管道内气固两相流颗粒浓度和风速测量方法的试验研究
- 格式:pdf
- 大小:283.88 KB
- 文档页数:8
《水平管内气液两相流流型数值模拟与实验研究》篇一一、引言在许多工业应用中,如石油、天然气和化学工业中,气液两相流是非常常见的流动状态。
对水平管内气液两相流的流型进行深入的研究对于提升设备的效率和可靠性具有重要意义。
本论文通过数值模拟和实验研究的方法,探讨了水平管内气液两相流的流型特征及其变化规律。
二、文献综述在过去的几十年里,许多学者对气液两相流进行了广泛的研究。
这些研究主要关注流型的分类、流型转换的机理以及流型对流动特性的影响等方面。
随着计算流体动力学(CFD)技术的发展,数值模拟已成为研究气液两相流的重要手段。
同时,实验研究也是验证数值模拟结果和深化理解流动机理的重要途径。
三、数值模拟1. 模型建立本部分首先建立了水平管内气液两相流的物理模型和数学模型。
物理模型包括管道的几何尺寸、流体性质等因素。
数学模型则基于质量守恒、动量守恒和能量守恒等基本物理定律,并考虑了气液两相的相互作用。
2. 数值方法采用计算流体动力学(CFD)方法对模型进行求解。
通过设置适当的边界条件和初始条件,得到气液两相流的流动状态。
此外,还采用了多相流模型和湍流模型等,以更准确地描述气液两相的流动特性。
3. 结果分析通过数值模拟,得到了水平管内气液两相流的流型图、流速分布、压力分布等结果。
分析这些结果,可以深入了解流型的转变过程和流动特性。
四、实验研究1. 实验装置设计了一套用于气液两相流实验的装置,包括水平管道、气体供应系统、液体供应系统、测量系统等。
通过调节气体和液体的流量,可以模拟不同工况下的气液两相流。
2. 实验方法在实验过程中,通过观察和记录流动现象,获取了流型、流速、压力等数据。
同时,还采用了高速摄像等技术,对流动过程进行可视化分析。
3. 结果分析将实验结果与数值模拟结果进行对比,验证了数值模拟的准确性。
同时,还分析了不同因素(如管道直径、流体性质等)对气液两相流流型的影响。
五、结论与展望通过数值模拟和实验研究,得到了以下结论:1. 水平管内气液两相流的流型受多种因素影响,包括管道直径、流体性质、流速等。
输气管道内气液两相流流型监测技术研究摘要准确判断输气管道内气液两相流流型是深入输气管道工程研究与应用的基础。
本文分别介绍了垂直上行管段和水平管段两种情况下输气管道内气液两相流的流型的分类方法,分析了影响输气管道内气液两相流流型的主要因素,并研究了目前主要的输气管道气液两相流流型的监测技术,对于输气工程研究与应用具有重要现实意义。
关键字两相流;流型;监测技术1 气液两相流流型输气管道气液两相流在不同管道位置下由于重力影响将出现不同的流型,下面就两种典型的情况作简要介绍。
1.1 垂直上行管段中气液两相流流型实验研究表明,气液两相流在垂直上行管段中有有五种基本流型,分别为泡状流、段塞流、搅拌流、缕状环形流和分散环形流,如下图1所示。
1.2 水平管段中气液两相流流型通过观察,水平管段及近似水平管段气液两相流流型是相当复杂,重力分异作用造成了相对的不对称性。
然而,Oshinowo流型划分原则对流型作简单化处理,将气液两相流流型大致分为六种基本形式,分别为泡状流、塞状流、分层流、波状流、弹状流和环状流,如图2所示。
2 气液两相流流型影响因素气液两相流流型非常复杂且影响因素很多,其中主要影响因素有:流体物性、流量、管径尺寸、倾角以及流体在流动过程中的质量传递和热量传递等。
2.1流体流量流体流量可以用流速来反映,当流速改变时,管内流型将会有相应变化。
因此,流体流量是影响气液两相流流型的最主要因素。
目前大多数流型图都是利用气液两相的表观速度来划分的。
2.2流体物性流体物性是影响流型的重要因素之一。
液相粘度的大小决定着流体在流型转变过程中所需气量的多少,如果液体流速不变,则其粘度越大,所需气量越少。
2.3 管径尺寸不同的管径对相同的流体介质用进行输送,即使初始条件相同,且流体流速相同,但管径尺寸的不同,管内流体流型也是不相同的。
所以,不可忽视管径尺寸对流型的影响。
除此之外,管径尺寸还对流型的转换有影响。
2.4倾角国内外专家学者对倾角对流型的影响做了大量研究,结果表明,如果管段所处的倾角不同,管内流型转换所需的气体流量是不同的,且存在差别较大。
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第12期·4350·化 工 进展气固两相流固相浓度与流速的测量及可视化田海军1,周云龙2,赵晓明1(1东北电力大学自动化工程学院,吉林 吉林 132012;2东北电力大学能源与动力工程学院,吉林 吉林 132012)摘要:气固两相流固相流率的测量是测试领域的难点之一,为了实现气固两相流固相浓度与流速的测量,阐述了电容层析成像的原理,搭建了气固两相流实验台,固相选用聚丙烯颗粒,气相为空气,固相依靠自身的重力流经实验装置,利用ITS 公司的M3C 电容层析成像装置对气固两相流的固相浓度、速度、质量流量进行了测试研究。
实验中的浓度测量采用图像的介电常数分布像素,速度测量选择双层结构的电容传感器,利用相关测速原理,计算上下游传感器成像像素的相关性,最后由测得的速度及浓度分布计算出质量流量,测量结果与重力传感器测量的质量流量结果进行了对比,结果具有较好的一致性,测量误差小于10%,表明利用电容层析成像系统可对气固两相流参数的测量。
关键词:成像;两相流;流动;质量流量;固相浓度;浓度;体积流量中图分类号:TP29 文献标志码:A 文章编号:1000–6613(2017)12–4350–06 DOI :10.16085/j.issn.1000-6613. 2016-2459Measurement and visualization of concentration and velocity of solidphase in the gas-solid two- phase flowTIAN Haijun 1,ZHOU Yunlong 2,ZHAO Xiaoming 1(1School of Automation Engineering ,Northeast Electric Power University ,Jilin 132012,Jilin ,China ;2School of Energyand Power Engineering ,Northeast Electric Power University ,Jilin 132012,Jilin ,China )Abstract :Measurement of the solid phase flow rate in the gas-solid two-phase flow is one of thedifficulties in test realm. In order to realize visualization measurement of gas-solid two phase flow, the principle of electrical capacitance tomography was stated and a gas-solid two phase flow test-bed was developed. Polypropylene particles and air were selected as the solid phase and gas phase. Solid phase relied on their own gravity flow through experimental device. M3C capacitance tomography device of ITS company was used for the test and research on solid phase concentration, speed and mass flow rate in the gas-solid two phase flow. In the experiment ,concentration measurement was based on the dielectric constant distribution of the pixels about image. Capacitive sensor with double layer structure was used to measure velocity. The relevant principles of the speed measurement was used to compute the correlation between upstream and downstream of sensor imaging pixel. Finally, the mass flow was calculated by the measured velocity and concentration distributions. The mass flow measurements were compared with the results of gravity sensor. The results showed good agreement with measurement error of less than 10%. The experimental results indicated that the capacitance tomography system can be used to measure the parameters of gas-solid two phase flow. Key words :image ;two-phase flow ;flow ;mass flow ;solid concentration ;concentration ;volume flow第一作者:田海军(1971—),男,工学硕士,高级实验师,主要从事过程检测及层析成像方面的研究工作。
气固两相流静电相关流速测量研究的开题报告一、研究背景气固两相流静电相关流速测量是现代流体测量技术的重要组成部分,其应用范围广泛,包括石油工业、化工工业、环保工业等领域。
通过测量气固两相流静电相关流速,可以有效地控制生产过程中的流量,提高生产效率,保障工业生产的安全和稳定。
然而,气固两相流静电相关流速的测量难度较大,由于两相流速不均匀性以及其他干扰因素的存在,使得测量精度和可靠性较难保证,因此有必要进行相关的研究。
二、研究目的本研究旨在探究气固两相流静电相关流速的测量方法和技术,寻求一种更加准确和可靠的气固两相流静电相关流速测量方案,以提高工业生产效率和产品质量。
三、研究内容和方法1.分析气固两相流静电相关流速测量的原理和方法,综述现有的相关测量技术,分析其优缺点和适用范围。
2.设计并建立一套气固两相流静电相关流速测量实验系统,研究流速测量误差来源和影响因素,进行系统校准。
3.基于实验数据,提出一种基于静电相关原理的气固两相流流速测量方法和技术,探究其适用范围,对其进行检验和验证。
4.通过对研究结果的分析和总结,归纳出具有重要意义的结论和启示,提出未来相关研究方向和发展趋势。
本研究采用实验和理论相结合的研究方法,通过校准实验和模拟实验,收集并分析实验数据,结合现有理论知识,探究气固两相流静电相关流速测量方法的优化方案。
四、研究意义气固两相流静电相关流速测量技术的研究对工业生产具有重要意义,可以提高生产效率,防止生产事故,保障工业生产的安全和稳定。
此外,本研究还可以为相关领域的研究提供参考,并对气固两相流领域的科研人员和工程技术人员有重要的指导意义。
五、预期成果1.建立一套可靠的气固两相流静电相关流速测量实验系统,研究流速测量误差来源和影响因素,进行系统校准。
2.提出一种基于静电相关原理的气固两相流流速测量方法和技术,探究其适用范围,并进行检验和验证。
3.总结具有重要意义的结论和启示,提出未来相关研究方向和发展趋势。
《水平管内气液两相流流型数值模拟与实验研究》篇一一、引言随着能源、化工等领域的不断发展,水平管内气液两相流的研究变得日益重要。
在许多工业过程中,如石油开采、管道输送、冷却系统等,都需要对气液两相流进行深入的研究。
气液两相流的流型对管道的输送效率、安全性能以及系统设计都有重要的影响。
因此,本文对水平管内气液两相流的流型进行了数值模拟与实验研究,以期为相关领域的实际应用提供理论依据和参考。
二、流型分类与数值模拟方法水平管内气液两相流的流型主要分为泡状流、弹状流、泡状-弹状混合流、环状流等。
这些流型具有不同的流动特性和相互转换的规律。
为了更好地研究这些流型的特性,本文采用了数值模拟的方法。
数值模拟主要采用计算流体动力学(CFD)方法,通过建立数学模型,对不同流型下的气液两相流进行模拟。
在模拟过程中,考虑了流体物性、管道尺寸、流动速度等因素对流型的影响。
同时,采用适当的湍流模型和两相流模型,对气液两相的相互作用和流动特性进行描述。
三、实验研究方法与结果分析为了验证数值模拟结果的准确性,本文还进行了实验研究。
实验采用水平管道装置,通过改变气液流量、管道尺寸等参数,观察并记录不同流型下的流动特性。
实验结果表明,随着气液流量的增加,流型逐渐由泡状流向环状流转变。
在泡状流中,气泡分散在连续的液相中;在弹状流中,较大的气泡或气团交替出现在连续的液相中;而在环状流中,气体核心包裹着液体在管道中流动。
这些流型的转换规律与数值模拟结果基本一致。
此外,实验还发现,管道尺寸对流型也有显著影响。
当管道直径增大时,更易形成环状流;而当管道直径较小时,更易形成泡状或弹状流。
这为实际工程应用中管道设计和优化提供了重要的参考依据。
四、数值模拟与实验结果对比分析将数值模拟结果与实验结果进行对比分析,可以发现两者在流型转换规律和流动特性方面具有较好的一致性。
这表明本文采用的数值模拟方法具有较高的准确性和可靠性,可以为实际工程应用提供有效的预测和指导。
分叉流道中气固两相流动的实验研究和数值模拟随着工业的发展以及对环境保护的日益重视,对工业粉尘分离装置的要求越来越高。
工业粉尘不但危害人类的健康,而且会破坏工业设备,危害设备的安全运行,造成设备零部件的频繁更换,给国家财力带来了巨大的损失。
考虑到惯性分离设备无运动部件、流动阻力小,本文建立了分叉管道结构形式的惯性分离装置,研究其内部气固两相流动规律。
分叉管道中气固两相流动,由于壁面带有曲率,流动速度大,完全依靠固体颗粒惯性形成气固分离,故流动较为复杂,导致流场实验测量和数值模拟的困难。
论文采用高速摄影,结合数字图像处理技术跟踪固体颗粒的运动轨迹,通过标定轨迹图像中颗粒位置,实现了图像法对颗粒运动速度的研究。
通过工况对比,发现较大颗粒对空气的跟随性不好,且其分离效果受到很多因素影响,包括颗粒进入管道的位置、速度大小和方向(速度角)、以及颗粒的球形度。
在所有的工况下,颗粒速度角较小时分离效果较好;同密度下的块状颗粒分离效果总体上较球形颗粒好;随着进口空气流速增加,颗粒分离的效果也更好。
这些都是由于颗粒在收缩管道内主流方向上惯性力分量的增大,使颗粒有足够的惯性力被甩入清除流道中。
在分析单个球形颗粒受力以及颗粒同壁面碰撞模型的基础上,运用数值计算软件对分叉管内部气固两相流场进行了计算。
采用k-ε紊流模型和固相的离散相模型研究分叉管道内的气固分离现象,分析了分叉管道内连续相流场随进口速度和清除流量系数的变化规律,得到随着清除流量系数的增大,压力损失系数出现急剧下降,而中心流道的压力损失降低的幅度较小。
这是因为随着清除流量系数的增大,虽然清除流道中流速的增加,但回流的区域出现减小,流动的阻力减小,损失减少。
这些都说明了清除流道和中心流道压力损失的主要因素不同:清除流道中回流是引起压力损失的主要原因,而中心流道的压力损失主要受流动速度的影响。
在颗粒的分离效率方面,研究了直径在100μm以上的光滑球形颗粒,分析了影响分离效率的因素。
气固两相流流动参数的检测技术付飞飞【摘要】对气固两相流流动参数检测技术的相关内容,包括基于静电传感器的检测技术、电容层析成像技术以及流型软测量技术中的信号分析方法进行了总结和评述,认为静电传感器在气固两相流颗粒速度、浓度以及流型等参数检测方面,技术相对成熟,但其灵敏度空间分布不均匀、颗粒浓度(分布)与静电量大小(分布)之间的对应关系不明确等问题严重影响其测量准确性,是目前研究的难点;电容层析成像技术可实现气固两相流流型的可视化监测,但其固有的软场特性影响了测量结果的准确性;目前基于信号分析方法的流型软测量技术避免了这一问题,多尺度信号分析方法将是提高其测量准确性的新方法.【期刊名称】《济南大学学报(自然科学版)》【年(卷),期】2017(031)001【总页数】7页(P11-17)【关键词】气固两相流;流动参数检测;静电传感器;电容层析成像技术;信号分析方法【作者】付飞飞【作者单位】济南大学物理科学与技术学院,山东济南250022【正文语种】中文【中图分类】TM9多相流广泛存在于自然界和工业生产过程中,其流动参数的检测对于生产过程的优化及控制具有重要意义。
由于多相流动存在相间的界面效应和复杂多变的流型,因此,描述多相流的参数与描述单相流的参数相比,其检测难度要大得多。
另外,多相流流动机理的研究也依赖于相应的多相流检测手段,所以多相流参数检测技术在国内外都属于亟待发展的领域[1-4]。
气固两相流是多相流中最具代表性的流动形式之一,普遍存在于工业生产中使用的流化床以及气力输送管道中。
描述气固两相流流动的常用参数包括流型、颗粒速度、颗粒浓度、相分布及分相含率等,另外,气泡及颗粒的尺寸等也是描述气固两相流流动的一些参数。
目前所采用的气固两相流流动参数检测方法有多种,总体可以归结为3类,即电学法(静电法、电容法等)、光学法(空间滤波法、多普勒法、示踪法)及超声法。
随着科学技术的发展,许多新技术被应用到多相流参数检测这一领域,有力地推动了多相流参数检测技术的发展。
短管道中气相及气固两相平均流速测量方法研究与应用的开题报告一、研究背景在化工、石油、能源等工业领域中,短管道的流量测量是一项关键的技术问题。
短管道流量测量的精度和可靠性对生产过程的稳定性和效率有着重要的影响。
短管道中的流量测量受到许多因素的影响,例如管道内尺寸、流速分布、流体物性等。
本课题旨在研究短管道中气相及气固两相平均流速的测量方法,解决现有测量方法难以满足工业应用要求的问题,提高测量精度和可靠性。
二、研究目的与意义本研究的目的是探究短管道中气相及气固两相平均流速测量的理论和方法,改进现有测量方法,在工业应用中提高短管道流量测量的精度和可靠性。
研究结果能够为化工、石油、能源等工业领域提供更为精确的流量测量方法,实现生产过程的精细化管理,提高工业生产的效率和安全性。
三、研究内容1. 短管道中气相及气固两相平均流速测量方法的理论分析和建立数学模型。
2. 根据不同的实际应用场景,选用不同的流量计进行实验测量,并对比分析各种方法的优缺点。
3. 进行短管道中气相及气固两相平均流速测量的实验研究,并将测量结果与数学模型计算结果进行比较。
4. 对测量结果进行统计分析,提出改进意见和建议,并指导实际工业应用。
四、研究方法1. 文献综述法:对短管道中气相及气固两相平均流速测量方法的国内外研究现状进行分析和总结,确立研究框架和方法。
2. 理论分析法:对不同的流量计原理进行理论分析,并建立数学模型,探究短管道中气相及气固两相平均流速测量的理论基础。
3. 实验方法:基于实际应用场景,选取不同的流量计进行实验研究,采用数字化仪器对流量信号进行采集和分析。
4. 统计分析法:对测量结果进行统计分析,并提出改进意见和建议。
五、预期成果1. 短管道中气相及气固两相平均流速测量方法的理论研究成果,包括数学模型和理论分析结果。
2. 基于实验研究和统计分析的短管道中气相及气固两相平均流速测量方法改进和优化建议,以及实际应用指导。
3. 相关研究成果的论文发表和学术交流报告。
气固两相流动力学特性的数值模拟与实验研究气固两相流动是指在一个系统中同时存在气体和固体颗粒的流动现象。
这种流动在许多工业过程中都很常见,如煤粉燃烧、颗粒输送和流化床等。
了解气固两相流动的力学特性对于优化工艺、提高效率至关重要。
为了研究这种流动现象,数值模拟和实验研究成为了两种主要的研究方法。
数值模拟是通过建立数学模型和计算方法,对气固两相流动进行仿真和预测。
数值模拟方法可以提供详细的流场信息,如速度、压力和浓度分布等。
通过调整模型参数和边界条件,可以模拟不同工况下的气固两相流动情况。
数值模拟方法还可以用于研究流动中的细观现象,如颗粒的碰撞和聚集等。
然而,数值模拟方法也存在一些局限性。
首先,模型的准确性和可靠性取决于模型的假设和参数选择。
其次,数值计算的复杂性限制了模拟的规模和时间尺度。
因此,数值模拟方法通常需要与实验研究相结合,以验证模型的准确性和可行性。
实验研究是通过设计和进行实际的物理实验来研究气固两相流动。
实验方法可以直接观测和测量流动中的各种参数和特性。
通过改变实验条件,如气体流速、颗粒浓度和粒径等,可以研究气固两相流动的变化规律。
实验研究还可以用于验证数值模拟结果的准确性和可靠性。
然而,实验研究也存在一些问题。
首先,实验设备的建造和操作成本较高,且受到实验环境的限制。
其次,实验过程中的测量误差和不确定性会影响研究结果的可靠性。
因此,实验研究通常需要与数值模拟相结合,以综合分析和解释研究结果。
在气固两相流动力学特性的研究中,数值模拟和实验研究相辅相成。
数值模拟方法可以提供详细的流场信息和细观现象,为实验研究提供参考和指导。
实验研究可以验证数值模拟结果的准确性和可靠性,为模型的改进和优化提供实验数据。
通过数值模拟和实验研究的相互验证和比较,可以更加全面地了解气固两相流动的力学特性。
在未来的研究中,需要进一步提高数值模拟和实验研究的精度和可靠性。
对于数值模拟方法,需要改进模型的准确性和可靠性,提高计算效率和稳定性。