre,19D.Torretta,17S.Tourneur,43W.Trischuk,33 Y.Tu,44N.Turini,egawa,54S.Uozumi,54S.Vallecorsa,20N.van Remortel,23A.Varganov,34E.Vataga,36F.V´a zquez l,18G.Velev,17C.Vellidis a,45V.Veszpremi,47M.Vidal,31R.Vidal,17I.Vila,11R.Vilar,11T.Vine,30M.Vogel,36I.Volobouev q,28G.Volpi,45F.W¨u rthwein,9P.Wagner,44R.G.Wagner,2 R.L.Wagner,17J.Wagner-Kuhr,26W.Wagner,26T.Wakisaka,40R.Wallny,8S.M.Wang,1A.Warburton,33D.Waters,30M.Weinberger,52W.C.Wester III,17B.Whitehouse,55D.Whiteson e,44A.B.Wicklund,2E.Wicklund,17G.Williams,33H.H.Williams,44P.Wilson,17B.L.Winer,38P.Wittich g,17S.Wolbers,17 C.Wolfe,13T.Wright,34X.Wu,20S.M.Wynne,29A.Yagil,9K.Yamamoto,40J.Yamaoka,51T.Yamashita,39 C.Yang,59U.K.Yang m,13Y.C.Yang,27W.M.Yao,28G.P.Yeh,17J.Yoh,17K.Yorita,13T.Yoshida,40G.B.Yu,48 I.Yu,27S.S.Yu,17J.C.Yun,17L.Zanello,50A.Zanetti,53I.Zaw,22X.Zhang,24Y.Zheng b,8and S.Zucchelli5(CDF Collaboration∗)1Institute of Physics,Academia Sinica,Taipei,Taiwan11529,Republic of China2Argonne National Laboratory,Argonne,Illinois604393Institut de Fisica d’Altes Energies,Universitat Autonoma de Barcelona,E-08193,Bellaterra(Barcelona),Spain4Baylor University,Waco,Texas767985Istituto Nazionale di Fisica Nucleare,University of Bologna,I-40127Bologna,Italy6Brandeis University,Waltham,Massachusetts022547University of California,Davis,Davis,California956168University of California,Los Angeles,Los Angeles,California900249University of California,San Diego,La Jolla,California9209310University of California,Santa Barbara,Santa Barbara,California9310611Instituto de Fisica de Cantabria,CSIC-University of Cantabria,39005Santander,Spain12Carnegie Mellon University,Pittsburgh,PA1521313Enrico Fermi Institute,University of Chicago,Chicago,Illinois60637 14Comenius University,84248Bratislava,Slovakia;Institute of Experimental Physics,04001Kosice,Slovakia15Joint Institute for Nuclear Research,RU-141980Dubna,Russia16Duke University,Durham,North Carolina2770817Fermi National Accelerator Laboratory,Batavia,Illinois6051018University of Florida,Gainesville,Florida3261119Laboratori Nazionali di Frascati,Istituto Nazionale di Fisica Nucleare,I-00044Frascati,Italy20University of Geneva,CH-1211Geneva4,Switzerland21Glasgow University,Glasgow G128QQ,United Kingdom22Harvard University,Cambridge,Massachusetts0213823Division of High Energy Physics,Department of Physics,University of Helsinki and Helsinki Institute of Physics,FIN-00014,Helsinki,Finland24University of Illinois,Urbana,Illinois6180125The Johns Hopkins University,Baltimore,Maryland2121826Institut f¨u r Experimentelle Kernphysik,Universit¨a t Karlsruhe,76128Karlsruhe,Germany27Center for High Energy Physics:Kyungpook National University,Daegu702-701,Korea;Seoul National University,Seoul151-742,Korea;Sungkyunkwan University,Suwon440-746,Korea;Korea Institute of Science and Technology Information,Daejeon,305-806,Korea;Chonnam National University,Gwangju,500-757,Korea28Ernest Orlando Lawrence Berkeley National Laboratory,Berkeley,California9472029University of Liverpool,Liverpool L697ZE,United Kingdom30University College London,London WC1E6BT,United Kingdom31Centro de Investigaciones Energeticas Medioambientales y Tecnologicas,E-28040Madrid,Spain 32Massachusetts Institute of Technology,Cambridge,Massachusetts0213933Institute of Particle Physics:McGill University,Montr´e al,Canada H3A2T8;and University of Toronto,Toronto,Canada M5S1A734University of Michigan,Ann Arbor,Michigan4810935Michigan State University,East Lansing,Michigan4882436University of New Mexico,Albuquerque,New Mexico8713137Northwestern University,Evanston,Illinois6020838The Ohio State University,Columbus,Ohio4321039Okayama University,Okayama700-8530,Japan40Osaka City University,Osaka588,Japan41University of Oxford,Oxford OX13RH,United Kingdom42University of Padova,Istituto Nazionale di Fisica Nucleare,Sezione di Padova-Trento,I-35131Padova,Italy43LPNHE,Universite Pierre et Marie Curie/IN2P3-CNRS,UMR7585,Paris,F-75252France44University of Pennsylvania,Philadelphia,Pennsylvania1910445Istituto Nazionale di Fisica Nucleare Pisa,Universities of Pisa,Siena and Scuola Normale Superiore,I-56127Pisa,Italy46University of Pittsburgh,Pittsburgh,Pennsylvania1526047Purdue University,West Lafayette,Indiana4790748University of Rochester,Rochester,New York1462749The Rockefeller University,New York,New York1002150Istituto Nazionale di Fisica Nucleare,Sezione di Roma1,University of Rome“La Sapienza,”I-00185Roma,Italy51Rutgers University,Piscataway,New Jersey0885552Texas A&M University,College Station,Texas7784353Istituto Nazionale di Fisica Nucleare,University of Trieste/Udine,Italy54University of Tsukuba,Tsukuba,Ibaraki305,Japan55Tufts University,Medford,Massachusetts0215556Waseda University,Tokyo169,Japan57Wayne State University,Detroit,Michigan4820158University of Wisconsin,Madison,Wisconsin5370659Yale University,New Haven,Connecticut06520We have performed a search for B0s→µ+µ−and B0→µ+µ−decays in p s=1.96TeV using2fb−1of integrated luminosity collected by the CDF II detector at the FermilabTevatron Collider.The observed number of B0s and B0candidates is consistent with background expectations.The resulting upper limits on the branching fractions are B(B0s→µ+µ−)<5.8×10−8and B(B0→µ+µ−)<1.8×10−8at95%C.L.PACS numbers:13.20.He13.30.Ce12.15.Mm12.60.JvEngland,n Nagasaki Institute of Applied Science,Nagasaki,Japan,o University de Oviedo,E-33007Oviedo,Spain,p Queen Mary,Uni-versity of London,London,E14NS,England,q Texas Tech Univer-sity,Lubbock,TX79409,r IFIC(CSIC-Universitat de Valencia),46071Valencia,Spain,hancement.The FCNC decays B0s(B0)→µ+µ−[1]occur in the SM only through higher order diagrams.The SM expectations for these branching fractions are B(B0s→µ+µ−)=(3.42±0.54)×10−9and B(B0→µ+µ−)=(1.00±0.14)×10−10[2],which are one orderof magnitude smaller than current experimental sensitiv-ity.Previous bounds,based on1.3fb−1and364pb−1 are B(B0s→µ+µ−)<1.2×10−7and B(B0→µ+µ−)< 5.1×10−8at the95%C.L.,respectively[3,4]. Enhancements to B0s(B0)→µ+µ−occur in many new-physics models.In supersymmetry(SUSY)models,con-tributions from diagrams including supersymmetric par-ticles can increase B(B0s(B0)→µ+µ−)by several orders of magnitude at large tanβ,the ratio of vacuum expec-tation values of the Higgs doublets[5].In the minimal supersymmetric standard model(MSSM),the enhance-ment is proportional to tan6β.Global analyses includ-ing all existing experimental constraints suggest that the large tanβregion is of interest[6,7,8].In contrast,SUSY R-parity violating models[6]and non-minimalflavor vi-olating models[9]can both enhance B0s→µ+µ−and B0→µ+µ−separately even at low tanβ.In the absence of an observation,limits on B(B0s→µ+µ−)are comple-mentary to those provided by other experimental mea-surements,and together would significantly constrain the allowed supersymmetric parameter space.For example, if the lightest neutralino in SUSY models is a cold dark matter(CDM)particle,B(B0s→µ+µ−)and constraints on the amount of CDM in the universe from cosmic mi-crowave anisotropy measurements can be exploited in this way[6,7,8].Then,for instance,in minimal super-gravity(mSUGRA)models limits on B(B0s→µ+µ−)will correspond to bounds on superpartner particle masses that are beyond the sensitivity of the corresponding di-rect searches for those particles in colliding-beam exper-iments[6].In general,the search for these rare decays is central to exploring a large class of new-physics models. This measurement uses2fb−1of integrated luminosity collected by the upgraded Collider Detector at Fermilab (CDF II)and supersedes our previous measurement using 364pb−1[4].The sensitivity of the analysis is improved significantly by increasing the integrated luminosity of the event sample,using an enhanced muon selection,em-ploying a neural network(NN)discriminant to separate signal from background,and performing the search in a two dimensional grid in dimuon mass and NN space.A detailed description of the CDF II detector can befound in Ref.[10].Charged particle tracking is provided by a silicon microstrip detector surrounded by an open-cell wire drift chamber immersed in a1.4T solenoidal magneticfield.This system provides precise vertex de-termination and momentum measurements for charged particles in a pseudorapidity range|η|<1.0,where η=−ln(tanθFIG.1:Distributions ofνN for simulated B0s→µ+µ−signal and observed sideband events.grounds from two-body hadronic B decays to a level that has negligible impact on the analysis.A sample of B+→J/ψK+events is collected to serve as a normal-ization mode using the same baseline requirements,but including a requirement of p T>1GeV/c for the kaon candidate and constructing the B+→J/ψK+→µ+µ−vertex using only the muon candidate tracks.For thefinal event selection we use the following dis-criminating variables:mµµ,λ,λ/σλ,∆Θ,I,| pµµT|,and the p T of the lower momentum muon candidate.To en-hance signal and background separation we construct a NN discriminant,νN,based on all the discriminating variables except mµµ,which is used to define signal and sideband background regions.The NN is trained using background events sampled from the sideband regions and signal events generated with a simulation described below.TheνN distributions of B0s signal and sideband background events are shown in Fig.1.Only part of the total number of background and simulated signal events are used in order to have unbiased samples to test the background discrimination and signal efficiency.For thefinal selection,we define search regions of 5.310<mµµ<5.430GeV/c2for the B0s and5.219< mµµ<5.339GeV/c2for the B0around the mass val-ues m B0s =5.370GeV/c2and m B0=5.279GeV/c2[15],respectively.These regions correspond to approximately ±2.5timesσm,the estimated two-track invariant mass resolution,whereσm≈24MeV/c2.The sideband re-gions4.669<mµµ<5.169GeV/c2and5.469<mµµ< 5.969GeV/c2are used to estimate the combinatorial backgrounds in the signal regions.Backgrounds from the two-body hadronic B0s and B0decays,B→h+h−,where h±areπ±or K±,which peak in the B0s and B0invari-ant mass signal region and do not occur in the sidebands, are estimated separately.The content of signal regions were not unveiled until all selection criteria werefinal-ized.Thefinal selection criteria were determined from an a priori optimization,which maximizes sensitivity of the expected limit.The kinematics of B0s→µ+µ−and B0→µ+µ−decays are similar enough that the efficien-cies are the same within statistical uncertainties and the same efficiencies and optimizations are used.For measuring efficiencies,estimating backgrounds, and optimizing the analysis,samples of B0s(B0)→µ+µ−, B+→J/ψK+,and B→h+h−are generated with the pythia simulation program[16]and a CDF II detec-tor simulation.The B-hadron p T spectrum and the I distribution of the B-hadrons are weighted to match dis-tributions measured in samples of B+→J/ψK+and B0s→J/ψφevents[10,12].We use a relative normalization to determine the B0s→µ+µ−branching fraction:B(B0s→µ+µ−)=N sαs·ǫ+ǫN·f u6flavor decays is negligible.We estimate the combinatorial background by linearly extrapolating from the sideband region to the signal region.The B→h+h−contribu-tions are about a factor of ten smaller than the combi-natorial background and are estimated using efficiencies taken from the simulation,probabilities of misidentify-ing hadrons as muons measured in a D0→πK data sample,andnormalizations derived from branching frac-tions from Refs.[13,15].The two-body invariant mass distribution of the simulated B→h+h−candidates is calculated from the momentum of the hadrons assum-ing the muon mass hypothesis.The background esti-mates are cross-checked using three independent control samples:µ±µ±events,µ+µ−events withλ<0,and a misidentified muon-enhancedµ+µ−sample in which we require one muon candidate to fail the muon quality requirements.We compare the predicted and observed number of events in these samples for a wide range ofνN requirements and observe no significant discrepancies. Using an a priori optimization procedure,we foundthat subdividing the signal region into severalνN andmass bins to exploit the shape of the mass distribution and the higher signal to background ratios for the higherνN values improves the sensitivity by15%relative to us-ing a single bin.The signal region is divided intofive equal mass bins of24MeV/c2and threeνN bins delin-eated at0.8,0.95,0.995and1.0.The backgrounds,effi-ciencies,and limits are calculated in each bin separately. Summing over the mass bins in each slice ofνN,the cor-respondingǫN s are estimated to be12%,23%,and44% and the expected SM yields of B0s→µ+µ−events are 0.08±0.03,0.15±0.05,and0.30±0.10,respectively.The expected yield of B0→µ+µ−events is ten times smaller. Using these optimized selection criteria,we compute anexpected limit of B(B0s→µ+µ−)<4.9×10−8at95% C.L.The expected limit is a factor offive better than the expected limit of the previous analysis[4].The limits are estimated from Eq.(1)using the confidence level(CLs) method of Ref.[15]to extract the95%C.L.upper bound on N s;the limit incorporates Gaussian uncertainties on the signal acceptance and efficiency as well as the back-ground estimates.The number of observed events is com-pared with the total predicted background in Table I for each bin of mass andνN.The uncertainty on the back-ground estimate is dominated by the statistical uncer-tainty of the sideband sample.Theµ+µ−invariant mass distributions for the three differentνN ranges are shown in Fig.2.The observed event rates are consistent with SM background expectations.We extract95%(90%) C.L.limits of B(B0s→µ+µ−)<5.8×10−8(4.7×10−8) and B(B0→µ+µ−)<1.8×10−8(1.5×10−8).In mSUGRA,branching ratios as low as B(B0s→µ+µ−)=5.8×10−8occur for common gaugino mass parameter,m1/2,below380GeV/c2at tanβ=50in a CDM-allowed co-annihilation region[17].In this scenario we exclude gluino masses below925GeV/c2.This Letter reports a search for the rare FCNC decays FIG.2:Theµµinvariant mass distribution for events sat-isfying all selection criteria for thefinal three ranges ofνN. B0s mass binsνN I II III IV VA Exp11.0±0.610.8±0.510.7±0.510.5±0.510.3±0.5Obs15139149B Exp 4.0±0.3 3.9±0.3 3.9±0.3 3.8±0.3 3.7±0.3Obs11524C Exp0.8±0.10.8±0.10.8±0.10.8±0.10.8±0.1Obs23100 TABLE I:The total number of expected(Exp)and ob-served(Obs)background events for the B0s(upper)and B0 (lower)signal windows.νN bins:A(0.80-0.95),B(0.95-0.995),C(0.995-1.0)andfive equal sized mass bins,(I-V), as described in the text.B0s→µ+µ−and B0→µ+µ−with2fb−1integrated luminosity collected in p s=1.96TeV using the CDF II detector and employing improved anal-ysis techniques.We observe no evidence for new physics and set limits that are the most stringent to date,im-proving the previous results[3,4]by a factor of two or more.These limits place further constraints on new-physics models[5,6,7,8,9],and complement direct searches for new physics.We expect the analysis sensi-7tivity to continue to improve as we include larger data sets.We thank the Fermilab staffand the technical staffs of the participating institutions for their vital contribu-tions.This work was supported by the U.S.Department of Energy and National Science Foundation;the Italian Istituto Nazionale di Fisica Nucleare;the Ministry of Education,Culture,Sports,Science and Technology of Japan;the Natural Sciences and Engineering Research Council of Canada;the National Science Council of the Republic of China;the Swiss National Science Founda-tion;the A.P.Sloan Foundation;the Bundesministerium f¨u r Bildung und Forschung,Germany;the Korean Sci-ence and Engineering Foundation and the Korean Re-search Foundation;the Science and Technology Facilities Council and the Royal Society,UK;the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research;the Comisi´o n Interministerial de Ciencia y Tecnolog´ıa,Spain;the Eu-ropean Community’s Human Potential Programme;the Slovak R&D Agency;and the Academy of Finland. [1]Throughout this paper inclusion of charge conjugate re-actions are implied.[2]G.Buchalla and A.J.Buras,Nucl.Phys.B400,225(1993);A.J.Buras,Phys.Lett.B566,115(2003). [3]V.Abazov et al.(DØCollaboration),Phys.Rev.D76,092001(2007).[4]D.Acosta et al.(CDF Collaboration),Phys.Rev.Lett.95,221805(2005).[5]S.R.Choudhury and N.Gaur,Phys.Lett.B451,86(1999);K.S.Babu and C.Kolda,Phys.Rev.Lett.84, 228(2000).[6]R.Arnowitt et al.,Phys.Lett.B538,121(2002).[7]S.Baek et al.,J.High Energy Phys.0506,017(2005).[8]R.Ruiz de Austri et al.,J.High Energy Phys.0605,002(2006);J.Ellis et al.,J.High Energy Phys.0605,063 (2006).[9]P.H.Chankowski and J.Rosiek,Acta Phys.Pol.B33,2329(2002).[10]D.Acosta et al.(CDF Collaboration),Phys.Rev.D71,032001(2005).[11]D.Acosta et al.(CDF Collaboration),Phys.Rev.Lett.93,032001(2004).[12]A.Abulencia et al.(CDF Collaboration),Phys.Rev.Lett.97,242003(2006).[13]A.Abulencia et al.(CDF Collaboration),Phys.Rev.Lett.97,211802(2006).[14]I=| pµµT|/(Pip i T+| pµµT|);the sum is over all tracks with p。