第二章晶体结构-
- 格式:ppt
- 大小:2.72 MB
- 文档页数:45
第 2 章结晶结构一、名词解释1.晶体:晶体是内部质点在三维空间内周期性重复排列,具有格子构造的固体2.空间点阵与晶胞:空间点阵是几何点在三维空间内周期性的重复排列晶胞:反应晶体周期性和对称性的最小单元3.配位数与配位多面体:化合物中中心原子周围的配位原子个数成配位关系的原子或离子连线所构成的几何多面体4.离子极化:在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象5.同质多晶与类质同晶:同一物质在不同的热力学条件下具有不同的晶体结构化学成分相类似物质的在相同的热力学条件下具有相同的晶体结构6.正尖晶石与反尖晶石:正尖晶石是指2价阳离子全部填充于四面体空隙中,3价阳离子全部填充于八面体空隙中。
反尖晶石是指2价阳离子全部填充于八面体空隙中,3价阳离子一半填充于八面体空隙中,一半填充于四面体空隙。
二、填空与选择1.晶体的基本性质有五种:对称性,异相性,均一性,自限性和稳定性(最小内能性)。
2.空间点阵是由 C 在空间作有规律的重复排列。
( A 原子 B离子 C几何点 D分子)3.在等大球体的最紧密堆积中有面心立方密堆积和六方密堆积二种排列方式,前者的堆积方式是以(111)面进行堆积,后者的堆积方式是以(001)面进行堆积。
4.如晶体按立方紧密堆积,单位晶胞中原子的个数为 4 ,八面体空隙数为 4 ,四面体空隙数为 8 ;如按六方紧密堆积,单位晶胞中原子的个数为 6 ,八面体空隙数为6 ,四面体空隙数为 12 ;如按体心立方近似密堆积,单位晶胞中原子的个数为 2 ,八面体空隙数为 12 ,四面体空隙数为 6 。
5.等径球体最紧密堆积的空隙有两种:四面体空隙和八面体空隙。
一个球的周围有 8个四面体空隙、 6 个八面体空隙;n个等径球体做最紧密堆积时可形成 2n 个四面体空隙、 n 个八面体空隙。
不等径球体进行堆积时,大球做最紧密堆积或近似密堆积,小球填充于空隙中。
6.在离子晶体中,配置于正离子周围的负离子数(即负离子配位数),决定于正、负离子半径比(r +/r -)。
第2章晶体结构提纲:2.1 晶体学基础2.2 金属的晶体结构2.3 合金相结构2.4 离子晶体结构2.5 共价晶体结构2.6 聚合物的晶态结构2.7 非晶态结构学习要求:掌握晶体学基础及典型晶体的晶体结构,了解复杂晶体(包括合金相结构、离子晶体结构,共价晶体的结构,聚合物的晶态结构特点)、准晶态结构、液晶结构和非晶态结构。
1.晶体学基础(包括空间点阵概念、分类以及它与晶体结构的关系;晶胞的划分,晶向指数、晶面指数、六方晶系指数、晶带和晶带定律、晶面间距的确定、极射投影);2.三种典型金属晶体结构(晶胞中的原子数、点阵常数与原子半径、配位数与致密度、堆垛方式、间隙类型与大小);3.合金相结构(固溶体、中间相的概念、分类与特征);4.离子晶体的结构规则及典型晶体结构(AB、AB2、硅酸盐);5、共价晶的结构规则及典型晶体结构体(金刚石)6、聚合物的晶态结构、准晶态结构、液晶结构和非晶态结构。
重点内容1.选取晶胞的原则;Ⅰ) 选取的平行六面体应与宏观晶体具有同样的对称性;Ⅱ)平行六面体内的棱和角相等的数目应最多;Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多;Ⅳ)在满足上条件,晶胞应具有最小的体积。
2.7个晶系,14种布拉菲空间点阵的特征;(1)简单三斜(2)简单单斜底心单斜(3)简单正交底心正交体心正交面心正交(4)简单六方(5)简单四方体心四方(6)简单菱方(7)简单立方体心立方面心立方3.晶向指数与晶面指数的标注,包括六方体系,重要晶向和晶面需要记忆。
4.晶向指数,晶面指数,晶向族,晶面族,晶带轴,共带面,晶面间距5.8种,即1,2,3,4,6,i,m,。
或C1,C2,C3,C4,C6 ,C i,C s,S4。
微观对称元素6.极射投影与Wulff网;标hkl直角坐系d4⎧⎨⎩微观11213215243滑动面 a,b,c,n,d螺旋轴 2;3,3;4,4,4;6,6,6,6,67.三种典型金属晶体结构的晶体学特点;在金属晶体结构中,最常见的是面心立方(fcc)、体心立方(bcc)和密排六方(hcp)三种典型结构,其中fcc和hcp系密排结构,具有最高的致密度和配位数。
第二章晶体结构一、教学要求(1)内容提要:物质通常有三种聚集状态:气态、液态和固态。
而按照原子(或分子)排列的规律性又可将固态物质分为两大类,晶体和非晶体。
晶体中的原子在空间呈有规则的周期性重复排列;而非晶体的原子则是无规则排列的。
原子排列在决定固态材料的组织和性能中起着极重要的作用。
金属、陶瓷和高分子的一系列特性都和其原子的排列密切相关。
一种物质是否以晶体或以非晶体形式出现,还需视外部环境条件和加工制备方法而定,晶态与非晶态往往是可以互相转化的。
本章主要内容包括::晶体学基础;金属的晶体结构;合金相结构;离子晶体结构;共价晶体结构;聚合物的晶态结构;非晶态结构。
(2)基本要求掌握晶体的空间点阵、晶胞、晶向和晶面指数、晶体的对称性等结晶学基础知识,了解32种点群和230种空间群等;掌握三种典型的金属晶体结构、合金相结构、离子晶体结构和硅酸盐晶体结构,了解共价晶体结构和分子与高分子晶体结构。
(3)重点难点重点:结晶学基本原理及典型的金属晶体、合金相、离子晶体结构。
难点:空间点阵、非化学计量化合物和鲍林规则。
(4)主讲内容①晶体学基础;②金属的晶体结构;③合金相结构;④离子晶体结构;⑤共价晶体结构;⑥聚合物晶体结构。
《第二章晶体结构》目录——引言——晶体的结构特征与基本性质(1.0h)2.1晶体结构的周期性(4.0-6.0h)2.2.1点阵与平移群一、点阵结构与点阵(1)一维点阵结构与直线点阵;(2)二维点阵结构与平面点阵(3)三维点阵结构与空间点阵二、点阵的条件与性质(1)定义;(2)条件;(3)点阵与点阵结构的对应关系。
2.2.2点阵单位与点阵参量一、点阵单位与点阵常数(1)直线点阵单位与线段参数(2)平面点阵单位与网格参数(3)空间点阵单位与晶胞参数二、其他晶体结构参数(1)(原子)阵点坐标与原子间距;(2)晶向(直线点阵)指数(3)晶面(平面点阵)指数;(4)晶面间距与晶面夹角(5)晶带与晶带定律三、极射投影*2.2.3 倒易点阵与晶体衍射*2.2晶体结构的对称性(4.0h)2.3.1对称性的基本概念——对称及其对称元素与对称操作2.3.2宏观对称性—晶体外形(有限)表现的对称性—点对称性一、点对称操作与宏观对称元素;二、点群及其表示方法——32个点群(晶类);三、晶系与空间点阵型式——7种晶系与14种布拉菲点阵2.3.3微观称对性—晶格基元(无限)排列的对称性—体对称性一、空间对称操作与微观对称元素;二、空间群及其表示方法;三、等效点系——2.3.4点群与空间群的关系2.3.4 晶体结构符号2.3典型晶体结构分析(8.0h)2.3.1金属晶体结构2.3.2共价晶体结构2.3.3离子晶体结构2.3.4分子晶体结构2.3.5高分子(晶体)结构2.4 合金相结构2.2晶体结构的对称性——强调:对称操作与矩阵变换(点阵与矩阵)2.2.1对称性的基本概念——对称的概念(定义与划分)擅长形象思维的中国人在西汉〈韩诗外传〉就有:“凡草木花(注:有生命)多五出,雪花(注:无生命)独六出。
第二章晶体结构内容提要大多数无机材料为晶态材料,其质点的排列具有周期性和规则性。
不同的晶体,其质点间结合力的本质不同,质点在三维空间的排列方式不同,使得晶体的微观结构各异,反映在宏观性质上,不同晶体具有截然不同的性质。
1912年以后,由于X射线晶体衍射实验的成功,不仅使晶体微观结构的测定成为现实,而且在晶体结构与晶体性质之间相互关系的研究领域中,取得了巨大的进展。
许多科学家,如鲍林(Pauling)、哥希密特(Goldschmidt)、查哈里阿生(Zachariason)等在这一领域作出了巨大的贡献,本章所述内容很多是他们研究的结晶。
要描述晶体的微观结构,需要具备结晶学和晶体化学方面的基本知识。
本章从微观层次出发,介绍结晶学的基本知识和晶体化学基本原理,以奠定描述晶体中质点空间排列的理论基础;通过讨论有代表性的无机单质、化合物和硅酸盐晶体结构,以掌握与无机材料有关的各种典型晶体结构类型,建立理想无机晶体中质点空间排列的立体图像,进一步理解晶体的组成-结构-性质之间的相互关系及其制约规律,为认识和了解实际材料结构以及材料设计、开发和应用提供必要的科学基础。
2.1 晶体化学基本原理由于天然的硅酸盐矿物和人工制备的无机材料制品及其所用的原料大多数是离子晶体,所以在这一节主要讨论离子晶体的晶体化学原理。
一、晶体中键的性质(键性的判别)过去的教学中,以电子云的重要情况讨论键型。
Na-Cl认为是典型的离子键。
硅酸盐晶体中比较典型的结合键方式:Si-O Al-O M e-O (M代表许多碱、碱土金属)Me-O、Al—O键通常认为是比较典型的离子键,而Si-O键中Si-O键离子键、共价键成分相当。
为了方便,通常也认为是离子键。
那么键的成分是如何确定的?即通常如何判断键的类型呢?Pauling通过大量的研究发现,可以根据各元素的电负性差别判断键的类型(由于电负性反映元素粒子得失电子的能力)。
元素电子的电负性x=元素电子的电离能力I+元素原子的电子亲和能E。