实习一——地图投影变换
- 格式:doc
- 大小:86.50 KB
- 文档页数:4
实验一地图投影和坐标转换实验目的:将扫描的地图从图形坐标转换到现实世界坐标(投影坐标)下,从而能够与GIS 数据库集成,可以用于矢量化,也可以作为矢量数据的背景。
实验准备:将实验数据拷贝到本地计算机上自己的工作文件夹中。
(路径和文件名字最好不要包括汉字、空格和特殊符号)阅读地图●启动ArcMap●将提供的扫描地图添加到地图上,注意查看系统的提示内容。
●放大地图浏览,查看经纬格网、标注的经纬度,检查地图的坐标。
●在地图上确定将采用的控制点。
处理控制点坐标●打开Excel,●记录下控制点的编号和经纬度坐标●可以利用公式将经纬度从度分秒转换为小数度数。
如假设b2单元格中存储的是117-20-20通过公式:=VALUE(LEFT(B2,3))+V ALUE(MID(B2,5,2))/60+V ALUE(RIGHT(B2,2))/3600计算出其为117.33889度。
●选择计算出的小数度数列,复制,然后在空列上进行选择性粘贴,指定只粘贴数值。
●除了最后粘贴的两列经纬度数和编号列外,删除其它的列。
●右键点击经度列,选择设置单元格格式。
将格式指定为数值,小数点5位。
同样设置纬度列的格式。
●将结果另存为dbase表格文件,保存到你的工作空间下。
●关闭Excel。
重新打开建立的DBF文件,查看数据是否正确(很多时候由于操作不当会导致另存为DBF文件丢失数据)。
将控制点添加到地图上●在ArcMap中,从Tools菜单下选择Add XY Data。
●在打开的对话框中指定使用你刚建立好的控制点坐标DBF文件。
●指定X字段为经度,Y字段为纬度。
●点下面的Edit按钮,打开空间参照属性对话窗口。
●点Select按钮选择坐标系统。
●浏览到地理坐标系统下的亚洲下的北京1954投影坐标。
Add添加坐标系统。
●在空间参照属性窗口中确定所选择的坐标系统,关闭对话窗口。
●在Add XY Data对话框中点OK确定添加数据。
可以看到,地图上添加了一个点事件(Event)图层。
《地图学》地图投影与转换
一、实验目的
1. 掌握ArcGIS软件坐标系统的相关知识,利用ArcGIS软件查看数据的
坐标系统。
2. 掌握ArcGIS软件定义坐标系与投影转换。
二、实验内容
1.实习1查看MexicoPopulationDensity.mxd、廊坊市安次区行政边界、
仇庄新造林数据的坐标系统信息,附截图与坐标信息说明文字。
2.实习2查看MexicoPopulationDensity.mxd、廊坊市安次区行政边界、
仇庄新造林数据的经纬网形状(变换数据框动态投影),附截图与坐标信息说明文字。
3.实习3分别采用落垡镇.xls和东沽港.xls数据中GPS点坐标数据生
成XY点图层,落垡镇.xls数据是北京54地理坐标系统,东沽港.xls 是西安1980地理坐标系统,投影方法为高斯克吕格3度带无带号,附截图说明。
4.实习4为东沽港Uknown数据添加正确的投影坐标Xian 1980 3 Degree
GK CM 117E。
5.实习5实现世界地图数据由WGS84地理坐标系统向World Mollweide
投影的投影过程。
6.实习6实现廊坊市安次区行政边界数据由Xian_1980_GK_Zone_20投
影坐标系统向WGS84 Web Mercator坐标系统的转换。
三、实验步骤
实习1:
廊坊市安次区行政边界
仇庄新造林数据的坐标系统信息
实习2:
廊坊市安次区行政边界投影经纬网:
仇庄新造林数据投影经纬网:实习3:
落垡镇:
东沽港
实习4:
实习5:
四、实验总结。
地图投影实习报告(一)王森学号:1200000008实习目的:1.熟悉并巩固地球椭球体的要素和公式;2.学会使用Excel计算地球投影数据;实习任务:1.理解子午圈曲率半径M、卯酉圈曲率半径N和平行圈曲率半径r的概念和它们在不同纬度地区的变化情况,并学会其计算方法;2.学会计算子午线弧长和平行圈弧长;3.学会用Excel计算和查表求地球椭球体表面上的梯形面积。
实习方法和过程:1. 子午圈曲率半径M、卯酉圈曲率半径N和平行圈曲率半径r的计算方法及过程:计算公式如下:子午圈曲率半径M=2/3222)sin 1()1(B e e a --卯酉圈半径 N=2/122)sin 1(B e a- 平行圈曲率半径 r=2/122)sin 1(cos B e Ba -其中,a 为地球椭球体长半径,其数值为6378140m ,e 为第一偏心率,另外还有短半径b=6356755m ,e 与a 、b的关系是2222a b a e -=;B 为纬度。
在充分理解了上述公式后,便可在Excel 中实现计算。
计算结果为:纬度(B )长半径a短半径bM(m)N(m)R(m)0 6378140 6356755 6335441.701 6378140 6378140 15 6378140 6356755 6336201.924 6389409.197 6171622.359 30 6378140 6356755 6341421.932 6400585.276 5542938.865 45 6378140 6356755 6354156.896 6411002.423 4533106.93 60 6378140 6356755 6371233.517 6418944.859 3209334.978 75 6378140 6356755 6377486.558 6421195.819 1661852.669 906378140 6356755 6356430.341 6412285.332 3.92786E-10 23°40′637814063567556338410.4716395902.1435857873.785由计算结果很容易看出:(1).子午圈曲率半径与卯酉圈曲率半径除在两极处相等外,在同纬度某点上的N 均大于M ;(2). M 和N 的值在赤道上为最小,它们随着纬度的增高而逐渐增大,到达两极处为最大,且在两极处相等;(3).纬度半径r 仅随B 变化,在赤道上,因为B=0,所以r=N=a;随着B 的增高,r 逐渐减小,当B=90时,r=0。
ArcGIS实验操作(三)---地图投影ArcGIS实验操作(三)地图投影基础知识:投影变换是将一种地图投影转换为另一种地图投影,主要包括投影类型、投影参数和椭球体等的改变。
即球体地图投影平面各个国家的地形图,都选用了一种椭球体数据,作为推算地形图数学基础的依据。
我国1953年开始采用克拉索夫斯基椭球体数据。
1978年决定采用GRS1975年基本大地数据。
地形图还必须有统一的地图投影、统一的大地坐标系和高程系。
有完整的比例尺系列,统一的分幅和编号体系。
我国1:100万地形图采用双标准纬线等角圆锥投影。
我国现行的大于1:100万(大中比例尺)的地形图统一采用高斯-克吕格(Gauss Kruger)投影,它的投影方法是横轴圆柱切椭圆体投影,按6度和3度分带投影。
目前国外许多国家采用与高斯-克吕格投影相近的通用横轴墨卡托(UTM)投影。
我国地形图投影分带规定为1:2.5万――1:50万比例尺地形图,按经差6°分带,即从0°经线开始,每隔经差6°为一投影带,各带带号自西向东用阿拉伯数字1、2、 (60)表示。
例如东经0°~6°为第一带,其中央经线为3°E,6°~12°为第二带,其中央经线为9°E。
设n为投影带的带号,则中央经线的经度L,可按下式求得:东半球L=6°×n-3°西半球L=6°×n-3°-360°则福州位于20投影分带,中央经线117°。
1:1万及大于1:1万比例尺地形图,按经差3°分带,规定中央经线的经度为整度数。
为此,3°分带从1°30′E经线开始。
其中央经线的经度L,可按下式求得:L=3°×n则福州位于39投影分带, 中央经线117°。
我国领土经差约65°,跨11个6°带和23个3°带。
地图投影的应用和变换1. 引言地图投影是将地球的三维表面展示在平面上的一种转换方法。
由于地球是一个球体,而大部分的地图都是平面图,为了准确地表示地球表面上的地理信息,地图投影成为了不可或缺的工具。
本文将介绍地图投影的应用和变换。
2. 地图投影的意义和应用地图投影对于地理信息的准确传达非常重要,它可以帮助我们更好地理解和解读地球上的各种地理现象和空间关系。
以下是地图投影的主要应用领域:2.1 地理信息系统(GIS)地理信息系统(GIS)是一种用于收集、存储、分析、管理和展示地理信息的系统。
地图投影在GIS中广泛应用,用于将地球表面的地理信息转换为平面图,并进行空间分析和数据处理。
2.2 地图制作和导航地图投影在地图制作和导航中起着至关重要的作用。
通过地图投影,我们可以将地球上的各种地理特征准确地展示在地图上,使人们能够更好地理解和识别地理位置,并利用地图进行导航。
2.3 气象预报地图投影在气象预报中也扮演了重要角色。
通过将地球表面的气象数据投影到平面图上,气象学家们可以更好地分析和预测天气现象,为人们提供准确的天气预报。
2.4 城市规划和地理分析地图投影在城市规划和地理分析中也得到了广泛的应用。
通过将地球表面的地理数据转换为平面图,城市规划师和地理分析师可以更好地分析城市的发展趋势、交通规划等,并为城市规划和发展提供决策支持。
3. 常见的地图投影方法地图投影有多种方法,每种方法都有其特点和适用范围。
下面介绍几种常见的地图投影方法:3.1 圆柱投影圆柱投影是最常见的地图投影方法之一。
它将地球表面的经纬线投影到一个圆柱体上,然后再将圆柱体展开成平面图。
该投影方法在赤道周围的地区表现较好,但在离赤道较远的地区会出现形变。
3.2 锥形投影锥形投影是将地球表面的经纬线投影到一个圆锥体上,然后再将圆锥体展开成平面图。
该投影方法在中纬度地区表现较好,但在靠近两极地区会出现形变。
3.3 圆锥柱面投影圆锥柱面投影是将地球表面的经纬线投影到一个圆锥体和一个圆柱体上,然后将两个表面展开成平面图。
如何进行地图投影的变换与配准地图投影的变换与配准是地理信息系统(GIS)中一个重要的环节。
地球是一个三维的球体,而我们的地图是平面的二维表示,因此需要将地球的曲面投影到平面上,以便于我们更好地理解和分析地理信息。
本文将探讨如何进行地图投影的变换与配准,以及其在GIS中的应用。
一、地图投影的基本原理地理表面的投影是将地球上的点和区域映射到平面上去,以便于呈现和分析。
在投影的过程中,我们需要选择合适的投影方法和参数,以保证地图的准确性和可视性。
1. 大地测量学与投影大地测量学是测量地球形状、尺寸和重力场的学科,它提供了地图投影的基础。
投影的目标是将地球表面的点映射到平面上,这需要选择适当的地理坐标系统和投影方法。
2. 坐标系统地理坐标系统是用于确定位置的标准,它由水平和垂直坐标组成。
水平坐标通常使用经度和纬度来表示,而垂直坐标则表示高程。
3. 投影方法地图投影的方法有很多种,常用的有等角、等积和等距投影等。
每种方法都有其适用的情况和缺点,选择合适的投影方法是确保地图准确性的关键。
二、地图投影的变换与配准地图投影的变换与配准是将不同投影坐标系统的地图进行转换和对齐的过程。
在GIS中,常常需要将不同尺度、不同投影和不同时间的地图配准在一起,以获得一致性的地理信息。
1. 变换地图投影的变换是将一个投影坐标系统转换为另一个投影坐标系统的过程。
变换通常涉及到坐标的缩放、旋转和平移等操作,以保证地图的几何特征一致。
2. 配准地图配准是将不同地图的空间参考对齐的过程。
在配准过程中,需要确定共同的地物特征或控制点,并通过地物匹配或空间变换的方式来实现对其的调整和对齐。
三、地图投影的应用地图投影在GIS中有着广泛的应用,它不仅仅是为了美化地图,更是提供准确地理信息的基础。
1. 地图显示与可视化地图投影可以改变地图的外观和形状,使得地理信息更加直观和可视化。
选择合适的投影方法和参数对于地图的可读性和信息表达至关重要。
2. 空间分析与决策支持地图投影的变换与配准为GIS的空间分析和决策支持提供了基础。
地图投影转换的方法及注意事项一、引言地图投影是将地球上的曲面表示为平面投影的一种方式,在地理信息领域发挥着重要作用。
然而,由于地球的曲面无法完美地映射到二维平面上,所以在进行地图投影时,我们需要选择合适的方法并注意一些事项,以确保地图的准确性和可用性。
二、地图投影方法1. 圆柱投影法圆柱投影法是最常见的一种地图投影方法。
它将地球表面投影到一个切割的圆柱体上,再将圆柱体展开成平面。
常见的圆柱投影法包括墨卡托投影、兰勃托投影和正轴等距圆柱投影。
这种投影方法适用于大范围地图,但在高纬度地区会存在形变问题。
2. 锥形投影法锥形投影法也是一种常用的地图投影方法。
它将地球表面投影到一个切割的锥体上,再将锥体展开成平面。
兰勃托锥形投影和兰勃托等面积投影是常见的锥形投影方法。
锥形投影法适用于较小范围的地图,地图形状比较真实,但在地图边缘会存在形变。
3. 平面投影法平面投影法将地球表面投影到一个切割的平面上。
根据投影中心的不同,平面投影法可分为正轴等距圆盘投影、兰勃托投影和阿波洛尼奥斯投影等。
平面投影法适用于小范围地图,投影中心附近形状准确,但离中心越远,形变越大。
三、地图投影注意事项1. 选择合适的投影方法根据地图的范围和用途选择合适的投影方法非常重要。
对于大范围的地图,圆柱投影法是不错的选择,而对于小范围的地图,平面投影法可能更适合。
考虑地图的形变和准确度,综合评估不同投影方法的优劣,选择最合适的方法。
2. 避免形变问题无论选择哪种投影方法,都无法避免地图形变的问题。
为了尽可能地减小形变,可以选择等面积投影方法,保持地区间的面积比例一致。
此外,在制作地图时,还可以通过引入坐标转换或插值的方法来修正形变。
3. 注意地图投影中心地图投影中心的选择对于地图的可用性和准确性至关重要。
选择合适的中心点可以在特定区域内确保地图形状的准确性。
同时,投影中心还影响到地图的距离和方向,因此在选择地图投影中心时要谨慎考虑。
4. 考虑投影带如果地图跨越多个经度带,应根据各经度范围的不同,选择不同的投影带,以确保地图的准确性。
如何进行地图投影变换地图投影变换是在制作地图时非常重要的一步。
地球是一个球体,而地图通常是平面的,所以必须将球面上的地理信息转化为平面上的投影图像。
这个过程称为投影。
1. 什么是地图投影变换?地图投影变换是将地球的表面映射到纸张或计算机屏幕上的过程。
由于地球是一个球体,将其表面展示在平面上是一个复杂的问题。
为了解决这个问题,人们发明了各种各样的地图投影方法。
2. 投影的目的地图投影的目的是在保持尽可能多的地理几何特征的同时,尽量减少形状、面积或方向的扭曲。
不同的投影方法有不同的重点,可以根据具体需求选择适合的投影方法。
3. 常见的投影方法下面介绍几种常见的投影方法:- 圆柱投影:将地球的经纬线投影到一个圆柱体上,然后再展开。
这种投影方法广泛用于世界地图和航海图。
- 锥形投影:将地球的经纬线投影到一个锥体上,然后再展开。
这种投影方法常用于地图制作和地理测量。
- 平面投影:将地球的表面投影到一个平面上,通常通过将光线从地球的中心或某个点投射出去。
这种投影方法常见于航空地图和天体测量。
4. 投影的扭曲无论选择哪种投影方法,都无法完美地将地球的表面展示在平面上。
不同的投影方法会引入不同类型的扭曲,如形状扭曲、面积扭曲、方向扭曲等。
因此,在选择投影方法时,需要权衡不同类型的扭曲,并选择适合具体需求的投影方法。
5. 地图投影变换的应用地图投影变换在许多领域都有广泛的应用。
以下是几个常见的应用:- 地理信息系统(GIS):在GIS中,地图投影变换用于将不同坐标系统下的地理数据转换为统一的坐标系统,以便进行准确的空间分析和地图叠加。
- 卫星测绘:在卫星图像处理中,地图投影变换用于将卫星图像的球面投影转换为平面地图,以便进行地质勘查、城市规划等应用。
- 地理教育:在地理教育中,地图投影变换用于教学地球形状和地理特征,帮助学生理解地球表面的结构和变化。
总结:地图投影变换是将地球的表面展示在平面上的重要步骤。
不同的投影方法有不同的优缺点,需要根据具体需求选择适合的投影方法。
测绘技术中的地图投影转换方法地图投影转换方法在测绘技术中扮演着重要的角色。
随着现代测绘技术的快速发展,使用不同的坐标系统和地图投影成为了常态。
本文将介绍地图投影转换方法及其应用。
1. 坐标系统和地图投影的背景在测绘和地理信息系统中,我们需要使用坐标系统来表示地球上的点。
然而,地球是一个三维物体,而我们的图纸和地图是二维的。
为了将地球表面上的点正确地映射到二维平面上,需要使用地图投影。
2. 地图投影的概念和分类地图投影是将地球表面上的点经纬度坐标映射到平面坐标上的过程。
常见的地图投影方法包括等经纬度投影、圆柱投影、圆锥投影和平面投影。
这些投影方法根据不同的映射原理和目的有着各自的特点和适用范围。
3. 地图投影的数学模型和转换方法地图投影的数学模型是实现地球表面点到平面坐标的映射关系。
常用的数学模型包括墨卡托投影、兰勃托投影和斯特尔多投影等。
这些数学模型中涉及到地球椭球体参数、投影面参数和转换公式等。
4. 实际应用中的地图投影转换在实际应用中,地图投影转换方法广泛应用于地图制作、测量数据处理和地理信息系统等领域。
例如,在不同地区的地图拼接和对比中,需要进行地图投影转换来保持一致的坐标系统。
同时,在测量数据处理中,也需要将现场采集的坐标转换到业务系统所使用的投影坐标系中。
5. 地球坐标系统的转换除了地图投影转换,地球坐标系统之间的转换也是测绘技术中的关键问题。
目前常用的地球坐标系统包括大地坐标系统、空间直角坐标系统和投影坐标系统等。
这些坐标系统之间的转换方法主要包括大地坐标转换和投影坐标转换等。
在实际应用中,地图投影转换方法需要结合具体的业务需求和实际情况进行选择。
不同的地图投影转换方法有不同的适用范围和误差特性。
在进行地图投影转换时,需要注意地球椭球体参数的选择和转换精度的控制,以确保转换的准确性和可靠性。
综上所述,地图投影转换方法是测绘技术中不可或缺的一部分。
了解不同的地图投影方法和数学模型,掌握地图投影转换的原理和方法,对于提高测绘数据的精度和质量,以及实现地图数据的一致性和互操作性具有重要意义。
如何进行地图的投影变换地图投影是将地球的曲面投影到平面上,以便我们更好地观察和使用地图。
在地理学和地图制作领域,地图投影是一个重要的工具,在不同目的下有不同的投影方法。
本文将探讨如何进行地图的投影变换,以及一些常见的投影方法。
投影变换是将地球表面的三维地理坐标映射到二维地图上的过程。
由于地球是一个近似于椭球体的三维曲面,所以无法直接将其映射到平面上,这就需要借助地图投影来进行变换。
地图投影有很多种方法,每种方法都有其独特的优点和限制,选择适合的投影方法需要考虑到不同需求和协调地图上的各个元素。
常见的地图投影方法包括等面积投影、等角投影、方位投影和圆柱投影等。
等面积投影能够保持地图上各个区域的面积比例,使得地图上的面积变换后仍然保持一致。
等角投影则能够保持地图上各个点之间的角度不变,这在导航和测量等领域非常有用。
方位投影则以某一个点或一条线为中心,将地图上所有点的方向投影到平面上。
圆柱投影则将地球表面覆盖到一个圆柱体上,再将该圆柱体展开到平面上。
在进行地图投影变换时,也需要考虑所选投影方法的适用范围和限制。
例如,某些投影方法只适用于特定的纬度范围,而有些方法可能会导致地图上的形状发生扭曲或伸缩。
因此,在选择投影方法时,需要根据具体需求和要展示的地理位置进行综合考虑。
此外,地图投影变换还需要考虑到地图的缩放因子和投影面的形状。
缩放因子是指地图上的距离与地球表面对应位置上的距离之比。
为了保持地图的精确性,需要根据地图的比例尺和投影方法确定正确的缩放因子。
而投影面的形状则决定了地图上不同区域的畸变程度,例如方形投影面可能导致地图上极地区域的畸变增加。
在进行地图投影变换时,还需要考虑到地图的坐标系统和地理坐标的转换。
地图的坐标系统是描述地图上点的位置的一种系统,例如经纬度和平面坐标系统等。
地理坐标的转换则是将地球上的经纬度坐标转换为平面地图上的坐标,这可以通过一系列的数学计算和公式来实现。
综上所述,地图投影变换是将地球表面的三维地理坐标映射到平面上的过程。
实习一、地图投影及其变换
一、目的
1.掌握地图投影变换的基本原理与方法
2.熟悉ArcView、ARC/INFO中投影的应用及投影变换的方法
3.了解地图投影及其变换在实际中的应用
二、实验准备
1.软件准备:ARC/INFO, ARCVIEW3.3
2.数据准备:
(1)stationsll.shp(美国爱达荷州轮廓图)
(2)idll.shp(美国爱达荷州滑雪场资料)
以上两个数据是以十进制表示经纬度数值的shapefile
(3)snow.txt(美国爱达荷州40个滑雪场的经纬度值)
(4)stations.shp,一个已投影的shapefile,用于检验习作2的投影结果
(5)idoutl.shp,基于爱达荷横轴墨卡托坐标系的爱达荷州轮廓图,用于检验习作3投影的正确性
三、试验要求
习作1、利用ARCVIEW软件View properties 中的Projection ,将stationsll.shp 和idll.shp投影成爱达荷横轴墨卡托投影(IDTM)。
IDTM参数如下:投影:横轴墨卡托
基准面:NAD27(基于克拉克1866)
单位:M
参数:
(1)比例系数:0.9996
(2)中央经线:-114.0
(3)参考纬度:42.0
(4)横坐标东移假定值:500 000
(5)纵坐标北移假定值:100 000
投影前:
投影后:
习作2、利用文本文件snow.txt创建shapefile(存为trial.shp),并利用ARCVIEW3.3中的Projection Utility将其转为兰勃特等角圆锥投影,投影后的文件名存为trial2.shp,然后用stations.shp检验投影后的结果。
所用参数如下:投影:兰勃特
单位:M
基准面:NAD27
中央经线:-114.0
原点纬度:42.0
第一标准纬线:33.0
第二标准纬线:45.0
习作3、利用Projection Utility对stations.shp进行重投影,将其转成爱达荷横轴墨卡托投影,投影后的文件名存为idstations.shp,;可用idoutl.shp检验其正确性。
两种坐标系的参数值见习作1、习作2。
四、实习报告要求:
将实验结果以幻灯片的形式提交,包括原理、步骤、结果。