列车制动力计算公式
- 格式:pdf
- 大小:5.00 MB
- 文档页数:12
1,紧急制动计算列车总制动力列车制动力计算BhKh(kN)式中K h ------ 全列车换算闸瓦压力的总和,kN;h--- 换算摩擦系数;列车单位制动力的计算公式 b B 1000 1000 h K h( N / kN )( P G) g ( P G) g其中(PK hG) g h( N / kN ) ,则b 1000 h h式中P G ------------ 列车的质量,t ;h--- 换算摩擦系数;h ------------------ 列车制动率;K h ------ 全列车换算闸瓦压力的总和,kN;2,列车常用制动计算bc 1 c b由此可得b c c b 1000 h h c ( N / kN )式中 c ------------- 常用制动系数b c------- 列车单位制动力表1 常用制动系数p1 为列车管空气压力列车管减压量r/kPa 50 60 70 80 90 100 110 120 130 140 150 160 170 旅客p1 600kPa列车0.19 0.29 0.39 0.47 0.55 0.61 0.69 0.76 0.82 0.88 0.93 0.98 1.00货物p1 600kPa列车0.17 0.28 0.37 0.46 0.53 0.60 0.67 0.73 0.78 0.83 0.88 0.93 0.96p1 600kPa0.19 0.32 0.42 0.52 0.60 0.68 0.75 0.83 0.89 0.95 --- --- ---3, 多种摩擦材料共存时列车制动力的计算同一列车中的机车,车辆可能采用不同材料的闸瓦或闸片,他们具有不同的换算摩擦系数列车总制动力应当是各种闸瓦的换算闸瓦压力与该种闸瓦的换算摩擦系数乘积的总和。
即Bh1 Kh1 h2Kh2 h3Kh3(hKh)(kN)式中,Kh1 ,h1代表机车的闸瓦制动,K h 2 ,h2 代表车辆的闸瓦制动,Kh3 , h3代表车辆的盘形制动,等等。
列车制动力计算1,紧急制动计算??K(B?kN)?列车总制动力hh?K------全列车换算闸瓦压力的总和,??K1000B?1000hh?(N/kNb?)列车单位kN;式中h?---换算摩擦系数;h制动力的计算公式?(P?G)?g(P?G)?g?K???b?1000h?)kN(N?/其中,则hhh gG)??(P P?G------------列车的质量,式中 t;?---换算摩擦系数;h?------------------列车制动率;h?K------全列车换算闸瓦压力的总和,kN ;h b?c?1?,列车常用制动计算2????(N/?bb?1000kN)?由此可得chhcc?-----式中常c b用制动系数c b-------列车单位制动力c p为列车管空气压力常用制动系数表1 13,多种摩擦材料共存时列车制动力的计算他们同一列车中的机车,车辆可能采用不同材料的闸瓦或闸片,具有不同的换算摩擦系数列车总制动力应当是各种闸瓦的换算闸瓦压力与该种闸瓦的换算摩擦系数乘积的总和。
即?????????)kN????K?KK?()(K??B h3h1hh13hh2hh2代表车辆的闸瓦,式中,,代表机车的闸瓦制动,??KK2h1h2h1h代表车辆的盘形制动,等等。
制动,,?K3h3h???)(1000K?hh??)kN(1000b?(N?/)?列车单位制动力。
hh g?(PG)?,列车制动的二次换算法4 2 不同摩擦材料换算闸瓦压力的二次换算系数表3 机车的计算质量及每台换算闸瓦压力表表()内是折换成铸铁闸瓦的换算压括号外是原闸瓦的换算压力值;注:换算闸瓦压力栏中,内是折算成新高摩合成闸瓦的换算压力值;《》力值;<>内是折算成合成闸瓦的换算压力值;内是折算成高摩合成闸瓦的换算压力值。
[]车辆换算闸瓦压力表表4()内是折算成铸铁闸瓦换算闸瓦压力栏中,括号外是原闸瓦(片)的换算压力值;注:?《》内是折算成新高摩合成闸瓦内是折算成高摩合成闸瓦的换算压力值;的换算压力值;<> 的换算压力值。
列车制动力计算1,紧急制动计算①列车总制动力 )(kN K B h h ∑=ϕ式中∑hK------全列车换算闸瓦压力的总和,kN ;h ϕ---换算摩擦系数;②列车单位制动力的计算公式 )/()(1000)(1000kN N gG P K g G P B b hh •+=•+•=∑ϕ其中)/()(kN N gG P Kh hϑ=•+∑,则h h bϕϑ•=1000式中 G P +------------列车的质量,t ; h ϕ---换算摩擦系数;h ϑ------------------列车制动率;∑hK------全列车换算闸瓦压力的总和,kN ;2,列车常用制动计算 1≤=bb cc β 由此可得 )/(1000kN N b b c h h c cβϑϕβ=•=式中 c β-----常用制动系数cb -------列车单位制动力表1 常用制动系数 1p 为列车管空气压力3,多种摩擦材料共存时列车制动力的计算同一列车中的机车,车辆可能采用不同材料的闸瓦或闸片,他们具有不同的换算摩擦系数列车总制动力应当是各种闸瓦的换算闸瓦压力与该种闸瓦的换算摩擦系数乘积的总和。
即))((kN 332211∑∑∑∑∑=•••+++=h h h h h h h h K K K K B ϕϕϕϕ式中,1h K ,1h ϕ代表机车的闸瓦制动,2h K ,2h ϕ代表车辆的闸瓦制动,3h K ,3h ϕ代表车辆的盘形制动,等等。
列车单位制动力 )/()(1000)()(1000kN N gG P K b h h h h ∑∑∑•=•+=ϑϕϕ。
4,列车制动的二次换算法表2 不同摩擦材料换算闸瓦压力的二次换算系数表3 机车的计算质量及每台换算闸瓦压力表力值;<>内是折算成合成闸瓦的换算压力值;《》内是折算成新高摩合成闸瓦的换算压力值;[]内是折算成高摩合成闸瓦的换算压力值。
注:①换算闸瓦压力栏中,括号外是原闸瓦(片)的换算压力值;()内是折算成铸铁闸瓦的换算压力值;<>内是折算成高摩合成闸瓦的换算压力值;《》内是折算成新高摩合成闸瓦的换算压力值。
高速列车牵引计算高速列车牵引计算是指计算高速列车在行驶过程中所需要的牵引功率以及所消耗的能量。
牵引计算的目的是为了确定列车的牵引系统的性能和能效,并为车辆设计和运行提供参考依据。
本文将从牵引力计算、牵引功率和能量消耗等方面进行探讨。
首先是牵引力的计算。
牵引力是列车车辆克服阻力、加速度等外力而需要的力。
牵引力可以分为合成牵引力和分配牵引力两部分。
合成牵引力是指列车所需的总牵引力,可以用下式计算得到:合成牵引力=阻力+加速度力+坡道力+反向力其中,阻力是列车在运行过程中克服的空气阻力、摩擦阻力等;加速度力是列车在加速和减速过程中克服的惯性力;坡道力是列车在爬坡或下坡时所需的力;反向力是列车在平稳行驶过程中克服的车辆内部阻力。
其次是牵引功率的计算。
牵引功率是指列车牵引系统所需要的功率,它与牵引力和列车速度有关。
牵引功率可以用下式计算得到:牵引功率=牵引力×列车速度根据牵引力的计算结果,结合列车速度,可以得到列车牵引系统所需的功率。
最后是能量消耗的计算。
能量消耗是指列车在运行过程中所消耗的能量,主要包括牵引能量和制动能量。
牵引能量是列车在牵引过程中所消耗的能量,可以用下式计算得到:牵引能量=牵引功率×运行时间制动能量是列车在制动过程中所消耗的能量,可以用下式计算得到:制动能量=制动功率×运行时间其中,制动功率可以根据列车制动时所需要的制动力和列车速度计算得到。
除了以上三个方面的计算,还需要考虑到列车的负荷和运行环境等因素。
列车的负荷会对牵引力和牵引功率产生影响,例如列车的重量和乘客数量等;运行环境也会对列车的牵引性能产生影响,例如空气温度、湿度和气压等。
综上所述,高速列车牵引计算需要考虑诸多因素,并进行牵引力、牵引功率和能量消耗的计算。
这些计算结果能够有效指导高速列车的设计和运行,提高列车的牵引性能和能效。
1、机车牵引力计算——由:机车持续粘着牵引力=机车粘重×许用粘着系数得 f= G1μg=45T×0.254×9.8=112KN其中:f---机车持续粘着牵引力(KN)G1—机车粘重(kg);μ--许用粘着系数(交流机车:取0.2—0.33);此处取0.254g----重力加速度(9.8 m/s2)。
机车牵引重量、牵引力和坡度等的关系如下所示:G2=[F/(μ1+μ2)]- G1其中:G1—机车粘重(kg);G2—牵引重量(kg);μ--许用粘着系数(交流机车:取0.2—0.4,取0.26);μ1--坡道阻力系数(x‰=x/1000);此处取60‰μ2 -列车运行阻力综合系数,包括滚动阻力系数、轴承摩擦阻力系数、同轴车轮直径差引起的滑动摩擦阻力系数、车轮轮缘在直道或弯道时与钢轨摩擦的阻力系数、车辆振动或摇晃引起的能耗及空气阻力、轴对安装平行度误差引起的差滑阻力系数、曲线离心力引起的侧滑阻力系数等等(取0.006---0.012,取0.008)。
a—列车平均加速度(m/s2,取0.005)。
g----重力加速度(9.8 m/s2)。
故45T机车牵引重量表:G2=F/(g*μ1+g*μ2)-G1持续牵引力(Kn)重力加速度(m/s2)综合阻力系数粘重(T)牵引重量(T)坡度1129.80.008451383.57142900.018589.920634910‰0.028363.163265320‰0.038255.751879730‰0.042227.108843534‰0.043220.780730935‰2、机车制动距离计算机车编组制动距离的计算比较复杂,和轨面情况、机车粘重、牵引重量、机车速度、坡度、驾驶员技能水平等密切相关。
在3.5%轨道上45T电机车满载时的理论制动距离计算:(G1+G2)a= (G1+G2)g(μ1+μ2)+4Fμ3其中:a-----机车加速度(m/s2)G1=45T—机车粘重(kg);(牵引重量=4台 18方渣土车+1台8方砂浆车+2 G2=195.6T—牵引重量(kg);台15T管片车,即G2=4×10.3+4×18×2+1×5.8+2×2.3=195.6T)F=85—机车单轮制动力(KN)μ1 -坡道阻力系数(x‰=x/1000,上坡为正下坡为负,此处取-0.035);μ2 -列车运行阻力综合系数(取0.008)μ3 -闸瓦与车轮之间摩擦系数(取0.24)g----重力加速度(9.8 m/s2)。
《电力机车牵引计算》填空题与简答题一、填空题:1、《列车牵引计算》是专门研究铁路列车在外力的作用下,沿轨道运行及其相关问题的实用学科。
它是以力学为基础,以科学实验和先进操纵经验为依据,分析列车运行过程中的各种现象和原理,并以此解算铁路运营和设计上的一些主要技术问题和技术经济问题。
2、机车牵引力(轮周牵引力)不得大于机车粘着牵引力,否则,车轮将发生空转。
3、机车牵引特性曲线是反映了机车的牵引力和速度之间的关系。
在一定功率下,机车运行速度越低,机车牵引力越大。
4、列车运行阻力可分为基本阻力和附加阻力。
(基本附加)5、列车附加阻力可分为坡道附加阻力、曲线附加阻力和隧道空气附加阻力。
6、列车在6‰坡道上上坡运行时,则列车的单位坡道附加阻力为6N/kN7、列车在2‰坡道上下坡运行时,则列车的单位坡道附加阻力为-2N/KN 。
8、在计算列车的基本阻力时,当货车装载货物不足标记载重50%的车辆按空车计算;当达到标记载重50%的车辆按重车计算。
9、列车制动力是由制动装置引起的与列车运行方向相反的外力,它的大小可由司机控制,其作用是调节列车速度或使列车停车。
10、轮对的制动力不得大于轮轨间的粘着力,否则,就会发生闸瓦和车轮“抱死”滑行现象。
11、目前,我国机车、车辆上多数使用高磷闸瓦闸瓦。
12、列车制动一般分为紧急制动和常用制动。
13、列车制动力是由列车中各制动轮对产生的制动力的总和。
14、列车单位合力曲线是由牵引运行、惰性运行和制动运行三种曲线组成。
15、作用于列车上的合力的大小和方向,决定着列车的运动状态。
在某种工况下,当合力大于零时,列车加速运行;当合力小于零时,列车减速运行;当合力等于零时,列车匀速运行。
16、加算坡道阻力与列车运行速度无关。
(无关)17、列车运行时间的长短取决于列车运行速度和作用在列车上单位合力的大小。
18、在某工况下,当列车所受单位合力为零时对应的运行速度,为列车的均衡速度。
列车将匀速运行。
汽车列车制动率计算公式汽车列车制动率是评估汽车列车制动性能的一个重要指标,它的计算公式对于保障行车安全至关重要。
咱们先来说说啥是汽车列车制动率。
简单来讲,它就是汽车列车制动系统所能产生的制动力与汽车列车总重量的比值。
这个比值越大,说明制动性能越强,车子停下来就越快越稳当。
汽车列车制动率的计算公式是这样的:制动率 = (汽车列车各车轮最大制动力之和 ÷汽车列车总重量)× 100% 。
这里面“汽车列车各车轮最大制动力之和”得通过专业的检测设备来测量,而“汽车列车总重量”则包括牵引车的自重、挂车的自重以及所装载货物的重量。
我给您讲个事儿,之前我认识一位货车司机大哥,叫老王。
有一次他跑长途,在路上突然遇到了紧急情况需要急刹车。
可车子就是刹不住,差点出了大事故。
后来一检查,发现他的车制动率不达标。
老王这才意识到,原来这小小的制动率问题能带来这么大的麻烦。
从那以后,每次出车前,他都特别重视检查制动系统,还专门去学习了制动率的计算和相关知识。
咱们再深入讲讲这个公式里的各个部分。
先说汽车列车各车轮最大制动力之和。
这个测量可不容易,得在专门的检测台上,让车轮转动起来,然后模拟刹车的情况,才能测出来每个车轮能产生的最大制动力。
而且,不同的车轮、不同的制动系统,产生的制动力可能都不一样。
再看汽车列车总重量。
这可不是简单地把牵引车和挂车的自重加一加就行的,还得考虑车上货物的重量。
有时候,司机为了多装货多挣钱,就会超载。
可这一超载,不仅违法,还会让制动率下降,刹车效果大打折扣。
在实际应用中,不同类型的汽车列车,制动率的要求也不一样。
比如,重型货车的制动率要求就比轻型货车高。
这也是为了适应它们不同的行驶条件和载重情况。
还有啊,制动率不是一成不变的。
随着车辆的使用,制动系统会磨损,制动力会下降;车辆的维护保养情况也会影响制动率。
所以,定期检查和维护制动系统,确保制动率符合标准,是每个司机都不能忽视的重要工作。
城市轨道交通列车制动力计算以闸瓦制动为例,如图所示,制动时,设每个轮对的闸瓦压力为K,车轮与闸瓦的摩擦系数为φ。
制动前,列车以速度v运行,轮对以角速度ω在轨面上滚动。
制动时,闸瓦作用于车轮踏面的压力K引起闸瓦作用于轮对的摩擦力Kφ,这个摩擦力对轮对中心形成一个力矩KφR,它的方向与轮对转动方向相反。
上述摩擦力矩起着两方面的作用:一方面,阻止轮对转动,使轮对获得角减加速度β,轮对转速因而迅速减慢以至停止转动;另一方面,由于轮对的转动被阻止,势必引起轮轨间的相对滑动趋势,从而使轮轨之间产生相互作用力,即由于闸瓦摩擦力矩的存在而在轮轨接触点引起了车轮对钢轨的纵向水平作用力和钢轨对车轮的反作用力B。
反作用力B对于轮对及本列车来说都是与列车运行方向相反的外力,起着阻碍列车运行的作用,使列车获得减加速度a,这就是制动力。
根据上图,将轮对作为分离体,建立力矩平衡方程可以得到制动力大小,即式中,R为车轮半径;l为轮对的转动惯量。
在式中,lβ所占的比例很小,为了简化起见,通常忽略不计(假定l=0),留到计算转动距离时再加考虑。
这样,转动力在数值上等于闸瓦摩擦力,即全列车的制动力为:从上式(可以看到,制动力B随着车轮和闸瓦间摩擦力的增大而增大。
但也不是无限制的增大,制动力要受到黏着力的限制,即或式中,Fψ为轮轨间的黏着力;N为钢轨对轮对轴重的反作用力;ψ为轮对间的黏着常数。
令δ0=KN,称为轴制动率。
因此,黏着条件可表示为:由于制动方式不同,制动力的计算方式也有所不同。
这里仅就空气制动和动力制动的制动力计算做简单介绍。
一、空气制动的制动力计算闸瓦制动时,当各节车的车轮闸瓦间摩擦系数相同时,制动力计算公式为:车轮与闸瓦的摩擦系数φ主要由闸瓦的材料决定,式(2-33)~式(2-39)仅供参考。
中磷铸铁闸瓦:高磷铸铁闸瓦:低摩合成闸瓦:高摩合成闸瓦:式中,K为闸瓦压力;v为列车运行瞬时速度;v0为制动初速度。
闸瓦压力的大小与基础制动形式和制动缸压力大小有关。
汽车列车整车制动率计算概述说明以及解释1. 引言1.1 概述汽车列车整车制动率是衡量列车制动性能的重要指标之一。
它反映了列车在紧急情况下能够有效减速停车的能力,对确保行车安全具有重要意义。
为了更好地理解和评估整车制动率,需要了解该概念的定义、计算方法以及影响因素。
1.2 文章结构本文将按照以下结构进行论述:首先介绍汽车列车整车制动率的定义,明确其含义;其次阐述计算整车制动率的方法,包括考虑不同因素的计算公式;然后探讨影响整车制动率的相关因素,分析其作用机理;最后总结文章主要内容,并提出对汽车列车整车制动率意义的思考和展望。
1.3 目的本文旨在全面介绍和解释汽车列车整车制动率计算及相关概念,以增进读者对该论题的理解。
通过详细说明整车制动率的定义、计算方法和影响因素,有助于提高人们对列车行驶安全性能的认识,并为相关领域研究和实践提供参考依据。
2. 汽车列车整车制动率计算2.1 制动率定义整车制动率是指汽车列车在制动过程中消耗的动能占总动能的比例。
它反映了汽车列车在紧急制动情况下的减速能力和停止距离。
2.2 制动率计算方法汽车列车整车制动率可以通过以下公式进行计算:制动率= 实际减速度/ 紧急制动减速度×100%其中,紧急制动减速度是指汽车列车在最大刹车条件下所能实现的减速度,它取决于列车的设计及制动系统性能。
而实际减速度则是指汽车列车在实际道路条件下所达到的减速度。
2.3 影响制动率的因素汽车列车整车制动率受多种因素影响,包括但不限于以下几个方面:1. 制动系统性能:包括刹车片、刹车盘、液压系统等关键组件的质量和状态,以及刹把手或踏板等操作装置是否正常工作。
2. 照明和视觉条件:负责警示和照亮道路的前后灯光系统是否良好,司机是否有良好的视野以及道路表面情况等。
3. 道路状况:道路的坡度、湿滑程度、路面质量和障碍物等都会影响整车制动率。
4. 车辆负荷:汽车列车的重量和分布对制动效果有直接影响,包括载客量、货物负载和燃料负载等。
列车制动距离及计算 Prepared on 24 November 2020列车制动一、什么是制动二、制动力是如何产生的三、影响制动力的因素有那些四、列车制动问题解算列车制动问题解算”主要是:在各种不同的线路条件下,列车制动能力(列车换算制动率)、列车运行速度和列车制动距离这三个因素之间的相互关系,而且都是按施行紧急制动的情况考虑的(列车制动力或列车换算制动率均按百分之百计算)。
列车制动问题解算通常有三种类型:(1)已知制动能力(列车换算制动率)和列车运行速度,计算制动距离。
(2)已知列车制动能力(换算制动率)和必须保证的制动距离,解算平道或下坡道允许的紧急制动限速。
(3)已知列车的紧急制动限速和必须保证的制动距离,解算平道或下坡道至少必须的列车制动能力(换算制动率)。
其中,制动距离计算是关键。
第一节制动距离及其计算在司机施行制动时,列车中各车辆的闸瓦并非立即、同时压上车轮的,闸瓦压上车轮之后,闸瓦压力也不是瞬间达到最大值的,制动缸压强有一个上升过程,参看图5-1。
图中t。
和tN分别为从司机施行制动至第一辆车和最末一辆车的制动缸压强开始上升的时间(在t。
的时间内,列车实际上还是惰行,所以称t。
为纯空走时间,即真正的制动空走时间t。
为制动缸充气时间(压力从零上升到预定值的时间)。
所以,全列车的闸瓦压力和制动力也有一个增长的过程,如图 5-2中实线所示。
为便于计算,通常假定全列车的闸瓦都是在某一瞬间同时压上车轮,而且闸瓦压力就是在这一瞬间从零突增至预定值,如图5-2中虚线所示。
图5-2空走距离的原始概念Sb=Sk+S, (5-1)这样,列车制动过程就明显地被分成两段:前一段是从施行制动到这一瞬间的空走过程,它经历的时间称为空走时间(显然,这是个假定的空走时间),以t0表示,列车在空走时间t0内靠惯性惰行的距离称为空走距离,以S。
表示;后一段是从突增的瞬间至列车停止的有效制动过程,也叫实制动过程,其经历的时间称为有效制动时间或实制动时间,以‘表示,列车在t。