最小二乘法matlab
- 格式:docx
- 大小:27.67 KB
- 文档页数:4
matlab最小二乘法求参数一、引言最小二乘法是数学中常见的一个工具,它用于寻找最适合一组数据的函数参数。
在非线性回回归和多元线性回归中,最小二乘法是非常有用的一种工具。
MATLAB是一种流行的计算机解释型编程语言,广泛应用于科学、工程、财务等领域。
Matlab中有许多内置的函数,支持最小二乘法。
本文介绍如何在Matlab中使用最小二乘法函数lsqcurvefit或lsqnonlin求解函数参数。
二、最小二乘法最小二乘法是用于寻找数据点到拟合函数直线或曲线之间的最小平方距离的方法,通常用于回归分析中。
它是一种优化问题,可以通过优化算法来解决。
最小二乘法通常用于线性和非线性回归分析。
在线性回归中,拟合的函数是线性函数; 而在非线性回归中,拟合的函数也可以是任意函数。
在这种情况下,最小二乘法可以通过非线性优化方法来解决。
假设有N个数据点(x1,y1),(x2,y2),...(xn,yn),我们想要找到一个函数f(x,θ)来逼近这些数据点,其中θ是函数的参数。
最小二乘法的目标是使f(x,θ)与y尽可能接近。
误差函数可以定义为:E(θ)=∑i=1^N[f(xi,θ)-yi]^2最小二乘法的目标是最小化误差函数θ*=argmin(E(θ))为了寻找θ,我们可以使用最小二乘法优化算法。
有两种方法可以解决这个问题:线性最小二乘法(LLS)和非线性最小二乘法(NLS)。
三、线性最小二乘法在线性最小二乘法中,函数f(x,θ)是线性的,可以表示为:f(x,θ)=θ1x1+θ2x2+...+θmxm 其中θ=(θ1,θ2,...,θm)是待定的函数参数。
在这种情况下,误差函数可以写成E(θ)=∑i=1^N(θ1x1i+θ2x2i+...+θmxmi-yi)^2我们可以将误差函数写成矩阵形式。
假设我们有一个m×N的矩阵X,它由输入数据点(x1i,x2i,..,xmi)构成,我们还有长度为N的y向量。
随着m的增加参数数量增加,此时,我们的优化问题变成了θ*=argmin||Xθ-y||^2此处||.||表示二范数,即向量各分量的平方和的平方根。
数值实验报告一1.数值实验问题已知液体的表面张力s是温度T的线性函数s=aT+b,对某种液体有表如下的实验数据。
试用最小二乘法确定系数a,b。
并通过图形展示拟合效果。
2.数值方法最小二乘法。
3.数值结果方法一的系数:b0 =67.9593a0 = -0.0799方法二的系数:b1 =67.9593a1 =-0.0799方法三的系数:c2 =67.9289b2 =-0.0775a2 =-2.4294e-005方法三为二次拟合,c2为常数项,b2为一次项的系数,a2为二次项的系数。
结果图形展示:4.讨论数值实验中出现的问题:由于方法一是书上的运行过程中并没有什么问题,但是在方法二中当单独运行方法二时并不会出现问题,但是当与方法一同时运行时就会报错,经过对比分析发现是由于方法一与方法二的变量重合但是变量内的数值不通用造成的,任意更改重合变量中的一个后程序就可以完美运行了;在对方法三进行编程时遇到了编程完成但是找不到错误的问题,进过老师的指导发现是有一个变量的结果与预知不符,在老师的帮助下重新对该变量编程,最终完成了方法三的编写。
分析实验结果:通过对实验结果的分析,发现三种方法的拟合曲线稍有差别,但是差别不大,均围绕说给的表格的数据拟合,没有大的偏移,这说明这三种方法都是有效可行的。
程序代码:方法一:s=[68.0 67.1 66.4 65.6 64.6 61.8 61.0 60.0]';T=[0 10 20 30 40 80 90 95]';T1=ones(8,1);G=[T1 T];Z=G\s ;b0=Z(1);a0=Z(2);plot(T,s,'r*',T,a0*T+b0,'r')方法二:s=[68.0 67.1 66.4 65.6 64.6 61.8 61.0 60.0]';T=[0 10 20 30 40 80 90 95]';X=1:100;wi=ones(8,1);A(1,1)=0;A(1,2)=0;A(2,1)=0;A(2,2)=0;B(1,1)=0;B(2,1)=0;for i=1:8,A(1,1)=A(1,1)+wi(i);endfor i=1:8,A(1,2)=A(1,2)+wi(i).*T(i);A(2,1)=A(1,2);endfor i=1:8,A(2,2)=A(2,2)+wi(i).*T(i).^2;endfor i=1:8,B(1,1)=B(1,1)+wi(i).*s(i);endfor i=1:8,B(2,1)=B(2,1)+wi(i).*s(i).*T(i);endC=A\B;b1=C(1);a1=C(2);plot(X,a1*X+b1,'b+')方法三:s=[68.0 67.1 66.4 65.6 64.6 61.8 61.0 60.0]'; T=[0 10 20 30 40 80 90 95]';X1=0:1:100;n=2;m=length(T);vi=ones(m,1);for j=1:n+1.for k=1:n+1,D(j,k)=0;endendfor j=1:n+1.for k=1:n+1,for l=1:m,D(j,k)=D(j,k)+vi(l).*T(l).^(k+j-2); endendendfor l=1:n+1,E(l,1)=0;endfor j=1:n+1,for l=1:m,E(j,1)=E(j,1)+vi(l).*s(l).*T(l).^(j-1); endendF=D\E;c2=F(1);b2=F(2);a2=F(3);plot(X1,a2.*X1.^2+b2*X1+c2,'r+')。
最小二乘法(Least Squares Method,LSM)是一种数值计算方法,用于拟合曲线,求解未知参数的值。
它的基本思想是,通过求解最小二乘误差的最优解,来拟合曲线,从而求得未知参数的值。
本文将介绍最小二乘法在Matlab中的实现原理及程序编写。
一、最小二乘法的原理最小二乘法是一种数值计算方法,它的基本思想是,通过求解最小二乘误差的最优解,来拟合曲线,从而求得未知参数的值。
最小二乘法的基本原理是:给定一组数据点,用直线拟合这组数据点,使得拟合直线与这组数据点的误差的平方和最小。
具体地说,假设有一组数据点,其中每个数据点都可表示为(x_i, y_i),i=1,2,3,...,n,其中x_i和y_i分别表示第i个数据点的横纵坐标。
拟合这组数据点的直线通常用一元线性函数表示,即y=ax+b,其中a和b是未知参数。
最小二乘法的思想是:求出使误差的平方和最小的a和b,即求出最优解。
二、Matlab程序编写1. 准备工作首先,我们需要准备一组数据点,每个数据点都可表示为(x_i, y_i),i=1,2,3,...,n,其中x_i和y_i分别表示第i个数据点的横纵坐标。
例如,我们可以准备一组数据点:x=[1,2,3,4,5];y=[2,4,6,8,10];2. 程序编写接下来,我们就可以开始编写Matlab程序了。
首先,我们需要定义一个一元线性函数,用于拟合这组数据点。
函数的形式为:y=ax+b,其中a和b是未知参数。
%定义函数f=@(a,b,x)a*x+b;然后,我们需要定义一个误差函数,用于计算拟合直线与这组数据点的误差的平方和。
%定义误差函数error=@(a,b)sum((y-f(a,b,x)).^2);最后,我们就可以使用Matlab提供的fminsearch函数,求解最小二乘误差的最优解,即求出最优a和b的值。
%求解最优解[a,b]=fminsearch(error,[1,1]);经过上面的程序编写,我们就可以求得未知参数a和b的最优值。
4. 设某物理量Y与X 满足关系式Y=aX2+bX+c,实验获得一批数据如下表,试辨识模型参数a,b和c 。
(50分)X 1.01 2.03 3.02 4.015 6.027.038.049.0310Y9.6 4.1 1.30.40.050.10.7 1.8 3.89.0单,最后给出结果及分析。
(1) 问题描述:由题意知,这是一个已知模型为Y=aX2+bX+c,给出了10组实验输入输出数据,要求对模型参数a,b,c进行辨识。
这里对该模型参数辨识采用递推最小二乘法。
(2) 参数估计原理对该模型参数辨识采用递推最小二乘法,即RLS(recurisive least square),它是一种能够对模型参数进行在线实时估计的辨识方法。
其基本思想可以概括为:新的估计值=旧的估计值+修正项下面将批处理最小二乘法改写为递推形式即递推最小二乘参数估计的计算方法。
批处理最小二乘估计为,设k时刻的批处理最小二乘估计为:令K时刻的最小二乘估计可以表示为==;式中,因为要推导出P(k)和K(k)的递推方程,因此这里介绍一下矩阵求逆引理:设A、(A+BC)和(I+)均为非奇异方阵,则通过运用矩阵求逆引理,把复杂的矩阵求逆转化为标量求倒数,大大减小了计算量。
与间的递推关系。
最终得到递推最小二乘参数递推估计公式如下:(3)程序流程图 (如右图1所示)递推最小二乘法(RLS)步骤如下:已知:、和d。
Step 1 :设置初值和P(0),输入初始数据;Step2 :采样当前输出y(k)、和输入u(k)Step3 :利用上面式计算、和;Step4 :kk+1,返回step2,继续循环。
图1 程序流程图(4) Matlab仿真程序、输出参数估计值、参数估计变化轨迹图像、结果分析仿真程序如下:X=[1.01 2.03 3.02 4.01 5 6.02 7.03 8.04 9.03 10]; Y=[9.6 4.1 1.3 0.4 0.05 0.1 0.7 1.8 3.8 9.0];%实验输入数据、实验输出数据syms a b c % 定义待辨识参数theta=[a;b;c]; %theta包含待辨识参数a,b,ctheta1=zeros(3,1); %对象参数初始化P=10^6*eye(3) %构造初始P阵for k=1:10 %仿真步长范围1到10phi=[X(k)*X(k);X(k);1];%y=aX*X+bX+c=phi'*theta%theta=[a;b;c];phi=[X(k)*X(k);X(k);1]K=P*phi/(1+phi'*P*phi); %递推最小二乘法K阵的递推公式theta=theta1+K*(Y(k)-phi'*theta1); %theta的递推公式P=(eye(3)-K*phi')*P; %递推最小二乘法P阵的递推公式theta1=theta; %theta的最终估计向量theta2(:,k)=theta; %theta估计向量矩阵化,目的是为了%下面的plot仿真图像输出endtheta1 %输出参数估计值plot([1:10],theta2) %输出参数逐步递推估计的轨迹图像xlabel('k'); %设置横坐标为步长kylabel('参数估计a,b,c'); %纵坐标为估计参数a,b,c legend('a','b','c'); %标示相应曲线对应的参数axis([1 10 -10 20]); %设置坐标轴范围P =1000000 0 00 1000000 00 0 1000000输出参数估计值、参数估计变化轨迹图像:theta1 =0.4575-5.073413.3711图 2 参数估计逐步变化轨迹图像结果分析:通过matlab仿真可知,由递推最小二乘法辨识到的参数为:a=0.4575;b=-5.0734;c=13.3711所以Y=0.4575-5.0734X+13.3711 。
matlab最⼩⼆乘法数据拟合函数详解定义:最⼩⼆乘法(⼜称最⼩平⽅法)是⼀种数学优化技术。
它通过最⼩化误差的平⽅和寻找数据的最佳函数匹配。
利⽤最⼩⼆乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平⽅和为最⼩。
最⼩⼆乘法还可⽤于曲线拟合。
其他⼀些优化问题也可通过最⼩化能量或最⼤化熵⽤最⼩⼆乘法来表达。
最⼩⼆乘法原理:在我们研究两个变量(x,y)之间的相互关系时,通常可以得到⼀系列成对的数据(x1,y1.x2,y2... xm,ym);将这些数据描绘在x -y直⾓坐标系中,若发现这些点在⼀条直线附近,可以令这条直线⽅程如(式1-1)。
Yj= a0 + a1 X (式1-1),其中:a0、a1 是任意实数。
matlab中⽤最⼩⼆乘拟合的常⽤函数有polyfit(多项式拟合)、nlinfit(⾮线性拟合)以及regress(多元线性回归)。
⾃变量有2个或以上时,应变量⼀个,可以使⽤的有nlinfit和regress,线性时⽤regress,⾮线性时⽤nlinfit。
对于进阶matlab使⽤者还有更多的选择,如拟合⼯具箱、fit函数、interp系列插值拟合等等。
MATLAB中关于最⼩⼆乘法的函数主要有:help polyfit -- POLYFIT Fit polynomial to data.help lsqcurvefit -- LSQCURVEFIT solves non-linear least squares problems.help lsqnonlin -- LSQNONLIN solves non-linear least squares problems.help nlinfit -- NLINFIT Nonlinear least-squares regression.help regress -- REGRESS Multiple linear regression using least squares.help meshgrid -- MESHGRID X and Y arrays for 3-D plots.本⽂主要讲解的函数:polyfit,lsqcurvefit,lsqnonlin,regress1.多项式曲线拟合:polyfit1.1 常见拟合曲线直线: y=a0X+a1多项式:,⼀般次数不易过⾼2,3双曲线: y=a0/x+a1指数曲线: y=a*e^b1.2 matlab中函数P=polyfit(x,y,n)[P S mu]=polyfit(x,y,n)polyval(P,t):返回n次多项式在t处的值注:其中x y已知数据点向量分别表⽰横纵坐标,n为拟合多项式的次数,结果返回:P-返回n次拟合多项式系数从⾼到低依次存放于向量P中,S-包含三个值其中normr是残差平⽅和,mu-包含两个值 mean(x)均值,std(x)标准差。
matlab最小二乘解方程最小二乘法是求解线性方程组的一种有效方法,可以通过最小化误差平方和来得到最优解。
在MATLAB中,我们可以使用“\”操作符或者使用“pinv”函数来求解一个线性方程组的最小二乘解。
以下是关于如何在MATLAB中使用最小二乘法来求解线性方程组的详细内容:1. 使用“\”操作符使用“\”操作符可以很方便地求解一个线性方程组的最小二乘解。
例如,假设我们有一个由n个方程组成的线性方程组:Ax = b其中,A是一个m ×n的矩阵,x是一个n维向量,b是一个m维向量。
则它的最小二乘解为:x = (A' A)^(-1) A' b在MATLAB中,我们可以通过以下代码实现最小二乘解:A = [1 1 1; 2 3 4; 4 5 7; 5 6 8];b = [1; 2; 3; 4];x = A \ b;其中,反斜杠符号“\”表示求解线性方程组的最小二乘解。
2. 使用“pinv”函数除了使用“\”操作符,我们也可以使用MATLAB中的“pinv”函数来求解一个线性方程组的最小二乘解。
例如,我们可以通过以下代码实现最小二乘解:A = [1 1 1; 2 3 4; 4 5 7; 5 6 8];b = [1; 2; 3; 4];x = pinv(A) * b;其中,pinv函数表示求矩阵A的伪逆矩阵。
使用“pinv”函数来求解线性方程组的最小二乘解与使用“\”操作符的结果是等价的。
需要注意的是,在使用最小二乘法来求解线性方程组时,矩阵A的列应该是线性无关的,否则可能会出现唯一最小二乘解不存在的情况。
综上所述,MATLAB中使用最小二乘法来求解线性方程组非常简单。
我们可以通过“\”操作符或者“pinv”函数来求解一个线性方程组的最小二乘解。
matlab最小二乘法拟合matlab最小二乘法拟合是一种常用的拟合方法,它属于非线性最小二乘拟合,其可以用来拟合任意数据。
matlab最小二乘法拟合主要包括以下几个步骤:一、准备数据1、准备数据阶段:包括收集数据,整理数据,观察数据;2、设计拟合模型:根据观察到的特性确定拟合模型方程;3、计算函数参数:根据拟合模型对原始数据进行曲线拟合,计算出模型参数;二、参数估计1、最小二乘法拟合:将所有点拟合到曲线上,使每个点到曲线上的距离之和最小;2、非线性最小二乘拟合:根据多元非线性模型参数的变化范围,构造最小二乘拟合的曲线,应用非线性拟合和最小二乘法拟合找出最佳拟合曲线;3、外推预测:根据拟合后的参数预测特定值。
三、评价拟合结果1、残差平方和:根据拟合模型和所得数据,计算拟合结果和拟合误差;2、自由度:自由度 = 总数据点数- 拟合模型参数的个数;3、复杂度检验:考虑拟合模型的复杂度对拟合效果的影响;4、对数校正残差:考虑拟合结果的稳定性,比较数据的分布与真实数据的分布;5、误差统计检验:通过统计分析评估拟合结果的可靠性。
四、模型预测1、均方根误差(RMSE):评估预测模型拟合准确性,值越小,模型越有效;2、均方误差(MSE):反映预测值与真实值之间的平均差异;3、绝对均差(MAE):反映预测值与真实值之间的绝对均值差异;4、平均绝对平方偏差(MAHAPE):反映模型拟合精度平均差距,值越接近0,模型越精确;5、杰拉德系数(R):反映预测值与真实值之间的线性联系,值越接近1,模型越有效。
以上是matlab最小二乘法拟合的原理和应用,它不仅可以拟合任意数据,而且具有较强的适用性和准确性。
此外,matlab最小二乘法拟合还可以用来评估拟合结果的准确性,方便对数据进行分析处理。
最小二乘法matlab程序最小二乘法是一种统计模型,它可以被用来拟合一元函数数据,或者拟合非线性曲线。
它的基本思想是找到一组参数,使得拟合的曲线与实际数据的差距最小。
本文将介绍如何使用Matlab实现一个最小二乘法的程序,并与现有的一些现成的最小二乘法的matlab程序进行比较,找出其优缺点。
首先,要使用最小二乘法拟合曲线,需要准备一组输入数据,一般可以将其表示为两个向量,分别是自变量x和因变量y。
这些数据可以是由测量和实验得到的,也可以是由人工输入的,但无论如何都要确保它们的准确性。
接下来,就可以使用Matlab输入数据进行处理,用最小二乘法计算出最拟合的曲线及其参数。
具体步骤主要分为三步:第一步是计算输入数据的均值和方差,包括自变量x和因变量y的均值和方差;第二步是计算自变量x和因变量y的关系,即最小二乘拟合曲线的系数;第三步是验证拟合的曲线的准确性,如果不满意,可以重新调整参数,以获得较好的拟合效果。
此外,Matlab除了提供自带的最小二乘法函数外,还支持第三方开发者开发现成的matlab程序,用于解决最小二乘法的问题。
这些程序中有一些是开源的,另一些则是出售的。
其中开源的有LEAST,CURVEFIT,CURVEFITTOOL等,而出售的有MATLAB Curve Fitting Toolbox,Optimization Toolbox和Statistics Toolbox等。
它们的突出特点是速度快,代码简洁,容易上手,适用于多种拟合类型。
然而,各种matlab程序也有自身的缺点,最明显的就是当输入数据非常庞大时,它们的计算能力就无法跟上,速度就会变慢。
此外,使用出售的matlab程序可能相对昂贵,而且有时需要安装某些复杂的库文件,这也是一种麻烦。
因此,使用最小二乘法拟合曲线时,可以参考现有的matlab程序,也可以自己编写matlab代码,同时要考虑到程序的可靠性、效率和可行性。
本文介绍的matlab程序的最大优势是它不需要依赖第三方的软件,而且能够满足大多数用户的需求,使得最小二乘法可以在短时间内被成功运用。
文件说明1、使用说明1)加载P .m 文件至matlab2)命令行使用P 可以得到线性拟合参数,最终定价,最大利润和线性拟合对比图,蓝色为按照价格升序后的每个销量点连接的直线,绿色为拟合后的直线。
0.40.50.60.70.80.91 1.1010002000300040005000600070002、代码说明采用先线性拟合价格和销量直线方程,再代入利润函数,进行微分求极大值,即为最终定价,最后代回利润函数得到最大利润。
function P()%函数使用>>P%0.59,0.80,0.95,0.45,0.79,0.99,0.90,0.65,0.79,0.69,0.79,%0.49,1.09,0.95,0.79,0.65,0.45,0.60,0.89,0.79,0.99,0.85%3980,2200,1850,6100,2100,1700,2000,4200,2440,3300,2300,%6000,1190,1960,2760,4330,6960,4160,1990,2860,1920,2160%将价格和销量分别对应列入2行22列矩阵TEMP=[0.59,0.80,0.95,0.45,0.79,0.99,0.90,0.65,0.79,0.69,0.79,0.49,1.09,0.95,0.79,0. 65,0.45,0.60,0.89,0.79,0.99,0.85;3980,2200,1850,6100,2100,1700,2000,4200,2440,3 300,2300,6000,1190,1960,2760,4330,6960,4160,1990,2860,1920,2160];%将TEMP矩阵按照第一行的数进行从小到大的排列TEMP_T=sortrows(TEMP');TEMP=TEMP_T';Price=TEMP(1,:); %取第一行的数为价格Sales=TEMP(2,:); %取第二行的数为销量Cost=0.23; %成本L=polyfit(Price,Sales,1); %得到一阶最小二乘的2个拟合参数Sales_P=L(1)*Price+L(2); %得到拟合出的相应销量点disp('L(1)=');disp(L(1));disp('L(2)=');disp(L(2));plot(Price,Sales,Price,Sales_P); %做出对比图大概看下是否基本符合syms x; %定义变量xf(x)=L(1).*x+L(2); %写出拟合函数z(x)=f(x).*(x-Cost); %写利润函数明显利润函数为二次上凸抛物线dz(x)=diff(z(x)); %对利润函数求导Pricing=solve(dz(x),x); %极大值点即为最终定价Profit=subs(z(x),'x',Pricing); %计算最大利润Pricing=double(Pricing); %转换为双精度型Profit=double(Profit);disp('Pricing=');disp(Pricing);disp('Profit=');disp(Profit);end。
matlab最小二乘法拟合直线【导言】直线拟合是数据分析和数学建模中常用的方法之一,而最小二乘法则是在直线拟合中最常用的方法之一。
在本文中,将介绍使用Matlab进行最小二乘法拟合直线的步骤和原理,并就此主题进行深入的探讨。
【正文】一、最小二乘法简介最小二乘法是一种数学优化方法,它通过最小化误差的平方和来寻找函数与观测数据之间的最佳拟合。
在直线拟合中,最小二乘法的目标是找到一条直线,使得所有观测数据点到直线的距离之和最小。
1. 确定拟合的模型在直线拟合中,我们的模型可以表示为:Y = a*X + b,其中a和b为待求参数,X为自变量,Y为因变量。
2. 计算误差对于每一个观测数据点(x_i, y_i),计算其到直线的垂直距离d_i,即误差。
误差可以表示为:d_i = y_i - (a*x_i + b)。
3. 求解最小二乘法问题最小二乘法的目标是最小化所有观测数据点到直线的距离之和,即最小化误差的平方和:min Σ(d_i^2) = min Σ(y_i - (a*x_i + b))^2。
通过求解该最小化问题,可以得到最佳拟合的直线斜率a和截距b的值。
二、Matlab实现最小二乘法拟合直线的步骤下面将介绍使用Matlab进行最小二乘法拟合直线的基本步骤。
1. 导入数据需要将实验数据导入Matlab。
可以使用matlab自带的readtable函数从文件中读取数据,也可以使用xlsread函数直接从Excel文件中读取数据。
2. 数据预处理在进行最小二乘法拟合直线之前,先对数据进行预处理。
一般情况下,可以对数据进行去除异常值、归一化等操作,以确保数据的准确性和可靠性。
3. 拟合直线使用Matlab的polyfit函数可以实现直线拟合。
polyfit函数可以拟合输入数据的曲线或平面,并返回拟合参数。
在拟合直线时,需要指定拟合的阶数,对于直线拟合,阶数为1。
4. 绘制拟合直线使用Matlab的plot函数可以将拟合的直线绘制出来,以便于观察拟合效果。
数值实验报告一
1.数值实验问题
已知液体的表面张力s是温度T的线性函数s=aT+b,对某种液体有表如下的实验数据。
试用最小二乘法确定系数a,b。
并通过图形展示拟合效果。
2.数值方法
最小二乘法。
3.数值结果
方法一的系数:b0 =67.9593
a0 = -0.0799
方法二的系数:b1 =67.9593
a1 =-0.0799
方法三的系数:c2 =67.9289
b2 =-0.0775
a2 =-2.4294e-005
方法三为二次拟合,c2为常数项,b2为一次项的系数,a2为二次项的系数。
结果图形展示:
4.讨论
数值实验中出现的问题:由于方法一是书上的运行过程中并没有什么问题,但是在方法二中当单独运行方法二时并不会出现问题,但是当与方法一同时运行时就会报错,经过对比分析发现是由于方法一与方法二的变量重合但是变量内的数值不通用造成的,任意更改重合变量中的一个后程序就可以完美运行了;在对方法三进行编程时遇到了编程完成但是找不到错误的问题,进过老师的指导发现是有一个变量的结果与预知不符,在老师的帮助下重新对该变量编程,最终完成了方法三的编写。
分析实验结果:通过对实验结果的分析,发现三种方法的拟合曲线稍有差别,但是差别不大,均围绕说给的表格的数据拟合,没有大的偏移,这说明这三种方法都是有效可行的。
程序代码:
方法一:
s=[68.0 67.1 66.4 65.6 64.6 61.8 61.0 60.0]';
T=[0 10 20 30 40 80 90 95]';
T1=ones(8,1);
G=[T1 T];
Z=G\s ;
b0=Z(1);
a0=Z(2);
plot(T,s,'r*',T,a0*T+b0,'r')
方法二:
s=[68.0 67.1 66.4 65.6 64.6 61.8 61.0 60.0]';
T=[0 10 20 30 40 80 90 95]';
X=1:100;
wi=ones(8,1);
A(1,1)=0;
A(1,2)=0;
A(2,1)=0;
A(2,2)=0;
B(1,1)=0;
B(2,1)=0;
for i=1:8,
A(1,1)=A(1,1)+wi(i);
end
for i=1:8,
A(1,2)=A(1,2)+wi(i).*T(i);
A(2,1)=A(1,2);
end
for i=1:8,
A(2,2)=A(2,2)+wi(i).*T(i).^2;
end
for i=1:8,
B(1,1)=B(1,1)+wi(i).*s(i);
end
for i=1:8,
B(2,1)=B(2,1)+wi(i).*s(i).*T(i);
end
C=A\B;
b1=C(1);
a1=C(2);
plot(X,a1*X+b1,'b+')
方法三:
s=[68.0 67.1 66.4 65.6 64.6 61.8 61.0 60.0]'; T=[0 10 20 30 40 80 90 95]';
X1=0:1:100;
n=2;
m=length(T);
vi=ones(m,1);
for j=1:n+1.
for k=1:n+1,
D(j,k)=0;
end
end
for j=1:n+1.
for k=1:n+1,
for l=1:m,
D(j,k)=D(j,k)+vi(l).*T(l).^(k+j-2); end
end
end
for l=1:n+1,
E(l,1)=0;
end
for j=1:n+1,
for l=1:m,
E(j,1)=E(j,1)+vi(l).*s(l).*T(l).^(j-1); end
end
F=D\E;
c2=F(1);
b2=F(2);
a2=F(3);
plot(X1,a2.*X1.^2+b2*X1+c2,'r+')。