模糊综合评价法的应用
- 格式:docx
- 大小:84.55 KB
- 文档页数:20
可编辑修改精选全文完整版第三节 模糊综合评判法的应用案例二、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。
在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。
基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。
这些模型及算法相当复杂。
其主要困难在于:(1) 即使简单的问题也需要大量的约束条件和变量。
(2) 约束条件和变量多使问题的难度呈指数增长。
模糊综合评价方法是一种适合于物流中心选址的建模方法。
它是一种定性与定量相结合的方法,有良好的理论基础。
特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。
1.模型⑴ 单级评判模型① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满足:1, ki ij i U U U U φ===② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。
③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。
④单级综合评判B A R⑵多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。
无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。
所以,需采用分层的办法来解决问题。
2.应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。
根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型因素集U 分为三层: 第一层为 {}12345,,,,U u u u u u =第二层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。
模糊综合评价法举例模糊综合评价法是一种常见的决策方法,用于解决多属性决策问题。
它广泛应用于各个领域,如企业管理、市场调研、投资决策等。
本文将通过几个实例,详细介绍模糊综合评价法的应用。
首先,我们来看一个企业市场调研的实例。
假设某企业想要推出一款新产品,为了确定该产品的市场潜力,他们需要对市场进行调研和评估。
首先,该企业确定了几个要素,如市场容量、竞争情况、消费者需求等等。
然后,针对每个要素,他们设定了一些评价指标,如市场容量可以由市场规模和增长率来评估,竞争情况可以由竞争对手数量和市场份额来评估,消费者需求可以由消费者满意度和购买意愿来评估。
接下来,他们需要对每个评价指标进行模糊评价。
对于市场容量这个指标,他们可以设定为小、中、大三个模糊集合,分别代表市场容量较小、中等、较大。
然后,他们根据实际情况,将市场规模100万人、增长率10%作为划分市场容量的标准。
对于竞争情况这个指标,他们可以设定为低、中、高三个模糊集合,分别代表竞争情况较弱、一般、较强。
然后,他们根据竞争对手数量和市场份额的数据,将竞争情况划分为低、中、高三个水平。
接着,他们需要对每个评价指标设置权重。
按照某一专家的意见,他们将市场容量、竞争情况、消费者需求三个指标的权重分别设置为0.4、0.3、0.3。
然后,根据权重,计算每个评价指标的模糊评价函数。
最后,他们可以通过模糊综合评价法,对市场进行综合评价。
他们将每个指标的模糊评价函数进行加权平均,得到最终的评价结果。
根据结果,他们可以判断市场潜力是否足够大,是否值得推出新产品。
除了企业市场调研,模糊综合评价法在其他领域也有广泛的应用。
比如,在投资决策中,投资者可以利用该方法评估不同投资项目的风险和收益。
他们可以将投资项目的不同属性作为评价指标,根据专家意见设定权重,然后进行模糊评价,最终得出综合评价结果,从而作出更明智的投资决策。
综上所述,模糊综合评价法是一种重要的决策方法,可以帮助我们在多属性决策问题中做出合理的决策。
模糊综合评价方法及其应用研究一、本文概述本文旨在探讨模糊综合评价方法及其应用研究。
我们将对模糊综合评价方法进行概述,阐述其基本原理和特点。
接着,我们将深入探讨模糊综合评价方法在各种领域中的应用,包括但不限于企业管理、环境评估、医疗卫生等。
通过对实际案例的分析,我们将展示模糊综合评价方法在解决实际问题中的有效性和实用性。
我们还将对模糊综合评价方法的未来发展进行展望,以期为其在更多领域的应用提供参考和借鉴。
通过本文的研究,我们希望能够为相关领域的研究者和实践者提供有益的启示和帮助。
二、模糊综合评价方法理论基础模糊综合评价方法(Fuzzy Comprehensive Evaluation,简称FCE)是一种基于模糊数学理论的评价方法,旨在解决那些难以用精确数学语言描述的问题。
这种方法最早由我国学者汪培庄于1983年提出,现已在多个领域得到了广泛应用。
模糊综合评价方法理论基础主要包括模糊集合理论、模糊运算规则和模糊关系矩阵。
其中,模糊集合理论是该方法的核心。
它允许在元素对集合的隶属程度不唯不精确的情况下进行定量描述,从而突破了传统集合理论中元素对集合的隶属关系必须明确的限制。
在模糊综合评价中,评价对象通常被视为一个模糊集合,而评价因素则构成该集合的多个子集。
每个子集都有一个隶属函数,该函数描述了评价对象在不同因素下的隶属程度。
通过对隶属函数进行计算和分析,可以得出评价对象在各个因素上的综合评价结果。
模糊运算规则是模糊综合评价方法的另一个重要组成部分。
它定义了模糊集合之间的运算方式,如并、交、补、差等,使得我们能够根据实际需求进行模糊集合的组合和转换。
模糊关系矩阵则用于描述评价对象与评价因素之间的模糊关系。
该矩阵中的元素表示评价对象在不同因素上的隶属度,是进行模糊综合评价的重要依据。
模糊综合评价方法理论基础包括模糊集合理论、模糊运算规则和模糊关系矩阵。
这些理论和方法为我们在复杂系统中进行综合评价提供了有效的工具。
模糊综合评价法案例模糊综合评价法是一种常用的多指标决策方法,它可以帮助决策者在具有多个评价指标的情况下,对各个方案进行综合评价,从而找到最优的决策方案。
下面我们通过一个案例来具体介绍模糊综合评价法的应用。
某公司需要选定一个供应商,以满足其原材料采购需求。
为了选择最优的供应商,公司需要考虑多个指标,包括价格、交货周期、质量等。
为了进行综合评价,公司决定采用模糊综合评价法。
首先,公司确定了三个评价指标,价格、交货周期和质量。
然后,针对每个指标,公司对供应商进行评价。
在评价过程中,由于供应商的表现可能存在一定的不确定性,公司采用了模糊数来描述评价结果。
比如,对于价格指标,公司可能认为某供应商的价格在便宜和昂贵之间存在一定的模糊性,于是可以用“价格便宜”的模糊数来描述其价格水平。
接下来,公司需要确定各个评价指标的权重。
在实际应用中,评价指标的重要性往往不同,因此需要对各个指标进行加权。
公司可以通过专家打分、层次分析法等方法来确定各个指标的权重。
然后,公司对每个供应商的评价结果进行模糊综合评价。
具体来说,对于每个供应商的每个指标,公司根据其模糊数和权重,计算出一个综合评价值。
最终,通过比较各个供应商的综合评价值,公司可以找到最优的供应商。
通过模糊综合评价法,公司成功地选择了最优的供应商,并在原材料采购中取得了良好的效果。
这个案例充分展示了模糊综合评价法在多指标决策中的优势和应用价值。
总之,模糊综合评价法是一种非常有效的多指标决策方法,它可以帮助决策者在不确定的环境下进行综合评价,找到最优的决策方案。
在实际应用中,我们可以根据具体情况,灵活运用模糊综合评价法,为企业的决策提供有力的支持。
模糊综合评价的原理及应用1. 模糊综合评价的概述模糊综合评价是一种基于模糊逻辑理论的评价方法,适用于处理多因素、多指标、多层次的评价问题。
它能够将模糊信息进行数学化处理,从而得到相对准确的评价结果。
模糊综合评价方法在决策分析、工程评估、经济评价等领域得到广泛的应用。
2. 模糊综合评价的原理模糊综合评价的原理基于模糊集合理论和模糊运算。
其主要的思想是将模糊的评价问题通过模糊集合的描述进行建模,然后利用模糊运算对模糊集合进行处理,最终得到评价结果。
3. 模糊综合评价的步骤模糊综合评价一般包括以下步骤: - Step 1:确定评价指标集合。
根据评价目标确定一组能够全面反映评价对象特征的评价指标。
- Step 2:构建模糊集合。
对每个评价指标进行模糊化处理,将确定的评价指标转化为对应的模糊集合。
- Step 3:设定权重。
根据评价指标的重要性,确定每个评价指标的权重。
- Step 4:进行模糊运算。
对于模糊集合进行模糊运算,将不同指标的模糊集合进行组合。
- Step 5:解模糊化。
将模糊的评价结果通过解模糊化方法转化为具体的评价值。
4. 模糊综合评价的应用模糊综合评价方法广泛应用于各个领域,以下是一些典型的应用场景:4.1 工程评估在工程评估过程中,常常需要对多个因素进行综合评价,以确定最优的方案。
模糊综合评价可以将各个因素的模糊信息进行处理,得出一个相对准确的评估结果。
4.2 经济评价在经济决策中,常常需要对多个经济指标进行综合评估,以确定经济效益最大化的策略。
模糊综合评价可以将不确定的经济指标进行数学化处理,得到相对可靠的评估结果。
4.3 城市规划在城市规划过程中,常常需要考虑多个因素,如交通、环境、人口等。
模糊综合评价可以将这些因素进行综合评估,帮助决策者做出合理的规划决策。
4.4 产品质量评价在产品质量评价中,常常需要考虑多个指标,如外观、性能、可靠性等。
模糊综合评价可以将这些指标进行综合评估,给出一个全面的产品质量评价结果。
模糊综合评估法应用原理与构建步骤随着社会的发展和科技的进步,现代化的管理理念和方法愈发重视科学化和系统化,而综合评价作为一种全面评估管理的方法,已经得到了广泛应用。
在众多的综合评价方法中,模糊综合评估法以其简便易行、可行性高、结果准确等特点,成为了广泛使用的评价工具之一。
本文将就模糊综合评估法的应用原理和构建步骤进行详细介绍。
一、模糊综合评估法应用原理1.1 模糊数学模糊数学是指那些对未确定或不明确的“模糊”的事物进行抽象描述、系统分析和研究的一门交叉学科。
它是模糊逻辑、模糊代数等于1980年代初发展起来的一门新学科。
模糊数学的基本思想是引入隶属函数的概念,它可以以一定的方式把模糊的事物进行量化分析,从而进行系统分析和研究。
1.2 模糊综合评价法模糊综合评价法是利用模糊数学的基本原理,将模糊数学的方法应用于综合评价的领域中。
它是一种综合性的评价方法,通过建立模糊数学模型,将多因素的数据进行量化分析,生成评价结果。
它依赖于定量数据和定性经验的,具有很强的适应性和灵活性。
同时,模糊综合评价法还可以通过调整各因素的权重和隶属函数形状,得到不同的评价结果,从而更加客观和科学地进行评价。
1.3 模糊综合评价法的应用领域模糊综合评价法的应用领域非常广泛,可以用于各种综合评估领域,如环境评价、经济评价、教育评价等等。
同时,模糊综合评价法还可以帮助决策者在多个因素之间进行权衡,提高决策的合理性和准确性。
二、模糊综合评估法的构建步骤2.1 确定评价指标和隶属函数在使用模糊综合评价法之前,必须先明确评价指标和其对应的隶属函数。
评价指标可以分为数量指标和质量指标两类,其中数量指标需要进行量化处理,而质量指标则需要进行定性描述。
隶属函数是描述评价指标中某一特定数值的模糊程度的数学函数,可以是三角形函数、梯形函数、高斯函数等,需要根据实际情况进行灵活选择。
2.2 确定评价因素权重不同的评价指标或因素在评价中所起的作用不同,需要进行权重分配。
模糊综合评价法在教师教学质量评价中的应用近年来,模糊综合评价法(Fuzzy Comprehensive Evaluation,FCE)在科学研究、企业管理及教育等不同领域中得到了越来越多的应用,其中教育领域中模糊综合评价法的运用尤为广泛,特别是在教师教学质量评价中的应用更是受到了广泛关注。
本文旨在通过探讨模糊综合评价法在教师教学质量评价中的应用效果,发掘出其有效性和优越性,以指导教师教学质量评价实践。
一、模糊综合评价法简介模糊综合评价法,也叫做模糊评判技术,是一种用于综合评价多个事件或多个属性的技术。
它根据专家对每一项指标的评价结果,计算出一个综合的最终评价结果,使得模糊综合评价方法能够结合专家的经验和直觉,充分发挥评价专家的能力,从而获得准确的评价结果。
模糊综合评价法主要由评价指标体系、评判准则体系、评价参数模型和综合模型四部分组成。
其中,评价指标体系是专家对评价对象所关注的内容,评判准则体系是评价专家根据其所具有的专业知识进行评价和判断的依据,评价参数模型是根据评价指标体系和评判准则体系所构建的多个参数系统,而综合模型是将所有参数系统综合考虑,从而得出最终的综合评价结果的模型。
二、模糊综合评价法在教师教学质量评价中的应用教师的教学质量是教育工作的基础,教师的水平和能力直接影响着教育质量的高低。
教师教学质量评价是评价学校教育教学及教师工作水平,衡量学校教学管理水平和教师教学能力、水平的重要工具。
模糊综合评价法在教师教学质量评价中已被越来越多的应用。
首先,它可以准确的衡量教师的教学质量,无论是综合技能、教学能力或教学质量,都可以用模糊综合评价法进行衡量,从而获得准确的数据。
其次,它能够有效的利用被评价者提供的信息,专家可以根据教师的能力、技能、教学成果等多方面的信息,对其进行综合评价,从而更准确地反映教师教学质量的真实情况。
此外,模糊综合评价法可以减少个人主观评价带来的偏差,它可以更充分的考虑和衡量一个教师的教学质量,从而更好的反映教师的真实情况。
模糊综合评价法案例模糊综合评价法是一种利用模糊数学理论对多指标进行综合评价的方法。
它能够充分考虑各指标之间的相互影响和重要性,避免了传统评价方法的主观性和简单性。
下面通过一个案例来解释模糊综合评价法的具体应用。
假设某汽车公司需要对不同汽车品牌进行综合评价,共有以下五个指标:品牌知名度、市场占有率、客户满意度、技术创新能力和产品质量。
每个指标的评价等级分为优秀、良好和一般。
首先,我们需要将每个指标的评价等级转化为模糊数。
例如,品牌知名度的优秀、良好和一般分别转化为0.8、0.5和0.2。
同样,其他指标也进行相应转化。
接着,我们需要确定各指标的权重。
权重可以通过专家调查、层次分析法等方法获取。
假设我们已经得到了各指标的权重,品牌知名度权重为0.3,市场占有率权重为0.2,客户满意度权重为0.15,技术创新能力权重为0.25,产品质量权重为0.1。
然后,根据模糊综合评价法的计算公式,我们可以计算出每个品牌的评价值。
评价值可以表示为以下形式:品牌A:0.8 * 0.3 + 0.7 * 0.2 + 0.6 * 0.15 + 0.5 * 0.25 + 0.9 * 0.1 = 0.71品牌B:0.9 * 0.3 + 0.6 * 0.2 + 0.7 * 0.15 + 0.8 * 0.25 + 0.8 * 0.1 = 0.76品牌C:0.7 * 0.3 + 0.8 * 0.2 + 0.9 * 0.15 + 0.6 * 0.25 + 0.7 * 0.1= 0.74根据评价值的大小,我们可以得出品牌B最好,品牌A其次,品牌C最差的综合评价结果。
通过上述案例,我们可以看出模糊综合评价法能够在多指标综合评价中充分考虑各指标之间的权重和相互关系,避免了传统评价方法的主观性和简单性。
同时,该方法还可以提供具体的评价结果,便于决策者进行决策和比较。
总之,模糊综合评价法是一种有效的多指标综合评价方法,可广泛应用于各个领域的评价和决策过程中。
模糊层次分析法和综合评价法在专业竞争力评价中的应用0引言又一年的高考已经结束了,考生们面临着报志愿这一改变人生命运的大事,那么选择什么学校,什么专业才是最好的抉择呢当我们还懵懂的时候,当我们还没有步入社会的时候,当我们没有人指导的时候,我们拿着报志愿的书,选择一个排名靠前的学校,或者一个排名靠前的专业,这样就是正确的选择吗有的学生想要当老师,有的学生希望以后搞科研,有的学生想找个好就业的工作,那么,怎样找到适合自己的专业呢而当我们毕业的时候,我们经过多年的学习,我们的专业又具有怎样的竞争力呢本文结合运用模糊层次分析法和模糊综合评价法进行分析,评价对于每个学子来说,专业的竞争力水平。
专业竞争力水平的评价是一个复杂的多目标决策问题,目前,常用的方法主要有文献[13]中的层次分析法(AHP)、文献[9-10]中的模糊层次分析法(FAHP)文献[14]中的模糊数学中的综合评判方法、文献[15]中的多元统计分析法等•模糊综合评价法是一种基于模糊数学的综合评标方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
模糊层次分析法由层次分析法和模糊综合评判发结合而成。
2 0世纪70年代,美国运筹学家,匹兹堡大学的教授提出层次分析法,一种定性分析和定量分析相结合的系统分析方法。
层次分析法通过明确问题,建立层次分析结构模型,构造判断矩阵,层次单排序和层次总排序五个步骤计算各层次构成要素对于总目标的组合权重,从而得出不同可行方案的综合评价值,为选择最优方案提供依据。
其关键环节是建立判断矩阵,判断矩阵是否合理、科学直接影响到它的应用效果,层次分析法在应用中有几点不足,一是判断矩阵的一致性与人类思维的一致性有差异,二是检验判断矩阵的一致性比较困难,三是当判断矩阵不具有一致性时,调整成一致性比较麻烦,四是检验判断矩阵•而模糊层次分析法可以克服以上不足,是一种比传统层次的AHF更科学、更简便的方法.层次分析法在进行判断目标的总体评价时,缺乏一个统一的、具体的指标量化方法,因而在实际使用中,应该只采用它进行指标权重的分析,然后用其他方法进行指标值的量化和评价•因此,这就需要将模糊层次分析法与模糊综合评判方法相结合,对专业竞争力水平进行评价,即首先用模糊层次分析法计算各指标权重,然后是用模糊数学中的综合评价方法进行综合评价•1方法介绍1.1模糊层次分析法定义1. 1:设矩阵R = 』,若满足:0W屁)w 1 , ( i = 1 ,2 ,……n , j =1 ,2 ,……n),则称R为模糊矩阵定义1.2:设矩阵R =(巧b “ n|若满足:帀+邛=1 ( i = 1 ,2 , n, j =1 ,2 ,……n),则称R为模糊互补矩阵定义1.3:模糊互补矩阵R = |(5)n5 若满足:任意i , j , k 有j = nt町k + 0. 5,则称模糊矩阵R为模糊一致矩阵。
定理1. 1:设模糊矩阵R=km hr是模糊一致矩阵,则有(1))任意i ( i = 1 ,2 ,…n),则「= 0. 5 ;⑵任意i ,j( i = 1 ,2,…n , j = 1 ,2,…n),有罚+ 呼=1;⑶R的第i行和第i列元素之和为n ;(4)从R中划掉任一行及其对应列所得的矩阵仍然是模糊一致矩阵;⑸R满足中分传递性,即当入》0. 5时,若5 >入,k t >入,则斑》入;当入W 0. 5时,若】\ji W入,Ijk w入,则琐t w入。
Remark:用模糊一致矩阵表示因素问两两重要性比较的合理性解释在模糊数学中,模糊矩阵是模糊关系的矩阵表示,若论域上的模糊关系“……比……重要得多”的矩阵表示为模糊矩阵R =卜九小」,则R的元素具有如下实际意义。
(1)巧的太小是松比®重要的重要程度的度量,且玩越太,场t仙就越重要,> 0. 5表示卜比 |重要f反之,若卜|< 0. 5,则表示刁比重要。
(2)由余的定义知,1 一列,表示逝不比町重要的隶属度,而謝不比阿重要,则吐比h重要,又因场比山重要的隶属度为臼,故,即R是模糊互补矩阵。
特别地,当i=j时,有M= 0. 5,也即元素同自身进行重要性比较时,重要性隶属度为。
(3)若人们在确定一元素比另一个元素重要的隶属度的过程中具有思维的一致性,贝U应有:若卜> 0・5,即,•比重要,则任意k( k=1, 2, ?,n) 有fit >nk. o另一方面,蚯-碰是也比』相对重要的一个度量,再加上场自身比较重要性的度量为,则可得詁比可绝对重要的度量珂,即巧二扯・哑+ 0」也即R =二—应是模糊一致矩阵。
综上所述,以及模糊一致矩阵的性质知,用模糊一致矩阵R = ' | |表示论域 | I上的模糊关系“比............. 重要得多”是合理的。
1.2模糊综合评价法模糊综合评价法中的有关定义如下:1.评价因素(F):系指对招标项目评议的具体内容。
2.评价因素值(Fv):系指评价因素的具体值。
3.评价值(E):系指评价因素的优劣程度。
评价因素最优的评价值为1(采用百分制时为100分);欠优的评价因素,依据欠优的程度,其评价值大于或等于零、小于或等于1 (采用百分制时为100分),即O W E W 1 (采用百分制时0< E W 100)。
4.平均评价值(Ep):系指评标委员会成员对某评价因素评价的平均值。
平均评价值(Ep)=全体评标委员会成员的评价值之和*评委数5.权重(W):系指评价因素的地位和重要程度。
第一级评价因素的权重之和为1;每一个评价因素的下一级评价因素的权重之和为1。
6.加权平均评价值(Epw):系指加权后的平均评价值。
加权平均评价值(Epw)二平均评价值(Ep)X权重(W)。
7.综合评价值(EZ):系指同一级评价因素的加权平均评价值(Epw)之和。
综合评价值也是对应的上一级评价。
2模糊层次分析法的应用2.1专业竞争力水平评价体系的设置专业竞争力水平涉及多方面的因素,第一,学生本科或研究生阶段的学校排名,专业排名,及个人成绩排名;第二,学生在校期间的科研,项目经历,因此,个人的科研能力,导师的科研能力,及导师对学生的负责程度都对专业竞争力有影响;第三,就业水平,有的专业就业范围大,区域广,需求高,而有的专业就业范围小,区域窄,需求少;第四,专业性质,专业可以分为两类,基础学科,以学科知识本身为研究对象的,偏学术性的属于基础学科。
例如数学、物理、化学、哲学、历史等专业。
基础学科,特别是其中的人文学科,很难具备直接创造经济效益的条件。
应用学科,是以解决工程实际问题、社会实际问题为研究对象的,实践岗位性的属于应用学科,例如:工程类,管理类,设计类,技术方面的;第五,个人与专业契合度,个人对专业的兴趣,个人对专业的合适程度,都决定了专业对个人的竞争力。
图1:专业竞争力水平评价体系A选用模糊层次分析法这一方法运用步骤如下第一,构建层次结构模型;第二,得出两两因素比较的隶属度,构造模糊一致矩阵,第三,层次单排序一一根据模糊一致矩阵的性质,可求得各层元素的权重值W i.标度划分矩阵一致性的判断标准CR 0.1缺乏科学的依据,根据Satty的9标度法可以将复杂的定性问题量化处理,对各指标的重要程度进行标度划分,含义如下表所示表模糊一致矩阵首先,根据图1的指标体系,制定附录1,发放调查问卷(1)200份,选取有效数据150份,被调查的同学,按照表1的标度的制定的选项进行打分,分别为各级指标进行打分,分别对调查数据进行整理得出求取平均值后的结果根据所得出的结果构造模糊一致矩阵•然后,可以依据模糊一致矩阵自身的性质,求出相应的各个指标层的权重W.依据张吉君在文献[7]中对3种求权值方法的比较,本文取第三种方法求取权重,根据文献[16]中证明的模糊判断一致矩阵A a jnn的元素a j和W i关系式,a j W;W j 0.5中对3种求权值方法的比较,本文选取文献[14]中的方法(3)求取所对应指标的权重,公式如下11 1 nW;r;k,i 1,2,..., n,()n 2 n k 1其中’满足卜色心「售的参数,n为模糊矩阵的阶数.因此,对于图1问题构造各级模糊一致矩阵,依据式可以求出各层次的权值.依据图1的大学生整体评价体系,根据各个因素所占的比重,将各个指标进行对比,根据表1得出相应的数据,构造一级指标之间的模糊一致矩阵,按照公式(),求出各级指标相对于目标层的权重,其中〔罔,结果如下表:表类似于以上表2中所求权重的方法和构造模糊一直矩阵的方法,同样可分别构造指标A I ,A 2,A 3,A 4,A 5各指标之间的模糊一致矩阵层次AA41 A 42 W 4 A 41A 42层次A A D I A 52 W 5 A 51A 52 层次A lA 11 A 13 W iA iiA 12 A 13层次A 2层次A A 3IA 21并分别求出相应的权值结果为Wo = 10.215, 0.230, 0.240, 0.205, 0.110]Wi - |0.483T 0317, 0.200|W2 = |0334( 0.283, 0.3831Ws = [0.233, CL333, 0.434|W4= [0.460, 0.540|W5= [0.490, 0.510|文献[1]中,利用公式沐疝温卞J对得出的数值进行一致性检验,如果上述矩阵中均严格满足这个公式,则上面的就是模糊一致性矩阵.经过一致性检验,上述矩阵均满足文献[1]中的公式所以上述构造的矩阵均是一致性的,满足一致性的检验.3模糊综合评判的应用评价矩阵的构造模糊层次分析算法可以将专业竞争力水平的各个指标量化,并且通过数据可以看出各个指标所占的比重,但是不能将专业竞争力的整体水平给估算出来,不能定量地计算专业竞争力的整体水平.因此,就需采用模糊综合评价方法计算专业竞争力的整体水平.这两种方法相结合不仅可以知道专业竞争力的中哪个指标更重要,而且还可以知道专业竞争力的整体水平。
专业竞争力的整体水平本身便由多个指标决定,随着社会的发展,指标的多样化是必然存在的,所以采用模糊层次分析法就显得相对简单和准确.首先依据现实生活中的评价等级标准,极具竞争力(100-80)分、较高竞争力(80-60)分,一般竞争力(60-40)分,较差竞争力(40-20)分,缺乏竞争力(20-0),采用模糊数学的隶属度赋值方法,建立评价集■.V .. I. H ;与之对应.首先建立针对决定专业竞争力的指标制定相应的调查问卷,然后对其进行调查研究,对回收样本进行综合计算构造评价矩阵R其中R的元素为珂i为某层的第i个指标作出第vi(_i 1,23.4,5)种评语的评价成员占调查样本的比例. 例如,某层次的某一专业Ai指标层次调查综合计算结果如评价矩阵血。