第八章 虚拟变量模型分析
- 格式:ppt
- 大小:1.80 MB
- 文档页数:76
第八章 包含虚拟变量的回归模型一、虚拟变量的基本含义通常在回归分析中,因变量不仅受一些定量变量的影响,而且还受一些定性变量的影响,比如性别、种族、婚姻状况等等。
为了在模型中反映这些因素的影响,需要把定性因素进行“量化”。
通常是引进人工变量完成。
通过定性因素的属性类别,构造取值为0或者1的变量,如、 1代表男性, 0代表女性; 1代表某人是大学毕业, 0代表某人不是大学毕业,这类取值为0,1的变量称为虚拟变量(dummy variable )。
虚拟变量与定量变量一样可用于回归分析。
事实上,一个回归模型的解释变量可以仅仅是虚拟变量。
解释变量仅是虚拟变量的模型称为方差分析模型( analysis-of-variance models ) (ANOVA)。
例1:1i i Y D i βα=++ε,其中Y 表示职工工资,。
10i D ⎧=⎨⎩,本科学历,非本科学历这个模型与我们前面讨论过的双变量模型类似,但这里的解释变量是虚拟变量。
1(0)i E Y D β==,1(1)i E Y D βα==+显然,1β表示非大学毕业生的平均初职年薪,1βα+表示具有大学学历职工的平均工资,α代表二者之差。
回归模型中可以有同时有虚拟变量以及定量变量。
例2:考虑是否上过大学和工龄作为职工工资的模型:12i i i Y X D i ββαε=+++Y ,表示职工工资,X表示工龄,D同上。
含虚拟变量的模型只要扰动项符合古典假定,仍用OLS方法估计模型。
注意:虚拟变量系数显著性检验的意义::0H 0α=;:1H 0α≠。
同学们思考:这个检验在上面两个例子中分别具有何实际意义?二、虚拟变量的引入模型的方式 1、加法方式上面考察的例子都是加法方式。
注意虚拟变量模型的几何意义:以上述例2考察。
例3:如果上述职工工资方程(例2)中,学历考虑三个层次:高中以下、高中、大学及以上。
该如何建模?引进两个虚拟变量:,1 1 0 D ⎧=⎨⎩高中其他2 1 0 D ⎧=⎨⎩大学及以上其他121222Y X D D ββαα=++++ε请同学们分析模型的含义。
第8章 虚拟变量(dummy variable )在实际建模过程中,被解释变量不但受定量变量影响,同时还受定性变量影响。
例如需要考虑性别、民族、不同历史时期、季节差异、企业所有制性质不同等因素的影响。
这些因素也应该包括在模型中。
1。
虚拟变量由于定性变量通常表示的是某种特征的有和无,所以量化方法可采用取值为1或0。
这种变量称作虚拟变量,用D 表示。
虚拟变量应用于模型中,对其回归系数的估计与检验方法与定量变量相同。
⎩⎨⎧=不具有某属性具有某属性01D 例:表示季节的虚拟变量⎩⎨⎧=其它春季011D ⎩⎨⎧=其它夏季012D ⎩⎨⎧=其它秋季013D ⎩⎨⎧=其它冬季014D2.测量截距移动设有模型,y t = β0 + β1 x t + u加法方式增加虚拟变量y t = β0 + β1 x t + β2D + u t ,其中y t ,x t 为定量变量;D 为定性变量。
当D = 0 或1时,上述模型可表达为, β0 + β1x t + u t , (D = 0) y t = (β0 + β2) + β1x t + u t , (D = 1)2040600204060X Y图8.1 测量截距不同D = 1或0表示某种特征的有无。
反映在数学上是截距不同的两个函数。
若β2显著不为零,说明截距不同;若β2为零,说明这种分类无显著性差异。
例:中国成年人体重y (kg )与身高x (cm )的回归关系如下:–105 + x D = 1 (男) y = - 100 + x - 5D =–100 + x D = 0 (女) 注意:① 若定性变量含有m 个类别,应引入m -1个虚拟变量,否β0β0+β2D = 1D =0则会导致多重共线性,称作虚拟变量陷阱。
②关于定性变量中的哪个类别取0,哪个类别取1,是任意的,不影响检验结果。
③定性变量中取值为0所对应的类别称作基础类别(base category)。
3测量斜率变化以上只考虑定性变量影响截距,未考虑影响斜率,即回归系数的变化。