第2讲 气固两相流基础理论
- 格式:ppt
- 大小:905.00 KB
- 文档页数:22
1 流态化理论1.1流态化现象流化床燃烧方式的气体动力学基础是固体燃料的流态化。
所谓固体燃料的流态化,是指固体颗粒在与流动着的流体混合后,能像流体那样自由流动的现象。
除重力作用外,一般是依靠气体或液体的流动来带动固体粒子运动的。
ParticlesflowGas flow1 流态化理论1.1 流态化现象•流态化用来描述固体颗粒与流体接触的某种运动形态。
❿气体达到能将颗粒悬浮的速度,颗粒彼此之间分离,颗粒在任何方向上运动和转动。
❿与高粘度液体性质相似。
1.1流态化现象ParticlesflowGas flow1 流态化理论1.2流态化的描述及其性质⏹散式流化和聚式流化➢散式流化d b /dp<1d b ——气泡直径dp——颗粒直径对于L-S系统,流体与粒子的密度相差不大,故umf 一般很小,流速进一步提高时,床层膨胀均匀且波动很小,粒子在床内的分布也比较均匀,故称作散式流化态。
颗粒越细,流体与固体的△ρ值越小,则越接近理想流化,流化质量也就越好。
1.2流态化的描述及其性质➢聚式流化d b /dp>10对于G-S系统,一般在气速超过Umf后,将会出现气泡,气速越高,气泡造成的扰动也越剧烈,使床层波动频繁,这种形态的流化床称聚式流化床。
处于流化状态的颗粒系统称为流化床当气体通过布风板自下而上地穿过固体颗粒随意填充状态的床层时,整体床层将依气体流速的不断增大而呈现完全不同的状态。
1.2流态化的描述及其性质1.2流态化的描述及其性质总结:固定床:固体粒子处于堆紧状态,颗粒静止不动的床层,叫做固定床。
床层的压降随流体流速的增加而增加。
移动床:流体和固体颗粒同时进入反应器,他们互相接触,一面进行反应,一面颗粒移动。
流化床:床层颗粒之间脱离接触,颗粒悬浮在流体中,往各个方向运动的床层叫做流化床。
床层高度和空隙率随流速增大而增大,但床层压降基本不随流速而变。
散式流化床:固体颗粒脱离接触,但颗粒分布均匀,颗粒间充满流体,无颗粒与流体的聚集状态,此时已具有一些流体性能。
气固两相流在燃烧器中的应用1、气固两相流的基本理论不管何种型式的燃烧器,其内流动的本质都是气固两相流动。
因而,要改进燃烧器,必须对气固两相流动的规律有深入的理解。
2、气固两相流的基本特点单相气流中只有气体的存在,但是在锅炉内的气流中都存在一定浓度的固体颗粒,而且各处的固体颗粒浓度存在差异,这就使得炉内的燃料颗粒流动变的相当复杂。
一般来说,有以下主要的特点:(1)气体分子分布均匀,而燃料颗粒是分散的、且直径大小不同,为了简便起见,人们通常仅仅考虑一个平均尺寸。
(2)燃烧装置中颗粒浓度一般不大,所以颗粒相一般不能作为连续介质。
(3)颗粒相的惯性较大,气体和颗粒间存在着速度的滑移,因而各自运动规律相互会产生影响。
(4)颗粒之间及颗粒和壁面的碰撞和摩擦可以产生静电效应。
在不等温的热流中还存在着热泳现象。
(5)由于颗粒尺寸大小不一,形状也不同,使得每个颗粒都有不同的速度。
(6)在有压力梯度、速度梯度存在的流场中,颗粒经常处于加速或者减速的不稳定状态,颗粒间及与管壁间相互碰撞等都会引起颗粒的高速旋转,产生升力效应。
(7)颗粒的湍流扩散系数和气体不同,因而其横向扩散运动的特点也不一样。
小颗粒的扩散速率比大颗粒的扩散速率大。
3、气固两相流的分类工程中的两相流种类繁多,结构复杂,从空气动力学的特征出发,可以分为稀相两相流和浓相两相流。
这是以颗粒在气相中的含量多少来区分的,通常认为稀相两相流中颗粒的浓度不大,使得颗粒的存在对气相运动的影响不大,颗粒相的运动规律基本与相一致,只要把气相和固相运动的相互影响加以修正就可以了。
浓相两相流动就是颗粒相浓度增加到一定数值以后,对气相的流动形成了很大影响,这时候用气相流动方程就很难准确的加以描述。
一般来说,颗粒的浓度小于lkg/kg空气时,可以认为是稀相两相流,反之就是浓相两相流。
对于浓相气固两相流,气相决定着固相运动,固相对气相的影响也不可以忽略,这种情况称为双向祸合(Two-Way Coupling)。
1 流态化理论1.1流态化现象流化床燃烧方式的气体动力学基础是固体燃料的流态化。
所谓固体燃料的流态化,是指固体颗粒在与流动着的流体混合后,能像流体那样自由流动的现象。
除重力作用外,一般是依靠气体或液体的流动来带动固体粒子运动的。
ParticlesflowGas flow1 流态化理论1.1 流态化现象•流态化用来描述固体颗粒与流体接触的某种运动形态。
•气体达到能将颗粒悬浮的速度,颗粒彼此之间分离,颗粒在任何方向上运动和转动。
•与高粘度液体性质相似。
1.1 流态化现象Particlesflow Gas flow1 流态化理论1.2流态化的描述及其性质⏹散式流化和聚式流化 散式流化db /dp<1db ——气泡直径 dp——颗粒直径对于L-S系统,流体与粒子的密度相差不大,故umf 一般很小,流速进一步提高时,床层膨胀均匀且波动很小,粒子在床内的分布也比较均匀,故称作散式流化态。
颗粒越细,流体与固体的△ρ值越小,则越接近理想流化,流化质量也就越好。
1.2流态化的描述及其性质 聚式流化d b /dp>10对于G-S系统,一般在气速超过Umf后,将会出现气泡,气速越高,气泡造成的扰动也越剧烈,使床层波动频繁,这种形态的流化床称聚式流化床。
处于流化状态的颗粒系统称为流化床当气体通过布风板自下而上地穿过固体颗粒随意填充状态的床层时,整体床层将依气体流速的不断增大而呈现完全不同的状态。
1.2流态化的描述及其性质1.2流态化的描述及其性质总结:固定床:固体粒子处于堆紧状态,颗粒静止不动的床层,叫做固定床。
床层的压降随流体流速的增加而增加。
移动床:流体和固体颗粒同时进入反应器,他们互相接触,一面进行反应,一面颗粒移动。
流化床:床层颗粒之间脱离接触,颗粒悬浮在流体中,往各个方向运动的床层叫做流化床。
床层高度和空隙率随流速增大而增大,但床层压降基本不随流速而变。
散式流化床:固体颗粒脱离接触,但颗粒分布均匀,颗粒间充满流体,无颗粒与流体的聚集状态,此时已具有一些流体性能。
3.1固气两相流输送理论载气式送粉器主要依靠动能把粉末均匀、稳定地输送出来,辅之以气体分散和运输,粉末容易分散均匀及流畅运输。
因此送粉器的结构设计和送粉器的应用都要用到固气两相流输送的相关理论。
3.1.1固气两相流输送原理固气两相流,也称气力输送,是一种利用空气流作为输送动力在管道中输送粉粒状颗粒料的方法。
物料在管道中的流动状态实际上很复杂,主要随气流速度及气流中所含的物料量和物料本身料性的不同而显著变化。
通常,当管道内气流速度很高而物料量又很少时,物料颗粒在管道中接近于均匀分布,并在气流中呈完全悬浮状态被输送,见图3-1(a )。
随着气流速度逐渐减小或物料量有所增加,作用于颗粒的气流推力也就减小,使颗粒速度也相应减慢。
加上颗粒间可能发生碰撞,部分较大颗粒趋向下沉接近管底,这时管底物料分布变密,但物料仍然正常地被输送,见图3-1(b)。
当气流速度再减小时,可以看到颗粒成层状沉积在管底,这时气流及一部分颗粒从它的上层空间通过。
而在沉积层的表面,有的颗粒在气流的作用下也会向前滑移,见图3-1(c)。
当气流速度开始低于悬浮速度或者物料量更多时,大部分较大颗粒会失去悬浮能力,不仅出现颗粒停滞在管底,在局部地段甚至因物料堆积形成“砂丘”。
气流通过“砂丘”上部的狭窄通道时速度加快,可以在一瞬间将“砂丘”吹走。
颗粒的这种时而停滞时而吹走的现象是交替进行的,见图3-1(d)。
如果局部存在的“砂丘”突然大到充填整个管道截面,就会导致物料在管道中不在前进。
如果设法使物料在管道中形成料栓,见图3-1(e)。
也可以利用料栓前后的压力差推动它前进。
以上所说的物料气力输送流动状态中,前三种属于悬浮流,颗粒是依靠高速流的气流动压被输送的,这种流动状态也称为动压输送。
后两种属于集团流,其中最后一种称为栓流,物料依靠气流的静压输送的。
第四种则动、静压的作用均存在。
3.1.2混合比混合比是指两相流中物料量与空气量的比值,由于它反映了输送量和输送状态的标准,是两相流的重要参数之一。