第五章 角动量及其规律
- 格式:ppt
- 大小:925.00 KB
- 文档页数:33
第五章质点的⾓动量⾓动量守恒定1第五章质点的⾓动量⾓动量守恒定理§5-1 质点的⾓动量⾓动量定理⼀质点的⾓动量我们已经知道,在讨论单个质点或质点系统(包括刚体)的平动运动时,线动量是很有⽤的物理量,例如,在碰撞中线动量是守恒的。
对于单个质点,线动量为v P m =对于质点系统,线动量为v P M =其中M 为系统的总质量⽽v 是质⼼的速度。
在转动运动中,什么量和线动量相类似呢?我们将这个量称之为⾓动量。
下⾯就单个质点这⼀特殊情况来定义⾓动量,以后推⼴到质点系统。
假设有⼀质量为m 和线动量为P 的质点A ,这质点相对于惯性参考系的原点O 的位置⽮量为r 如图()15-所⽰图 ()15-定义这个质点对原点0的⾓动量为v r p r L m ?=?= (5-1)讨论 1)其中r 是代表以给定点0为原点到质点的位置⽮量2)其⼤⼩θsin rmv L = 式中θ是r 与v 之间的夹⾓,它的⽅向垂直与r 与p 所组成的平⾯,并由右⼿螺旋法则确定,见图(5-1)3)我们也可将L 的⼤⼩表⽰为 ()p r p r L ⊥==θsin 或 ()⊥==rp p r L θsin 式中的⊥r 为r 垂直于p 的分量,⊥p 为p 垂直于r 的分量,故⾓动量也可称为动量矩。
4)应当指出,质点的⾓动量与位置⽮量r 和动量p 有关,也就是与参考点0的选择有关。
因此在讲述质点的⾓动量时,必须指明是对哪⼀点的⾓动量。
5)在国际单位制中,⾓动量的量纲为12-T ML ,符号是kg ·sm 2,也可表⽰为J ·s⼆质点的⾓动量定理质点在运动时导致⾓动量L 随时间变化的根本原因是什么?由 v r L m ?= 对其两边微分则 (r L dt d dt d =×)v m =dtd r×r v +m ×()dt m d v 其中 dt=v 故 v ×=v m 0 ()F P v ==dt d dt m d得 r L=dtd ×F (5-2)即:质点m 对参考点o 的⾓动量随时间变化率dtd L等于位置⽮量r 和质点所受的合外⼒F 的⽮量积。