建筑结构抗震设计第三章振型分解反应谱法
- 格式:ppt
- 大小:578.50 KB
- 文档页数:54
振型分解反响谱法振型分解反响谱法是用来计算多自由度体系地震作用的一种方法。
该法是利用单自由度体系的加速度设计反响谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原那么对各阶振型的地震作用效应进展组合,从而得到多自由度体系的地震作用效应。
振型分解反响谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。
适用条件〔1〕高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比拟均匀的结构,以与近似于单质点体系的结构,可采用底部剪力法计算。
〔此为底部剪力法的适用围〕〔2〕除上述结构以外的建筑结构,宜采用“振型分解反响谱法〞。
〔3〕特别不规那么的建筑、甲类建筑和规规定的高层建筑,应采用时程分析法进展补充计算。
刚重比刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数刚重比=Di*Hi/GiDi-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值Hi-第i楼层层高Gi-第i楼层重力荷载设计值刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构侧移刚度的变化,从而影响到刚重比。
因此调整周期比时应注意,当某主轴方向的刚重比小于或接近规限值时,应采用加强刚度的方法;当某主轴方向刚重比大于规限值较多时,可采用削弱刚度的方法。
同样,对刚重比的调整也可能影响周期比。
特别是当结构的周期比接近规限值时,应采用加强结构外围刚度的方法重力二阶效应的影响较大,应该予以考虑。
规下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,防止结构的失稳截面面积。
长细比长细比=计算长度/回转半径。
所以很显然,减小计算长度或者加大回转半径即可。
这里需要注意的是,计算长度并非实际长度,而是实际长度乘以长度系数,长度系数那么与柱子两端的约束刚度有关。
说白了就是要看与柱相连的梁或者根底是否给力,如果这些构件的刚度越高,那么长度系数就越小,柱子的计算长度也就越短。
振型分解反应谱法振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。
该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。
振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。
适用条件〔1〕高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。
〔此为底部剪力法的适用范围〕〔2〕除上述结构以外的建筑结构,宜采用“振型分解反应谱法”。
〔3〕特别不规则的建筑、甲类建筑和标准规定的高层建筑,应采用时程分析法进行补充计算。
刚重比刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数刚重比=Di*Hi/GiDi-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值Hi-第i楼层层高Gi-第i楼层重力荷载设计值刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构侧移刚度的变化,从而影响到刚重比。
因此调整周期比时应注意,当某主轴方向的刚重比小于或接近标准限值时,应采用加强刚度的方法;当某主轴方向刚重比大于标准限值较多时,可采用削弱刚度的方法。
同样,对刚重比的调整也可能影响周期比。
特别是当结构的周期比接近标准限值时,应采用加强结构外围刚度的方法标准上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计。
见高规5.4.1和5.4.2及相应的条文说明。
刚重比不满足标准上限要求,说明重力二阶效应的影响较大,应该予以考虑。
标准下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,防止结构的失稳倒塌。
见高规5.4.4及相应的条文说明。
刚重比不满足标准下限要求,说明结构的刚度相对于重力荷载过小。
但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
结构设计系列之振型分解反应谱法苏义前言我国规范对于常规结构设计有两个方法:底部剪力法和振型分解反应谱法。
其中,底部剪力法视多质点体系为等效单质点体系,且其地震作用沿高度呈倒三角形分布,当结构层数较高或体系较复杂时,其计算假再用,因部剪时,其计算假定不再适用,因此规范规定底部剪力法仅适用于高度不超过40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的结构。
因此,一般结构均采用振型分解反应谱法。
振型分解反应谱法的基本步骤:通过体系的模态分析,求出多自由度体系的振型通过体系的模态分析求出多自由度体系的振型向量、参与系数等等;然后把每个振型看作单自由度体系,求出其在规定反应谱的地震加速度作用下产生的地震效应;最后把所有振型的地震效应式进行叠,得到体系震应应按一定方式进行叠加,就会得到体系地震效应的解。
注意注意:振型分解反应谱法只适用于弹性分析,对于弹塑性体系,由于力与位移不再具有对应关系,性体系,由于力与位移不再具有一一对应关系,该法不再适用。
目录一模态分析二反应谱分析三振型组合方法四方向组合方法一、模态分析模态分析也被称作振型叠加法动力分析,是线性体系地震分析中最常用且最有效的方法。
它最主要的优势在于其计算一组正交向量之后,可以将大型整体平衡方程组缩减为相对数量较少的解耦二阶平解阶微分方程,这样就明显减少了用于数值求解这些方程的计算时间。
模态分析为结构相关静力分析提供相关结构性能,包括结构静力地震作用分析和静力风荷载分析。
模态分析是其它动力分析的基础,包括反应谱分析和时程分析。
一、模态分析特征向量分析用于确定体系的无阻尼自由振动的模态和频率,分析这些自振模态是理解结构性能很好的工具。
下面我们以不考虑阻尼的高层建筑为例,了解一下关下面我们以不考虑阻尼的高层建筑为例,了解下关于无阻尼自由振动的一些基本概念。
一、模态分析对于一般的高层建筑,我们可以将其看作多自由度体系。
根据每个质点的力学平衡条件,建立每个质点的振动平衡方程式,联立这些方程式,即为多自由度体系的振动平衡方程组。
附录一 振型分解反应谱法振型分解反应谱法作为弹性多自由体系的主要分析方法,很有必要对振型分解反应谱法有充分的了解。
本文仅作为大家参考之用,如有理解上的错误或者不当,敬请谅解。
1、单自由度体系在地震作用下的运动 如图(1)所示,根据达朗贝尔原理有: 0=++s I c f f f (1)也即:g u m ku u c um -=++ (2) 方程两边同时除以m ,可化为:g u u u u-=++22ωξω (3) 式中,2/k m ω= ,令ωξm c2=,为体系阻尼比。
2、多自由度体系在地震作用下的运动类似于单自由度体系分析过程,体系运动方程为:g u m u k u c u m ][}]{[}]{[}]{[-=++ (4)无阻尼体系自由振动时,0=g u,0=c ,上式即为: }0{}]{[}]{[=+u k um (5) 根据方程解的特征,设其解的形式为:)sin(}{}{ϕωφ+=t u (6)代入(5)式有:}0{)sin(}]){[]([2=+⋅-ϕωφωt m k (7)由于0)sin(≠+ϕωt则}0{}]){[]([2=-φωm k (8)另外,}0{}{≠φ,故特征方程为:0][][2=-m k ω (9)由(9)式可以求出2ω,进而可以求得各阶振型对应的圆频率2i ω,再代入(8)式可求对应于各个2i ω的特征向量}{i φ,即为振型。
振型φ:多自由度体系自由振动时,各质点在任意时刻位移比值是一定的,不随时间变化,即体系自由振动过程中形状保持不变。
振型是结构形状保持不变的振动形式,振型的形状是唯一的。
N 个自由度的体系具有N 个振型。
则结构的变形总可以表示成这N 个振型的线性组合:{}∑==Ni i i q u 1φ (10)其中i q 称为正则坐标。
3、振型的正交性由于}0{}]{[}]{[2=-φωφm k (11) 则}0{}]{[}]{[2=-r r r m k φωφ (12)(12)式两边同时左乘T n }{φ,)(r n ≠,得到:}]{[}{}]{[}{2r T n r r T n m k φφωφφ= (13)同理,}]{[}{}]{[}{2n Tr n n T r m k φφωφφ=,该式两边同时转置一次,得到:}]{[}{}]{[}{2r T n n r T n m k φφωφφ= (14)(13),(14)两式左右对应相减,得到:0}]{[}){22=-r T n n r m φφωω( )(n r ≠ (15)因为22n r ωω≠所以 0}]{[}{=r Tn m φφ )(n r ≠ (16) 同理亦有 0}]{[}{=r Tn k φφ )(n r ≠ (17)即所说的振型关于质量和刚度矩阵满足正交性质。
附录一振型分解反应谱法振型分解反应谱法作为弹性多自由体系的主要分析方法,很有必要对振型分解反应谱法如有有充分的了解。
本文仅作为大家参考之用,理解上的错误或者不当,敬请谅解。
1 、单自由度体系在地震作用下的运动如图(1)所示,根据达朗贝尔原理有:f c f I f s 0也即:mu cu ku mu g 方程两边同时除以m ,可化为:2u 2 u u u g (3)2c式中,2k/m ,令2m c,为体系阻尼比。
2 、多自由度体系在地震作用下的运动类似于单自由度体系分析过程,体系运动方程为:[m]{u} [c]{u} [k]{u} [m]u g (4)无阻尼体系自由振动时,u g 0,c 0 ,上式即为:[m]{ u} [k]{u} {0} 5)根据方程解的特征,设其解的形式为:{u} { } sin( t ) 6)代入( 5)式有:([k] 2[ m]){ } sin( t ) {0} (7)由于sin( t ) 0则([k] 2[m]){ } {0} 8)另外,{ } {0} ,故特征方程为:[k] 2[m] 0 9)22由(9)式可以求出2,进而可以求得各阶振型对应的圆频率i2,再代入(8)式可求对应于各个i2的特征向量{ i} ,即为振型。
振型:多自由度体系自由振动时,各质点在任意时刻位移比值是一定的,不随时间变化,10)即体系自由振动过程中形状保持不变。
振型是结构形状保持不变的振动形式, 振型的形状是 唯一的。
N 个自由度的体系具有 N 个振型。
则结构的变形总可以表示成这 N 个振型的线性组合:Nu q i ii1其中qi 称为正则坐标。
3、振型的正交性由于 [k]{ }2[m]{ } {0}(11) 则 [k]{ r } r 2[m]{ r } {0}(12)(12)式两边同时左乘 { n }T , (n r ) ,得到:{ n }T[k]{ r }r 2{ n } T[m]{ r }(13)同理,{ r }T [k]{ n }n 2{ r }T[m]{ n } ,该式两边同时转置一次,得到:{ n }T[k]{ r } n 2{ n } T[m]{ r }(14)( 13),( 14)两式左右对应相减,得到:( r 2n 2){ n }T [m]{ r }0 (r n ) (15)因为 r 2n 2所以 { n }T [m]{ r }(r n ) (16) 同理亦有{ n }T[k]{ r } 0(r n )(17)即所说的振型关于质量和刚度矩阵满足正交性质。
振型分解反应谱法振型分解反应谱法就是用来计算多自由度体系地震作用得一种方法、该法就是利用单自由度体系得加速度设计反应谱与振型分解得原理,求解各阶振型对应得等效地震作用,然后按照一定得组合原则对各阶振型得地震作用效应进行组合,从而得到多自由度体系得地震作用效应。
振型分解反应谱法一般可考虑为计算两种类型得地震作用:不考虑扭转影响得水平地震作用与考虑平扭藕联效应得地震作用。
适用条件(1)高度不超过40米,以剪切变形为主且质量与刚度沿高度分布比较均匀得结构,以及近似于单质点体系得结构,可采用底部剪力法计算、(此为底部剪力法得适用范围)(2) 除上述结构以外得建筑结构,宜采用“振型分解反应谱法”。
(3) 特别不规则得建筑、甲类建筑与规范规定得高层建筑,应采用时程分析法进行补充计算。
刚重比刚重比就是指结构得侧向刚度与重力荷载设计值之比,就是影响重力二阶效应得主要参数刚重比=Di*Hi/GiDi—第i楼层得弹性等效刚度,可取该层剪力与层间位移得比值Hi-第i楼层层高Gi-第i楼层重力荷载设计值刚重比与结构得侧移刚度成正比关系;周期比得调整将导致结构侧移刚度得变化,从而影响到刚重比。
因此调整周期比时应注意,当某主轴方向得刚重比小于或接近规范限值时,应采用加强刚度得方法;当某主轴方向刚重比大于规范限值较多时,可采用削弱刚度得方法、同样,对刚重比得调整也可能影响周期比。
特别就是当结构得周期比接近规范限值时,应采用加强结构外围刚度得方法规范上限主要用于确定重力荷载在水平作用位移效应引起得二阶效应就是否可以忽略不计。
见高规5.4。
1与5、4.2及相应得条文说明。
刚重比不满足规范上限要求,说明重力二阶效应得影响较大,应该予以考虑。
规范下限主要就是控制重力荷载在水平作用位移效应引起得二阶效应不致过大,避免结构得失稳倒塌。
见高规5、4.4及相应得条文说明。
刚重比不满足规范下限要求,说明结构得刚度相对于重力荷载过小。
但刚重比过分大,则说明结构得经济技术指标较差,宜适当减少墙、柱等竖向构件得截面面积。