生猪的出售时机
- 格式:ppt
- 大小:170.50 KB
- 文档页数:18
猪的最佳销售时机问题分析:设g(t)为一头猪在t 时刻的重量,则有g(0)=0x ,g(t)≤X 其中X 为该品种住的最大体重,猪生长速度随着体重的增加就会减慢下来,到达最大体重X 时,生长速度为零,依此可设: dg/dt =α(1-g(t)/X)g(0)=0x ,t≥0 ① 其中,α是反映住的生长速度快慢的常数又设f(t)为一头猪饲养到t 时刻共消耗的饲养费用(饲养费+人员工薪)s x 为猪可上市销售的最小体重;ts 为猪从体重0x 增至s x 所需饲养时间C(t,x)为t 时刻体重为x 的猪的单位售价,t 时刻将猪售出则:纯利润 :W(t)=C(t,x)×g(t)-f(t)-C00x ② 0<ts≤t②为问题的主模型,g(t)由①确定,只需求出 f(x)与C(t,x)即可。
假设模型(1)该模型只对某一品种猪进行讨论,涉及猪的性质的其他有关参数均视为常数;(2)猪随着体重的增长,生长速度不断减慢;(3)猪随着体重的增加饲养费用越来越多,达到最大体重后,单位时间消耗的饲养费为一常数 ;(4)C(t,x)为常数C依假设(3),单位时间消耗的饲养费可分为两部分: 一部分与体重有关(如饲料费用)记为β另一部分为固定费用(如饲养员薪金)为r-β由平衡原理,单位时间间隔[t,t+Δt]为饲养费用的增加量为f(t+Δt)-f(t)=(r-β)Δt+⎰∆+tt t m x z g )(βdz其中右端第一项为固定费总值,第二项为与体重有关费用 由积分中值定理可得这一部分结果为:t t t x x m ∆∆+)(θβ,(0<θ<1)于是f(t+Δt)-f(t)=(r-β)Δt+mx βx(t+θΔt)Δt 两边同除以 Δt 且Δt 0→得:])(1[)()(mm x t g r t g x r dt df--=+-=βββ 由f(0)=0,另得)1(m x x r dt df--=β 及))(1(m x t g dt dg -=αY(0)=0 ③ x(0)=0x t≥0的方程是一阶线性非齐次微分方程: g(t)’+)(t g x m α=α带入一阶线性非其次微分方程的求解公式可解得: g(t)=)()(m m m m x t m t x dt x dt x e x e c dt ke e αααα----=+⎰⎰⎰又 g(0)=0x 即得①的解为:g(t)=m x +(0x -m x )t x m eα- 由④可解出:1-g(t)/m x =(1-t x m m e x x α-)0代入方程③,便有其变形m x t m e x x r dt dfαβ---=)1(0直接积分而获得 f(t)=rt-)1)((0m x t m e x x ααβ---易见,α越大,f(t)越小,即增长速度越大,饲养费越小,符合实际。
10级数学模型期末复习一 作业总结(仅供参考):1、 列举符合logistic 阻滞增长模型的实例,并阐述其符合的机理。
2、(第二章习题 7)在超市购物时你注意到大包装的商品比小包装的商品便宜这种现象了么?(1)分析商品价格c 与商品重量w 的关系。
价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w 成正比,有的与表面积成正比,还有与w 无关的;(2)给出单位重量价格c 与w 的关系。
参考解答:(1) 生产成本主要是与重量w 成正比,包装成本主要是与表面积s 成正比,其他成本也包含与w 和s 成正比的部分上述三种成本中都含有与w,s 均无关的成分。
又因为形状一定时一般有32w s ∝,故商品的价格可表示为λβ++=32w aw c(2) 单位重量价格131−−++==w w a w C c λβ,c 是w 的减函数,同时该函数是下凸函数,说明单价的减少值随着包装的变大是逐渐降低的,并不是追求过大的包装。
2、 人文科学模型,一名律师为其当事人辩护的问题在模型中我们通过建立模型解决了辩护人在30英尺高度下跳落地瞬间是会受伤的。
但是该辩护是否合理?参考解答:我们需要继续考虑犯罪现场的地势情况,地面的软硬度直接决定了犯罪嫌疑人是否受伤,因此我们考虑建立的参考模型为221=mv FS 3、 钓鱼比赛问题在钓鱼比赛过程中我们只考虑鱼的长短,如果要考虑鱼的胖瘦该如何建立该问题的数学模型,并给出参赛选手一个简洁的方法。
参考解答:参考建立模型:其中s 表示腰围,l 表示鱼长l ks M 2=方法是给每个参赛选手发一卷皮尺和一个对照卡,实现选手对所吊鱼重量的确定4、 核军备竞赛问题参考解答:【1】 甲方提高导弹导航系统的性能;甲方提高导弹系统的导航能力,即甲方的打击精度提升。
则乙方导弹的残存率变小,同时引起乙方的威慑值变大,则乙方曲线整体上移且变陡,从而平衡点向右上方移动;【2】 甲方增加导弹爆破的威力;甲方增加导弹爆破的威力,则甲方的威慑值相应变小,乙方的导弹残存率变小,甲方导弹曲线向左平移,从而平衡点向左下方平移;【3】 甲方发展电子干扰系统;甲方发展电子干扰系统,则乙方的威慑值变大,甲方的残存率变大,则乙方的曲线上移,甲方的曲线变陡。
误差分析1、公平的席位分配某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。
若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,显然甲乙丙三系分别应占有10,6,4个席位。
现在丙系有6名学生转人甲乙两系,各系人数如表回第2列所示。
仍按比例(表中第3列)分配席位时出现了小数(表中第4列),在将取得整数的19席分配完毕后,三系同意剩下的1席参照所谓惯例分给比例中小数最大的丙系,于是三系仍分别占有10,6,4席(表中第5列)。
因为有20个席位的代表会议在表决提案时可能出现10:10的局面,会议决定下一届增加1席。
他们按照上述方法重新分配席位,计算结果见表6、7列。
显然这个结果对丙系太不公平了,因为总席位增加1席,而丙系却由4席减为3席。
20个席位的分配 21席位的分配 系 别 学生人数 学生人数的比例(%) 比例分配的席位 参照惯例的结果比例分配的席位 参照惯例的结果 甲 103 51.3 10.3 1010.815 11 乙 63 31.5 6.3 66.615 7 丙 34 17.0 3.4 43.570 3 总和 200 100.0 20.020 21.000 21 表1 按照比例并参照惯例的席位分配要解决这个问题必须舍弃所谓惯例,找到衡量公平分配席位的指标,并由此建立新的分配方法。
建立数量指标 讨论A ,B 两方公平分配席位的情况设两方人数分别p 1和p 2,占有席位分别是n 1和 n 2,则两方每个席位代表的人数分别为p 1/n 1和p 1/n 2。
显然仅当p 1/n 1=p 2/n 2时席位的分配才是公平的。
但是因为人数和席位都是整数,所以通常p 1/n 1≠p 2/n 2,这时席位分配不公平,并且p i /n i ( i = 1 , 2 )数值较大的一方吃亏,或者说对这一方不公平。
不妨假设p 1/n 1 > p 2/n 2,不公平程度可用数值p 1/n 1 — p 2/n 2衡量。
题目:基于NOTEBOOK的生猪最优出售时机的建模与分析 一. 问题思维视图:1.系统要素:投入资金、生猪体重增量、猪肉出售价格2.要素关联:纯利润=收入-投入-成本=生猪现在的体重*生猪现在的售价-每天成本的投入*时间-生猪的初始体重*生猪的初始售价3.问题脉络形象化:该饲养场什么时候出售这样的生猪会使利润最大?一饲养场每天投入4元资金用于饲料、设备、人力,估计可使一头80kg重量的生猪每天增加2kg。
目前市场生猪出售价格为8元/kg,但是预测每天会下降0.1元。
由下图可知:二. 数学刻画:1.给定每天投入4元资金使生猪体重每天增加常数r(=2kg);生猪出售的市场价格每天降低常数g(=0.1)。
2.给出如下符号列表:符号 t w p C Q R含义 时间 生猪体重单价 t天资金投入纯利润出售收入单位 天 kg 元/kg 元 元 元三. 模型推演:假设r=2,g=0.1,t天后出售,则:生猪体重:w=80+r*t(r=2); 出售单价:p=8-g*t;出售收入:R=p*w; 资金投入: C=4*t;于是利润为:Q=R-C-8*80.从而得到目标函数(纯利润):Q(t)=(8-g*t)(80+r*t)-4*t-640 (1)其中,求t(>=0)使Q(t)最大。
这是二次函数最值问题,而且是个现实中的优化问题,故Q(t)的一阶导数为零的t(t>=0)值可使Q(t)取最大值。
先求Q(t)一阶导数:syms t;Q(t)=(8-g*t)*(80+r*t)-4*t-640;y=diff(Q(t),t)y =- r*(g*t-8) - g*(r*t + 80) - 4[g,t,r]=solve('-r*(g*t-80)-g*(r*t+80)=4','g=g','r=r')g =z1t =( 40*z1 + 2)/(z*z1)r =z即: t=(4*r-40*g-2)./(r*g ) (2)在这个模型中:取r=2,g=0.1,则:Q(t)=(8-0.1*t)*(80+2*t)-4*t-640)目标函数MATLAB作图如下:ezplot('(8-0.1*t)*(80+2*t)-4*t-640',[0,20])hold onxlabel('t坐标'); ylabel('Q(t)坐标');从图象可知t=10时,Q(t)max=10。
《数学模型(第三版)》学习笔记各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢篇一:数模牛人学习笔记《数学模型(第三版)》学习笔记写在开始今天第一次归纳、复习,整理思路重点,从最后两章(除了“其他模型”)开始,想可能印象比较深刻。
可实际开始总结才发现对于知识的理解和掌握还有很大差距,自己也是自学看书,非常希望各位提出宝贵意见,内容、学习方法经验上的都是.整本书读下来感觉思路、数学都有很大拓展,总结起来有一下几个特点:(一) “实际—>模型”的建模过程很关键,本书的模型很多虽然所谓“简单”、“假设多”,但简化分析中,还真难找到比它更合适、更合理、更巧妙的建模、假设了;(二) 模型求解之后的处理,许多地方似乎求解完毕可以结束,但却都未戛然而止,而是进一步“结果分析”、“解释”,目的不一,要看进程而定,有的促进了模型的改进,有的对数学结果做出了现实对应的解释(这一点建模过程中也经常做,就是做几步解释一下实际意义),也还有纯数学分析的,这些都是很重要的,在我看来,这本书中的许多模型、论文似乎到了“结果分析”这一步才刚刚开始,前面的求解似乎是家常便饭了;(三) 用各种各样的数学工具、技巧、思想来建模的过程,这本书读下来愈发觉得线性代数、高等数学基础的重要性,同时书中也设计到了一些(虽是浅浅涉及)新的数学知识和技巧,许多我在读的过程中只是试图了解这个思想,而推导过程未能花很多时间琢磨,但即便如此,还是让我的数学知识有了很大的拓展(作为工科专业学生)。
从上周六继续自学《数学模型》开始一周,比预期的时间长了许多,但是过程中我觉得即便如此也很难领会完整这本书的内容。
最近学习任务比较多,所以两天前快看完时到现在一直未能做个小结,从今天起每天做2章的小结,既是复习总结重点,也是请诸位同学指教、提意见交流——毕竟自己领会很有限。
也可以作为未读过、准备读这本书的同学的参考~(目前已更新:全12章)第1章建立数学模型关键词:数学模型意义特点第1章是引入的一章,对数学模型的意义来源,做了很好的解释。
§2 生猪的出售时机模型[问题的提出] 一饲养场每天投入4元资金用于饲料、设备、人力,估计可使一头80公斤重的生猪每天增加2公斤.目前生猪出售的市场价格为每公斤8元,但是预测每天会降低0.1元,问该场应该什么时候出售这样的生猪.如果上面的估计和预测有出入,对结果有多大影响.[问题分析及符号约定] 投入资金可使生猪体重随时间增长,但售价(单价)随时间减少,应该存在一个最佳的出售时机,使获得利润最大.这是一个优化问题,根据给出的条件,可作如下的简化假设.每天投入4元资金使生猪体重每天增加常数 (=2公斤);生猪出售的市场价格每r 天降低常数g(=0.1元).[模型的建立] 给出以下记号:~时间(天).~生猪体重(公斤);单价 (元/t w ~p 公斤);R-出售的收入(元);C-t 天投入的资金(元);Q-纯利润(元).按照假设,.又知道,再)1.0(8),2(80=-==+=g gt p r rt w t C pw R 4,==考虑到纯利润应扣掉以当前价格(8元/公斤)出售80公斤生猪的收入,有 ,得到目标函数(纯利润)为808⨯--=C R Q其中.求使最大.1.0,2==g r )0(≥t )(t Q [模型的求解] 这是求二次函数最大值问题,用代数或微分法容易得到当时,,即10天后出售,可得最大纯利润20元.1.0,2==g r 20)10(,10==Q t [敏感性分析] 由于模型假设中的参数(生猪每天体重的增加和价格的降低g)是r 估计和预测的,所以应该研究它们有所变化时对模型结果的影响.1.设每天生猪价格的降低元不变,研究变化的影口向,由(2)式可得1.0 g r是的增函数,表1和图3给出它们的关系.t r 2.设每天生猪体重的增加=2公斤不变,研究g 变化的影响,由(2)式可得r是的减函数,表2和图4给出它们的关系. t r可以用相对改变量衡量结果对参数的敏感程度.对的敏感度记作,定义为t r ).(r t S由(3)式,当=2时可算出r 即生猪每天体重增加1%,出售时间推迟3%.r 类似地定义对g 的敏感度,由(4)式,当g=0.1时可算出t ).(g t S即生猪价格每天的降低g 增加1%,出售时间提前3%。