十字相乘法精品教案(精.选)
- 格式:doc
- 大小:205.00 KB
- 文档页数:6
十字相乘法(教案)1000字教学目标:1. 能够运用十字相乘法快速求出两个多项式的乘积。
2. 能够理解十字相乘法的基本原理和操作步骤。
3. 能够应用十字相乘法解决相关的数学问题。
教学重点:1. 十字相乘法的基本原理和操作步骤。
2. 把十字相乘法应用到乘法计算中。
教学难点:1. 操作规范和技巧。
2. 深入理解十字相乘法的基本原理。
教学过程:一、导入新知识:1. 询问学生是否听说过十字相乘法,并让学生尝试用传统的方法计算两个多项式的乘积。
2. 结果多项式的次数都比原来的两个多项式高,计算时间和计算难度都明显加大。
3. 需要用一种新方法,快速求解两个多项式的乘积。
4. 导入十字相乘法的概念。
二、对新知识的讲解:1. 十字相乘法可以快速求解两个多项式的乘积。
2. 十字相乘法的基本原理是在两个多项式的各项系数之间建立一个包含交叉求积的十字形式。
3. 在十字相乘法中,假设要计算多项式 (ax+b) 和 (cx+d) 的乘积,步骤如下:- 在一个横轴上标出 a 和 c。
- 在一个竖轴上标出 d 和 b。
- 在横轴上从 a 出发向右边画一条线,长度为 d+c。
- 在竖轴上从 d 出发向下边画一条线,长度为 a+b。
- 在横轴和竖轴的交点处,就是两个多项式的乘积 (ac)x^2 + (ad+bc)x + bd。
4. 对于乘法的标准式 (ax^2+bx+c) 和 (dx^2+ex+f),步骤如下:- 在一个横轴上标出 a 和 d。
- 在一个竖轴上标出 f 和 c。
- 在横轴上从 a 出发向右边画一条线,长度为 e+b。
- 在竖轴上从 f 出发向下边画一条线,长度为 e+c。
- 在横轴和竖轴的交点处,就是两个多项式的乘积 (ad)x^4 + (ae+bd) x^3 + (af+be+cd) x^2 + (bf+ce) x + cf。
三、教师示范:1. 让学生一起通过示例学习十字相乘法的操作规范和技巧:(1)计算 (x+1)(x+2):- 在横轴上标出 1 和 1。
十字相乘法教案课题:十字相乘法一、教学设计与说明一、教材分析:“十字相乘法分解因式”是七年级第二学期第八章第4节的内容,也是学生在学习提取公因式与公式法两种因式分解后的内容。
学生对因式分解已有了解及应用,再借助十字交叉线分解因式,学生容易掌握,同时这节课也为以后学习分式的运算、一元二次方程、二次函数、分式方程、一元二次不等式等作铺垫,这节课无论从它的内容还是它的地位都十分重要。
二、教学目标:1、进一步理解因式分解的定义;2、会用十字相乘法进行二次三项式(q px x ++2)的因式分解;3、通过学生的不断尝试,培养学生的耐心和信心,同时在尝试中提高学生的观察能力。
三、教学的重点难点教学重点:能熟练应用十字相乘法进行二次三项式(q px x ++2)的因式分解。
教学难点:在q px x ++2分解因式时,准确地找出a 、b ,使p ab =,q b a =+。
四、教学设计1、通过学生对问题的“议一议”,发现“232++x x ”不是一个完全平方形式,产生了究竟是否还能分解的问题,学生带着问题进入新课。
(吸引学生)2、通过学生对多项式乘法的“算一算”,巩固了多项式的乘法的知识,又观察到了计算中含有“232++x x ”这个结论,为以下“想一想”作了充分准备。
3、通过学生对多项式乘法遗留问题的“想一想”,既加深了对因式分解定义的理解,又得到了“232++x x ”的分解结果,从而过渡到“ab x b a x +++)(2”的分解。
4、借助十字交叉线给师生互动,让学生“动一动”理解十字相乘法的定义。
5、通过学生的多次尝试,用“做一做”的环节来体验“如何用十字相乘法因式分解”。
6、知道了十字相乘法,那么“练一练”的环节是不可缺少的,通过“练一练”,学生就有实践的体会,并能把知识延伸与拓展,学生学习兴趣盎然。
7、最后是学生的自主小结,交流各自的感受,达成共识。
总之,整节课力争体现学生学习的主动性,让学生完全参与整节课的教学活动,体验知识的发生发展过程,通过多次尝试,培养学生的耐心和信心,提高学生的观察能力。
十字相乘法精品教案十字相乘法进行因式分解【基础知识精讲】(1)理解二次三项式的意义; (2)理解十字相乘法的根据;(3)能用十字相乘法分解二次三项式;(4)重点是掌握十字相乘法,难点是首项系数不为1的二次三项式的十字相乘法. 【重点难点解析】 1.二次三项式多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式.在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式.在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 十字相乘法是适用于二次三项式的因式分解的方法. 2.十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(ax +b )(cx+d )竖式乘法法则.它的一般规律是: (1)对于二次项系数为1的二次三项式q px x ++2,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式))(()(2b x a x ab x b a x ++=+++分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式c bx ax ++2(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =⋅21,c c c =⋅21,且b c a c a =+1221,那么c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定.学习时要注意符号的规律.为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同.用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.如:)45)(2(86522-+=-+x x y xy x (使交叉相乘再相加后的和等于一次项系数,在横向写出积的形式。
十字相乘法教案教案标题:十字相乘法教案教案概述:本教案旨在引导学生掌握十字相乘法的基本概念和运用方法。
通过多种教学策略和活动,提高学生对十字相乘法的理解和运用能力,培养学生的数学思维和解决问题的能力。
教学目标:1. 理解十字相乘法的概念和原理。
2. 能够运用十字相乘法进行简单的乘法计算。
3. 培养学生的数学思维和解决问题的能力。
教学重点:1. 十字相乘法的概念和原理。
2. 十字相乘法的运用方法。
教学准备:1. 教师准备:黑板、白板、彩色粉笔/白板笔、教学PPT等。
2. 学生准备:练习册、铅笔、橡皮擦等。
教学过程:一、导入(5分钟)1. 引入问题:请学生回顾一下之前学过的乘法计算方法,如何计算两个两位数的乘法?2. 学生回答并讨论,教师引导学生思考是否有更简便的方法进行乘法计算。
二、概念讲解(10分钟)1. 教师通过示意图和实例,简单介绍十字相乘法的概念和原理。
2. 教师解释十字相乘法的步骤:将两个乘数的十位数和个位数分别相乘,再将结果相加。
三、示范演示(15分钟)1. 教师以一个两位数乘一个两位数的示例进行演示,详细展示十字相乘法的步骤和计算过程。
2. 教师引导学生一起完成另外几个示例,确保学生掌握十字相乘法的运算方法。
四、练习巩固(15分钟)1. 学生个别练习:教师布置一些练习题,让学生个别完成,巩固十字相乘法的运算方法。
2. 学生互助练习:学生两两合作,互相出题并相互检查答案,加深对十字相乘法的理解和运用。
五、拓展应用(10分钟)1. 教师提供一些拓展题目,要求学生运用十字相乘法解决实际问题,如计算长方形的面积等。
2. 学生讨论解题思路,展示解题过程和答案。
六、总结回顾(5分钟)1. 教师总结十字相乘法的概念和运算方法。
2. 学生回答问题:你觉得十字相乘法相比其他乘法计算方法有什么优势?七、作业布置(2分钟)1. 布置适量的课后练习题,要求学生运用十字相乘法进行计算。
2. 提醒学生复习和巩固本节课的内容。
一元二次方程的解法----十字相乘法教案大全第一篇:一元二次方程的解法----十字相乘法教案大全一元二次方程的解法——十字相乘法班级________姓名________学号________一、学习目标:1、利用十字相乘法分解因式2、利用十字相乘法解一元二次方程练习:(1)x2+7x+12 =0(2)x2—5x+6=0(3)(x+2)(x—1)=10二、典例精析例1、用十字相乘法分解因式(1)x2+5x+6(3)x2+5x—6(5)x2—5xy+6y2练习:(1)x2—7x+10(3)x2—12x—13例2、用十字相乘法解一元二次方程(1)x2+5x+6=0(3)(x+3)(x—1)=5(2)x2—5x+64)x2—5x—6(6)(x+y)2—5(x+y)—6(2)y2+y—2(4)m2—5m+4(2)y2+y—2=0(4)t(t+3)=28例3、用十字相乘法解关于x的方程:(1)(x—2)2—2(x—2)—3=0*(2)(x2—3x)2—2(x2—3x)—8=0练习:(1)(x+1)2-5(x+1)-24=0(2)x2+(m2-n2)x-m2n2=0★例4、已知x2—5xy+6y2 =0(y≠0),求yxx+y 的值。
四、课后作业1、m2+7m—18=(m+a)(m+b),则a,b的符号为()A、a,b异号B、a,b异号且绝对值大的为负C、a, b同号D、a,b同号且绝对值大的为正(2、在下列各式中,(1)x2+7x+6(2)x2+4x+3(3)x2+6x+8(4)x2+7x+10(5)x2+15x+44有相同因式的是()A、(1)(2)B、(3)(5)C、(2)(5)D、(1)(2)、(3)(4)、(3)(5)3、x2+2x—3,x2—4x+3,x2+5x—6的公因式是()A、x—3B、3—xC、x +1D、x—14、若y2+py+q=(y—4)(y+7),则p=,q=.5、分解因式:(1)x2+7 x—8(2)y2—2y—15(3)(x+3y)2—4(x+3y)—326、用十字相乘法解一元二次方程(1)x2—3x—10 =0(2)x2+3x—10 =0(3)x2—6x—40 =0(4)x2—10x+16 =0(5)x2—3x—4 =0(6)m2—3m—18=07、用十字相乘法解关于x的一元二次方程:(1)(x+1)(x+3)=15(2)(x+2)(x—3)=14(3)x2-4ax+3a2=0(5)(x—2)2+3(x—2)—4=0(4)x2—3xy—18y2=0*(6)(x2—x)2—4(x2—x)—12=08、已知:△ABC的两边长为2和3,第三边的长是x2—7x+10=0的根,求△ABC的周长.9、已知下列n(n为正整数)个关于x的一元二次方程:x2-1=0<1>x2+x-2=0<2>x2+2x-3=0<3>……x2+(n-1)x-n=0<n>(1)请解上述一元二次方程<1>、<2>、<3>、;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可. 第二篇:一元二次方程解法一元二次方程一般形式:ax2+bx+c=0(a≠0,a,b,c是常数)根的判别式时,方程有两个不相等的实数根;时,方程有两个相等的实数根;时,方程无实数根①当②当③当根与系数的关系解法1、直接开平方法x2=p或(nx+m)2=p(p≥0)2、配方法3、求根公式法4、因式分解法一、选择1.用配方法解下列方程时,配方有错误的是()一元二次方程的解法同步测试题7281 4162210222C.x+8x+9=0化为(x+4)=25D.3x-4x-2=0化为(x-)= 39222A.x-2x-99=0化为(x-1)=100B.2x-7x-4=0化为(x-)=2.用配方法解关于x的方程x+px+q=0时,此方程可变形为()2p2p2-4qp24q-p2A.(x+)=B.(x+)= 2424p2p2-4qp24q-p2C.(x-)=D.(x-)= 24243.二次三项式x-4x+7值()A.可以等于0B.大于3C.不小于3D.既可以为正,也可以为负1 24.若2x+1与4x-2x-5互为相反数,则x为()A.-1或222233B.1或-C.1或-D.1或 32325.以5-26和5+26为根的一元二次方程是()A.x-10x-1=0B.x+10x-1=0C.x+10x+1=0D.x-10x+1=06.方程2x-6x+3=0较小的根为p,方程2x-2x-1=0较大的根为q,则p+q等于()A.3B.2C.1D.237.已知x1、x2是方程x-x-3=0的两个实数根,那么x1+x2的值是()A.1B.5C.7D.222222222 4948.方程x(x+3)=x+3的解是()A.x=1B.x1=0, x2=-3C.x1=1 ,x2=3D.x1=1,x2=-39.下列说法错误的是()A.关于x的方程x=k,必有两个互为相反数的实数根。
十字相乘法教学设计(多篇)篇:十字相乘法设计因式分解——十字相乘法东莞市可园中学教材与学情分析本课时属数学教材八年级上学期《分解因式》的补充内容,依据一是这一内容在九年级解一元二次方程中有很大的应用价值,二是学生的掌握难度并不大,增补此内容并不会增加学生负担,三是学习此内容可开阔学生视野,锻炼学生的思维,所以,我们也安排了课时讲解此内容。
教学目标:1、会用十字相乘法进行二次三项式(x2px q)的因式分解;2、通过学生的不断尝试,培养学生的耐心和信心,在尝试中提高学生的观察能力和逆向思维能力。
教学重点:能熟练应用十字相乘法进行二次三项式(x2px q)的因式分解。
b,a b q。
教学难点:在x2px q分解因式时,准确地找出a、使ab p,教学过程:一、复习引入分解因式:把一个多项式分解成几个整式的_______的形式。
已学的因式分解方法有_______________和______________.思考:你知道x25x6怎样分解因式吗?二、探究(x2)(x3) = ____;(x2)(x4)= _。
填空:(1)(2)(x3)(x4)= ___;(x a)(x b)= _。
(3)(4)根据上面结果,你会对下列二次三项式进行因式分解?请试一下。
它们有什么共同的特点?(1)x25x 6 =____________ , (2) x22x8=_______________。
(3)x27x12 =____________ , (4)x2(a b)x ab =_______________。
共同特点:①二次项系数是_____;②常数项是两个数之_______;③一次项系数是常数项的两个因数之_______。
例题讲解例1.因式分解x25x 6十字相乘法的定义:利用十字交叉来分解系数,把二次三项式分解因式的方法叫做十字相乘法。
练习1 .因式分解(1)x27x 6 (2)x25x 6例2.因式分解x22x8练习2.因式分解(1)x22x8 (2)x27x8四、巩固练习练习3.因式分解(1)x27x10 (2)x27x10(3)x29x10 (4)x23x10练习4.若x2mx n(x4)(x9),则m=______,n=________.五、拓展提升出题比赛练习5.在横线上填一个整数,然后因式分解(1)x2____x15 (2)x2____x 15练习6.若x2ax6在整数范围内可以因式分解,则a的值可能是_____________.六、小结七、教学反思在读书的时候学到十字相乘法时,曾经心里有这样一个疑惑,是不是所有的二次三项式都可以用十字相乘法进行因式分解呢?如果不是,那满足什么条件的二次三项式可以用十字相乘法进行因式分解呢?这留作我们今天这节课的第三个思考题。
十字相乘法进行因式分解【基础知识精讲】(1)理解二次三项式的意义; (2)理解十字相乘法的根据; (3)能用十字相乘法分解二次三项式;(4)重点是掌握十字相乘法,难点是首项系数不为1的二次三项式的十字相乘法. 【重点难点解析】 1.二次三项式多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式.在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式.在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 十字相乘法是适用于二次三项式的因式分解的方法. 2.十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式q px x ++2,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式))(()(2b x a x ab x b a x ++=+++分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式c bx ax ++2(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =⋅21,c c c =⋅21,且b c a c a =+1221,那么c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定.学习时要注意符号的规律.为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同.用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.如:)45)(2(86522-+=-+x x y xy x (使交叉相乘再相加后的和等于一次项系数,在横向写出积的形式。
)3.因式分解一般要遵循的步骤多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”. 1) 将常数项分解成两个因数积的形式。
2) 确定和为一次项系数的两个因数。
3) 把这个多项式写成积形式。
例1 把下列各式分解因式:(1)1522--x x ;(2)2265y xy x +-.点悟:(1)常数项-15可分为3 ×(-5),且3+(-5)=-2恰为一次项系数;(2)将y 看作常数,转化为关于x 的二次三项式,常数项26y 可分为(-2y )(-3y ),而(-2y )+(-3y )=(-5y )恰为一次项系数.解:(1))5)(3(1522-+=--x x x x ; (2))3)(2(6522y x y x y xy x --=+-. 例2 把下列各式分解因式:(1)3522--x x ;(2)3832-+x x .点悟:我们要把多项式c bx ax ++2分解成形如))((2211c ax c ax ++的形式,这里a a a =21,c c c =21而b c a c a =+1221. 解:(1))3)(12(3522-+=--x x x x ; (2))x )(x (x x 3133832+-=-+.点拨:二次项系数不等于1的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性. 例3 把下列各式分解因式: (1)91024+-x x ;(2))(2)(5)(723y x y x y x +-+-+; (3)120)8(22)8(222++++a a a a .点悟:(1)把2x 看作一整体,从而转化为关于2x 的二次三项式; (2)提取公因式(x +y )后,原式可转化为关于(x +y )的二次三项式; (3)以)8(2a a +为整体,转化为关于)8(2a a +的二次三项式.解:(1) )9)(1(9102224--=+-x x x x =(x +1)(x -1)(x +3)(x -3).(2) )(2)(5)(723y x y x y x +-+-+]2)(5)(7)[(2-+-++=y x y x y x=(x +y )[(x +y )-1][7(x +y )+2] =(x +y )(x +y -1)(7x +7y +2). (3) 120)8(22)8(222++++a a a a)108)(128(22++++=a a a a )108)(6)(2(2++++=a a a a点拨:要深刻理解换元的思想,这可以帮助我们及时、准确地发现多项式中究竟把哪一个看成整体,才能构成二次三项式,以顺利地进行分解.同时要注意已分解的两个因式是否能继续分解,如能分解,要分解到不能再分解为止. 例4 分解因式:90)242)(32(22+-+-+x x x x . 点悟:把x x 22+看作一个变量,利用换元法解之. 解:设y x x =+22,则 原式=(y -3)(y -24)+90162272+-=y y=(y -18)(y -9))92)(182(22-+-+=x x x x .点拨:本题中将x x 22+视为一个整体大大简化了解题过程,体现了换元法化简求解的良好效果.此外,)9)(18(162272--=+-y y y y 一步,我们用了“十字相乘法”进行分解.例5 分解因式653856234++-+x x x x . 点悟:可考虑换元法及变形降次来解之. 解:原式]38)1(5)1(6[222-+++=xx x x x ]50)1(5)1(6[22-+++=xx x x x ,令y xx =+1,则 原式)5056(22-+=y y x)103)(52(2+-=y y x)1033)(522(2++-+=xx x x x )3103)(252(22+++-=x x x x)13)(3)(12)(2(++--=x x x x .点拨:本题连续应用了“十字相乘法”分解因式的同时,还应用了换元法,方法巧妙,令人眼花瞭乱.但是,品味之余应想到对换元后得出的结论一定要“还原”,这是一个重要环节. 例6 分解因式655222-+-+-y x y xy x .点悟:方法1:依次按三项,两项,一项分为三组,转化为关于(x -y )的二次三项式. 方法2:把字母y 看作是常数,转化为关于x 的二次三项式. 解法1: 655222-+-+-y x y xy x6)55()2(22-+-++-=y x y xy x 6)(5)(2----=y x y x)6)(1(--+-=y x y x .解法2: 655222-+-+-y x y xy x65)52(22-+++-=y y x y x )1)(6()52(2-+++-=y y x y x)]y (x )][y (x [16--+-==(x -y -6)(x -y +1).例7 分解因式:ca (c -a )+bc (b -c )+ab (a -b ).点悟:先将前面的两个括号展开,再将展开的部分重新分组. 解:ca (c -a )+bc (b -c )+ab (a -b ))(2222b a ab bc c b c a ac -+-+-=)()()(222b a ab b a c b a c -+---= )())(()(2b a ab b a b a c b a c -+-+--= ])()[(2ab b a c c b a ++--==(a -b )(c -a )(c -b ).点拨:因式分解,有时需要把多项式去括号、展开、整理、重新分组,有时仅需要把某几项展开再分组.此题展开四项后,根据字母c 的次数分组,出现了含a -b 的因式,从而能提公因式.随后又出现了关于c 的二次三项式能再次分解.例8 已知12624+++x x x 有一个因式是42++ax x ,求a 值和这个多项式的其他因式.点悟:因为12624+++x x x 是四次多项式,有一个因式是42++ax x ,根据多项式的乘法原则可知道另一个因式是32++bx x (a 、b 是待定常数),故有=+++12624x x x +2(x )3()42+++⋅bx x ax .根据此恒等关系式,可求出a ,b 的值.解:设另一个多项式为32++bx x ,则12624+++x x x)3)(4(22++++=bx x ax x12)43()43()(234++++++++=x b a x ab x b a x ,∵ 12624+++x x x 与12)43()43()(234++++++++x b a x ab x b a x 是同一个多项式,所以其对应项系数分别相等.即有由①、③解得,a =-1,b =1, 代入②,等式成立.∴ a =-1,另一个因式为32++x x .点拨:这种方法称为待定系数法,是很有用的方法.待定系数法、配方法、换元法是因式分解较为常用的方法,在其他数学知识的学习中也经常运用.希望读者不可轻视. 【易错例题分析】例9 分解因式:22210235y aby b a -+. 错解:∵ -10=5×(-2),5=1×5,5×5+1×(-2)=23,∴原式=(5ab+5y)(-2ab+5y).警示:错在没有掌握十字相乘法的含义和步骤.正解:∵5=1×5,-10=5×(-2),5×5+1×(-2)=23.∴原式=(ab+5y)(5ab-2y).最新文件仅供参考已改成word文本。