数学人教版七年级上册十字相乘法教学设计
- 格式:doc
- 大小:13.00 KB
- 文档页数:2
课题:十字相乘法一、教学设计与说明一、教材分析:“十字相乘法分解因式”是七年级第二学期第八章第4节的内容,也是学生在学习提取公因式与公式法两种因式分解后的内容。
学生对因式分解已有了解及应用,再借助十字交叉线分解因式,学生容易掌握,同时这节课也为以后学习分式的运算、一元二次方程、二次函数、分式方程、一元二次不等式等作铺垫,这节课无论从它的内容还是它的地位都十分重要。
二、教学目标:1、进一步理解因式分解的定义;2、会用十字相乘法进行二次三项式(q px x ++2)的因式分解;3、通过学生的不断尝试,培养学生的耐心和信心,同时在尝试中提高学生的观察能力。
三、教学的重点难点教学重点:能熟练应用十字相乘法进行二次三项式(q px x ++2)的因式分解。
教学难点:在q px x ++2分解因式时,准确地找出a 、b ,使p ab =,q b a =+。
四、教学设计1、通过学生对问题的“议一议”,发现“232++x x ”不是一个完全平方形式,产生 了究竟是否还能分解的问题,学生带着问题进入新课。
(吸引学生)2、通过学生对多项式乘法的“算一算”,巩固了多项式的乘法的知识,又观察到了计算 中含有“232++x x ”这个结论,为以下“想一想”作了充分准备。
3、通过学生对多项式乘法遗留问题的“想一想”,既加深了对因式分解定义的理解,又得到了“232++x x ”的分解结果,从而过渡到 “ab x b a x +++)(2”的分解。
4、借助十字交叉线给师生互动,让学生“动一动”理解十字相乘法的定义。
5、通过学生的多次尝试,用“做一做”的环节来体验“如何用十字相乘法因式分解”。
6、知道了十字相乘法,那么“练一练”的环节是不可缺少的,通过“练一练”,学生就 有实践的体会,并能把知识延伸与拓展,学生学习兴趣盎然。
7、最后是学生的自主小结,交流各自的感受,达成共识。
总之,整节课力争体现学生学习的主动性,让学生完全参与整节课的教学活动,体验知识的发生发展过程,通过多次尝试,培养学生的耐心和信心,提高学生的观察能力。
十字相乘法(教案)1000字教学目标:1. 能够运用十字相乘法快速求出两个多项式的乘积。
2. 能够理解十字相乘法的基本原理和操作步骤。
3. 能够应用十字相乘法解决相关的数学问题。
教学重点:1. 十字相乘法的基本原理和操作步骤。
2. 把十字相乘法应用到乘法计算中。
教学难点:1. 操作规范和技巧。
2. 深入理解十字相乘法的基本原理。
教学过程:一、导入新知识:1. 询问学生是否听说过十字相乘法,并让学生尝试用传统的方法计算两个多项式的乘积。
2. 结果多项式的次数都比原来的两个多项式高,计算时间和计算难度都明显加大。
3. 需要用一种新方法,快速求解两个多项式的乘积。
4. 导入十字相乘法的概念。
二、对新知识的讲解:1. 十字相乘法可以快速求解两个多项式的乘积。
2. 十字相乘法的基本原理是在两个多项式的各项系数之间建立一个包含交叉求积的十字形式。
3. 在十字相乘法中,假设要计算多项式 (ax+b) 和 (cx+d) 的乘积,步骤如下:- 在一个横轴上标出 a 和 c。
- 在一个竖轴上标出 d 和 b。
- 在横轴上从 a 出发向右边画一条线,长度为 d+c。
- 在竖轴上从 d 出发向下边画一条线,长度为 a+b。
- 在横轴和竖轴的交点处,就是两个多项式的乘积 (ac)x^2 + (ad+bc)x + bd。
4. 对于乘法的标准式 (ax^2+bx+c) 和 (dx^2+ex+f),步骤如下:- 在一个横轴上标出 a 和 d。
- 在一个竖轴上标出 f 和 c。
- 在横轴上从 a 出发向右边画一条线,长度为 e+b。
- 在竖轴上从 f 出发向下边画一条线,长度为 e+c。
- 在横轴和竖轴的交点处,就是两个多项式的乘积 (ad)x^4 + (ae+bd) x^3 + (af+be+cd) x^2 + (bf+ce) x + cf。
三、教师示范:1. 让学生一起通过示例学习十字相乘法的操作规范和技巧:(1)计算 (x+1)(x+2):- 在横轴上标出 1 和 1。
十字相乘法教案课题:十字相乘法一、教学设计与说明一、教材分析:“十字相乘法分解因式”是七年级第二学期第八章第4节的内容,也是学生在学习提取公因式与公式法两种因式分解后的内容。
学生对因式分解已有了解及应用,再借助十字交叉线分解因式,学生容易掌握,同时这节课也为以后学习分式的运算、一元二次方程、二次函数、分式方程、一元二次不等式等作铺垫,这节课无论从它的内容还是它的地位都十分重要。
二、教学目标:1、进一步理解因式分解的定义;2、会用十字相乘法进行二次三项式(q px x ++2)的因式分解;3、通过学生的不断尝试,培养学生的耐心和信心,同时在尝试中提高学生的观察能力。
三、教学的重点难点教学重点:能熟练应用十字相乘法进行二次三项式(q px x ++2)的因式分解。
教学难点:在q px x ++2分解因式时,准确地找出a 、b ,使p ab =,q b a =+。
四、教学设计1、通过学生对问题的“议一议”,发现“232++x x ”不是一个完全平方形式,产生了究竟是否还能分解的问题,学生带着问题进入新课。
(吸引学生)2、通过学生对多项式乘法的“算一算”,巩固了多项式的乘法的知识,又观察到了计算中含有“232++x x ”这个结论,为以下“想一想”作了充分准备。
3、通过学生对多项式乘法遗留问题的“想一想”,既加深了对因式分解定义的理解,又得到了“232++x x ”的分解结果,从而过渡到“ab x b a x +++)(2”的分解。
4、借助十字交叉线给师生互动,让学生“动一动”理解十字相乘法的定义。
5、通过学生的多次尝试,用“做一做”的环节来体验“如何用十字相乘法因式分解”。
6、知道了十字相乘法,那么“练一练”的环节是不可缺少的,通过“练一练”,学生就有实践的体会,并能把知识延伸与拓展,学生学习兴趣盎然。
7、最后是学生的自主小结,交流各自的感受,达成共识。
总之,整节课力争体现学生学习的主动性,让学生完全参与整节课的教学活动,体验知识的发生发展过程,通过多次尝试,培养学生的耐心和信心,提高学生的观察能力。
十字相乘法因式分解(2)教学目标1、熟练掌握十字相乘法因式分解方法。
2、经历探究用十字相乘法因式分解较为复杂多项式的过程,深入理解十字相乘法的概念。
3、感悟数学中整体数学思想和换元思想在因式分解中的应用。
教材分析因式分解在整式一章中占着及其重要的地位,因为,它是解决一元二次方程以及可化为一元二次方程的高次方程、分式方程、无理方程的基本方法,利用因式分解可以有效的解决方程中的降次问题;它在分式运算中也扮演着重要角色,如分式加减法中的通分和分式乘除法中的约分基本都以因式分解为前提。
所以学生学生掌握因式分解的程度直接影响着学生后面对分式运算、方程和不等式的进一步学习。
由于因式分解是对整式乘法运算进行逆向思维的过程,而这种逆向是一个整体综合的过程,这对本来不太习惯抽象思维的学生又提出了整体综合的思维要求,对学生的学习挑战还是较大的。
教材在学习整式乘法后,开始按部就班的学习因式分解,进行强化训练。
学生容易陷入盲目的被动学习状态。
为了帮助学生克服困难,我们对因式分解的教学进行了整体设计。
一是在引入上从因式分解与其他数学知识之间的内在联系出发,尽可能的让学生了解和明白因式分解的意义和目的,理解因式分解在多项式中的降次作用。
二是以二次三项式的因式分解为主线展开教学和拓展。
这其中很显然十字相乘法是适用于 (a≠0)常用的、普适的方法。
其中包含了特殊的平方差公式和完全平方公式法因式分解。
我们想通过学习归纳到 (a≠0)不同情况的有理数范围内的因式分解,包括二次项系数不为1的情况。
(教材中只学习二次项系数为1的情况,而在高中学习的时候直接进行系数不为1的因式分解的应用,这里通过学习,其实已经水到渠成了,所以进行拓展延伸)本节课的教学,在延续第一课时二次项系数为1的二次三项式的因式分解,理解掌握十字相乘法的“二拆一凑”的基础上,对含二个字母的二次三项式进行“二拆一凑”的研究,解决问题,进而对高次和以多项式作为二次三项式中x的多项式进行因式分解。
用十字相乘法分解因式教学设计【教学目标】知识目标:学会用十字相乘法分解二次三项式;注意分解因式的基本步骤。
能力目标:渗透待定系数的思想。
情感目标:感受数学的简洁之美。
【教学重点】:恰当将系数分解质因数,凑出符合的“十字”。
【教学难点】:二次项系数不为1的二次三项式的因式分解。
【课前准备】:学案,阅读教材P172.【教学课时】:1课时。
【教学过程】:一、课前阅读。
阅读教材P172,尝试解决下面的问题。
1、完成后面的四道练习。
2、能用十字相乘法分解的二次三项式有何特征?3、已知x2+mx-12可以分解为两个一次二项式之积,则整数m的值可能是多少?二、新课学习。
(一)引入。
解一元二次方程x2-2x-3=0.(二)阅读效果交流。
1、请学生订正课本上的练习。
【教师点拨】①可应用前面所学的配方思想来解决;②注意一次项系数的符合.③在此处教画十字。
2、请学生谈问题2.【教师点拨】即公式x2+(p+q)x+pq=(x+p)(x+q)。
概括:能够分解为(x+p)(x+q)的二次三项式满足以下条件:①二次项系数为____;②一次项系数等于_________;③常数项等于________.3、订正问题3.【教师点拨】因-12=-1×12=-12×1=-2×6=-6×2=-3×4=-4×3,故m应有六种可能的值。
4、预习检测:将下列各式因式分解。
(1)x2 —6x +8 (2)x2 —2x —15(3)x2 —8x +12(三)阅读中学习。
1、例1、解方程:x2 +6x-7=0口诀:“竖分常数交叉验,横写因式不能乱。
阅读后反思:A、联系:本题与前面的因式分解题有什么相同之处?B、区别:本题与单纯的因式分解题有何区别?C、方法与思想:几个因式的积为0,则必有一个因式为0.【教师点拨】一元二次方程的标准形式为二次三项式的和为0,则只需将二次三项式分解为几个因式之积,就能应用“几个因式的积为0,则必有一个因式为0”求出未知数的值,可见,解方程与整式的变形是统一的。
十字相乘法教学过程设计1.通过计算,你能找到计算的规律吗(1) (x+2)(x+1) (2) (x+2)(x+3) (3) (x+3)(x+4)2.观察与发现: (x + a)(x + b) = x2 +(a + b)x + ab等式的左边是两个一次二项式相乘,右边是二次三项式,这个过程将积的形式转化成和差形式,进行的是乘法计算.反过来可得 x2 +(a + b)x + ab = (x + a)(x + b).3.证明:等式的左边是二次三项式,右边是两个一次二项式相乘的形式,进行的是因式分解.从左到右的过程是如何实现的?x2 +(a + b)x + ab = x2 +xa + bx + ab= (x2 +xa )+ (bx + ab)=x(x+a)+b(x+a)=(x + a)(x + b)(通过分组,发现能提公因式,从而实现因式分解)4.应用解决问题:利用:x2 +(a + b)x + ab = (x + a)(x + b)可以把特殊形式的二次三项式x2 + px + q进行因式分解(1)举例:因式分解:x2 + 4x + 3= x2 + (3+1)x + 3×1 =(x + 3)(x + 1)x2 + 7x + 10= x2 + (2+5)x + 2×5 =(x + 2)(x + 5)(2)建立模型:为了方便,我们通常采用这样的方法:如果将二次项x2分解为x·x,常数项3分解为3×1,若3 + 1= 4,恰好等于一次项系数,用十字交叉线表示:x2 + 4x + 3 =(x + 3)(x + 1).x +3x +13x + x = 4x利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. (4)利用十字相乘法分解下列因式:A组(1) x2 +5x + 6; (2) x2+7x+6;(3) x2 + 8x + 12; (4) x2 +7x+12;B组(1) x2 -5x + 6; (2) x2-7x+6;(3) x2 -x + 12; (4) x2 -7x+12;C组(1) x2 +5x - 6; (2) x2-5x-6;(3) x2 + x -6; (4) x2 –x-6应用十字相乘法分解形如x2 + px + q因式的关键是如何把常数项q分解成两个数的乘积,并且满足其和又恰巧为一次项系数p. 一个数可以分解成多种乘积形式,怎样才能找到两个合适的数,有时要经过多次的尝试才能确定采用哪种情况来进行因式分解.(5)练一练将下列各式用十字相乘法进行因式分解:(1) x2+8x + 15; (2) x2-8x+15; (3) x2 - 3x + 15;(4) x2 -x+20; (5) x2 - 11x + 30; (6) x2 -7x + 3(6)你能分解这样的因式吗?(1) x2+2x + 3; (2) x2-8x+10;想想为什么?应用十字相乘法分解因式只能分解特殊形式的二次三项式(7)提高:请用十字相乘法分解下列因式(1) x2+6x + 9;(2) x2+10xy + 16y2; (3) (a+b)2-(a+b)-12;小结:对二次三项式x2 + px + q进行因式分解,应重点掌握以下二个方面:1.掌握方法: 拆分常数项,验证一次项.2.符号规律: 当q>0时,a、b同号,且a、b的符号与p的符号相同;当q<0时,a、b异号,且绝对值较大的因数与p的符号相同.。
【教学内容】十字相乘法
【教学目标】1、能较熟练地用十字相乘法把形如x2 + px + q的二次三项式分解因式;
2、通过课堂交流,锻炼学生数学语言的表达能力;
3、培养学生的观察能力和从特殊到一般、从具体到抽象的思维品质.【教学重点】能较熟练地用十字相乘法把形如x2 + px + q 的二次三项式分解因式.
【教学难点】把x2 + px + q分解因式时,准确地找出a、b,使a ·b = q;a + b = p.
【教学过程】
一、复习导入
1.口答计算结果:
(1) (x+2)(x+1) (2) (x+2)(x-1) (3) (x-2)(x+1) (4) (x-2)(x-1) (5) (x+2)(x+3) (6) (x+2)(x-3) (7) (x-2)(x+3) (8) (x-2)(x-3) 2.问题:你是用什么方法将这类题目做得又快又准确的呢?
[在多项式的乘法中,有(x + a)(x + b) = x2 +(a + b)x + ab ]
二、探索新知
1、观察与发现:
等式的左边是两个一次二项式相乘,右边是二次三项式,这个过程将积的形式转化成和差形式,进行的是乘法计算.
反过来可得x2 +(a + b)x + ab = (x + a)(x + b).
等式的左边是二次三项式,右边是两个一次二项式相乘,这个过程将和差的形式转化成积的形式,进行的是因式分解.
2、体会与尝试:
①试一试因式分解: x2 + 4x + 3 ;x2 -2x -3
将二次三项式x2 + 4x + 3因式分解,就需要将二次项x2分解为x·x,常数项3分解为3×1,而且3 + 1= 4,恰好等于一次项系数,所以用十字交叉线表示:
3.练习
1、x4-13x2+36
2、x2+3xy-4y2
3、x2y2+16xy+48
4、(2+a)2+5(2+a)-36
5、x4-2x3-48x2。