01-结构力学 渐进法知识点小结
- 格式:pdf
- 大小:183.25 KB
- 文档页数:3
(完整版)结构⼒学最全知识点梳理及学习⽅法第⼀章绪论§1-1 结构⼒学的研究对象和任务⼀、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的⽅式所组成的构件的体系,⽤以⽀承荷载并传递荷载起⽀撑作⽤的部分。
注:结构⼀般由多个构件联结⽽成,如:桥梁、各种房屋(框架、桁架、单层⼚房)等。
最简单的结构可以是单个的构件,如单跨梁、独⽴柱等。
⼆、结构的分类:由构件的⼏何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远⼤于截⾯的宽度和⾼度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远⼩于其它两个尺度,平⾯为板曲⾯为壳,如楼⾯、屋⾯等。
3.实体结构——结构的三个尺度为同⼀量级,如挡⼟墙、堤坝、⼤块基础等。
三、课程研究的对象材料⼒学——以研究单个杆件为主弹性⼒学——研究杆件(更精确)、板、壳、及块体(挡⼟墙)等⾮杆状结构结构⼒学——研究平⾯杆件结构四、课程的任务1.研究结构的组成规律,以保证在荷载作⽤下结构各部分不致发⽣相对运动。
探讨结构的合理形式,以便能有效地利⽤材料,充分发挥其性能。
2.计算由荷载、温度变化、⽀座沉降等因素在结构各部分所产⽣的内⼒,为结构的强度计算提供依据,以保证结构满⾜安全和经济的要求。
3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使⽤过程中不致发⽣过⼤变形,从⽽保证结构满⾜耐久性的要求。
§1-2 结构计算简图⼀、计算简图的概念:将⼀个具体的⼯程结构⽤⼀个简化的受⼒图形来表⽰。
选择计算简图时,要它能反映⼯程结构物的如下特征:1.受⼒特性(荷载的⼤⼩、⽅向、作⽤位置)2.⼏何特性(构件的轴线、形状、长度)3.⽀承特性(⽀座的约束反⼒性质、杆件连接形式)⼆、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受⼒和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于..。
..分析和...计算三、结构计算简图的⼏个简化要点1.实际⼯程结构的简化:由空间向平⾯简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独⾃绕铰⼼⾃由转动,即各杆端之间的夹⾓可任意改变。
第一章绪论§1-1 结构力学的研究对象和任务一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。
注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。
最简单的结构可以是单个的构件,如单跨梁、独立柱等。
二、结构的分类:由构件的几何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。
3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。
三、课程研究的对象♦材料力学——以研究单个杆件为主♦弹性力学——研究杆件(更精确)、板、壳、及块体(挡土墙)等非杆状结构♦结构力学——研究平面杆件结构四、课程的任务1.研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。
探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。
2.计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。
3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。
§1-2 结构计算简图一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。
选择计算简图时,要它能反映工程结构物的如下特征:1.受力特性(荷载的大小、方向、作用位置)2.几何特性(构件的轴线、形状、长度)3.支承特性(支座的约束反力性质、杆件连接形式)二、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受力和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于..。
..分析和...计算三、结构计算简图的几个简化要点1.实际工程结构的简化:由空间向平面简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。
第一章绪论§1-1 结构力学的研究对象和任务一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。
注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。
最简单的结构可以是单个的构件,如单跨梁、独立柱等。
二、结构的分类:由构件的几何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。
3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。
三、课程研究的对象♦材料力学——以研究单个杆件为主♦弹性力学——研究杆件(更精确)、板、壳、及块体(挡土墙)等非杆状结构♦结构力学——研究平面杆件结构四、课程的任务1.研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。
探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。
2.计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。
3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。
§1-2 结构计算简图一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。
选择计算简图时,要它能反映工程结构物的如下特征:1.受力特性(荷载的大小、方向、作用位置)2.几何特性(构件的轴线、形状、长度)3.支承特性(支座的约束反力性质、杆件连接形式)二、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受力和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于..。
...计算..分析和三、结构计算简图的几个简化要点1.实际工程结构的简化:由空间向平面简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。
结构力学主要知识点归纳结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。
通常包括以下几个方面:A、杆件的简化:常以其轴线代表B、支座和节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点。
C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。
B、按内力是否静定划分:①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。
②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。
二、平面体系的机动分析1、体系种类A、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。
B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。
常具体划分为常变体系和瞬变体系。
2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。
3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系。
②一个单铰为两个联系。
4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。
A 、W>0,表明缺少足够联系,结构为几何可变;B 、W=0,没有多余联系;C 、W<0,有多余联系,是否为几何不变仍不确定。
5、几何不变体系的基本组成规则:A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。
B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。
第八章渐进法和力矩分配法超静定结构的计算方法: 力法(六)、位移法(七)力法计算步骤1、选取基本体系2、列力法方程3、计算系数及自由项4、解方程5、作内力图位移法计算步骤1、设基本未知量2、列杆端弯矩方程3、列位移法方程4、解方程5、求杆端弯矩6、做内力图为避免解力法和位移法方程,引入一种近似的计算方法,这种方法是位移法的延伸,在计算过程中进行力矩的分配与传递。
渐近法有力矩分配法、无剪力分配法等,它们都是位移法的变体,其共同的特点是避免了组成和解算典型方程,也不需要计算结点位移,而是以逐次渐近的方法来计算杆端弯矩,计算结果的精度随计算轮次的增加而提高,最后收敛于精确解。
力矩分配法适用于连续梁和无结点线位移的刚架;无剪力分配法适用于刚架中除杆端无相对线位移的杆件外,其余杆件都是剪力静定杆件的情况,它是力矩分配法的一种特殊的形式。
对于一般有结点线位移的刚架,可用力矩分配法和位移法联合求解。
§8.1 力矩分配法的基本概念力矩分配法:理论基础:位移法;计算对象:杆端弯矩;计算方法:逐渐逼近的方法;适用范围:连续梁和无侧移刚架。
基本概念转动刚度S分配系数μ传递系数 C力矩分配法中符号规定力矩分配法的理论基础是位移法,故力矩分配法中对杆端转角、弯矩及固端弯矩的正负号规定与位移法相同,即都假设对杆端顺时针旋转为正号、对结点或附加刚臂逆时针旋转为正号。
一、转动刚度S:表示杆端对转动的抵抗能力。
在数值等于使杆端产生单位转角时需要施加的力矩。
转动刚度SAB 与杆的线刚度i (材料的性质、横截面的形状和尺寸、杆长)及远端支承有关,而与近端支承无关。
二、分配系数设A 点有力矩M ,求M AB 、M AC 和M AD如用位移法求解:A AB A AB AB S i M θθ==4A AC A AC AC S i M θθ==A AD A AD AD S i M θθ==30=∑AM A AD AC ABS S SM θ)(++=∑=++=AAD AC AB A SMS S S M θ所以有M SS M AABAB ∑=M S S M AAC AC ∑= M S S M AAD AD ∑=M M Aj Aj ⋅=μ ∑=AAjAj SS μ 1=∑μ三、传递系数=远端弯矩/近端弯矩M AB = 4 i ABθAM BA = 2 i ABθA在结点上的外力矩按各杆分配系数分配给各杆近端截面,各杆远端弯矩分别等于各杆近端弯矩乘以传递系数。
第一章绪论§1-1 结构力学的研究对象和任务一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。
注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。
最简单的结构可以是单个的构件,如单跨梁、独立柱等。
二、结构的分类:由构件的几何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。
3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。
三、课程研究的对象♦材料力学——以研究单个杆件为主♦弹性力学——研究杆件(更精确)、板、壳、及块体(挡土墙)等非杆状结构♦结构力学——研究平面杆件结构四、课程的任务1.研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。
探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。
2.计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。
3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。
§1-2 结构计算简图一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。
选择计算简图时,要它能反映工程结构物的如下特征:1.受力特性(荷载的大小、方向、作用位置)2.几何特性(构件的轴线、形状、长度)3.支承特性(支座的约束反力性质、杆件连接形式)二、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受力和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于..。
..分析和...计算三、结构计算简图的几个简化要点1.实际工程结构的简化:由空间向平面简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。
第8章渐近法及其他算法简述8.1 复习笔记本章介绍了几种属于位移法类型的渐近方法。
这些渐近方法的基础是力矩分配法,在力矩分配法的基础上,衍生出了适用于不同结构类型的子方法,如无剪力分配法、分层计算法、反弯点法。
渐近法舍弃了一部分精度,但以此换来了更高的效率。
一、力矩分配法的基本概念(见表8-1-1)1.转动刚度、分配系数、传递系数表8-1-1 力矩分配法的基本概念2.基本运算环节(单结点转动的力矩分配)(见表8-1-2)表8-1-2 单结点转动的力矩分配图8-1-1图8-1-2二、多结点的力矩分配(见表8-1-3)表8-1-3 多结点的力矩分配图8-1-3三、无剪力分配法(表8-1-4)表8-1-4 无剪力分配法图8-1-4四、近似法(见表8-1-5)表8-1-5 近似法图8-1-5 分层法五、超静定结构各类解法的比较和合理选用(见表8-1-6)表8-1-6 超静定结构各类解法的比较和合理选用8.2 课后习题详解8-1 试用力矩分配法计算图8-2-1所示结构,并作M图。
图8-2-1解:(a)求固端弯矩M AB F=-F P l/8=-20kN·m,M BA F=F P l/8=20kN·m求分配系数μBA=EI/(EI+EI/2)=1/(1+1/2)=0.667,μBC=(EI/2)/(EI+EI/2)=(1/2)/(1+1/2)=0.333放松B点进行力矩分配(B点的集中力偶应该与固端弯矩一起分配),分配过程如图8-2-2所示,并作出M图如图8-2-2所示。
图8-2-2(b)考虑去掉悬臂部分CD,去掉后在C点施加大小为10kN·m的顺时针力偶矩。
求固端弯矩(注意,C点的附加力偶传递到B点的作用不能忽略)M BC F′=-3F P l/16=-18kN·m(集中力引起)M BC F″=1/2×10kN·m=5kN·m(附加力偶引起)M BC F=M BC F′+M BC F″=-13kN·m,M CB F=10kN·m。
第9章 渐近法(知识点小结)
一、转动刚度与传递系数
使杆端产生单位角位移时需要在该端施加(或产生)的力矩称为转动刚度,它表示杆端对转动的抵抗能力,是杆件及相应支座所组成的体系所具有的特性。
转动刚度与该杆远端支承、近端支承情况及杆件的线刚度有关。
传递系数表示近端有转角时,远端弯矩与近端弯矩的比值。
对等截面杆件来说,传递系数随远端支承情况不同而异,如表9-1所示。
二、分配系数
各杆端在结点A 的分配系数等于该杆在A 端的转动刚度与交于A 点的各杆端转动刚度之和的比值,即:
Aj
Aj Aj S S
μ=∑ 同一结点各杆分配系数之间存在下列关系: 1Aj μ
=∑ 这个条件通常用来校核分配系数的计算是否正确。
三、力矩分配法的基本原理
其过程可形象地归纳为以下步骤:
(1)固定结点 在刚结点上加上附加刚臂,使原结构成为单跨超静定梁的组合体。
计算各杆端的固端弯矩,而结点上作用有不平衡力矩,它暂时由附加刚臂承担;
(2)放松结点
取消刚臂,让结点转动。
这相当于在结点上又加入了一个反号的不平衡力矩,于是不平衡力矩被消除而结点获得平衡。
此反号的不平衡力矩按分配系数分配给各近端,于是各近端得到分配弯矩。
同时,各分配弯矩又向其对应远端进行传递,各远端得到传递弯矩。
(3)将各杆端的固端弯矩、分配弯矩、传递弯矩对应叠加,就可以得到各杆端的最后弯矩值,即:近端弯矩等于固端弯矩加上分配弯矩,远端弯矩等于固定弯矩加上传递弯矩。
四、用力矩分配法计算连续梁和无侧移的刚架
多结点的力矩分配法计算步骤如下:
1、将所有刚结点固定,计算各杆端的固端弯矩;
2、依次放松各结点
每次放松一个结点(其余结点仍固定住)进行力矩分配与传递。
对每个结点轮流放松,经多次循环后,结点逐渐趋于平衡。
一般进行2-3个循环就可获得足够精度。
3、将各次计算所得杆端弯矩(固端弯矩及历次得到的分配弯矩和传递弯矩)对应相加,即得各杆端的最终弯矩值。
五、力矩分配法和位移法的联合应用
力矩分配法与位移法的联合应用就是利用力矩分配法解算无侧移结构简便的优点和位移法能够解算具有结点线位移结构的特点,在解题过程中使其充分发挥各自优点的联合方法。
它的基本特点是:
(1)仅取结点线位移作为基本未知量;
(2)施加附加链杆控制结点线位移(不加附加刚臂限制角位移),从而得到相应的基本体系(无侧移刚架);
(3)根据附加链杆约束力等于零的平衡条件(截面剪力投影条件)建立位移法方程;
(4)利用力矩分配法求解系数和自由项:利用力矩分配法作基本结构在外荷载单独作用下的P M 图,以及由单位线位移1i ∆=引起的i M 图,由截面投影平衡条件求出位移法方程中的系数和自由项;
(5)由叠加法作原结构的弯矩图。
六、无剪力分配法
无剪力分配法是在特定条件下的力矩分配法,其应用条件为:刚架中除了无侧移杆件外,其余杆件全是剪力静定杆件。
剪力静定杆的固端弯矩、转动刚度和传递系数,与一端刚结、另一端滑动杆相同。
除此之外,力矩的分配及传递过程与一般力矩分配法完全相同。
七、剪力分配法
1、应用条件
横梁为刚性杆、竖柱为弹性杆的排架或刚架承受水平结点荷载荷载作用。
2、基本原理
在柱顶集中荷载作用下,同层各柱剪力与柱的侧移刚度系数成正比。
将各层总剪力F (任一层的总剪力等于该层及以上各层所有水平荷载的代数和)按各柱侧移刚度之比即剪力分配系数比例分配到各柱。
第j 根柱剪力为:
j Sj j i
D F F F D ν=
=∑ 侧移刚度计算如下: 312j EI D h =
(刚架柱)、3
3j EI D h =(排架柱) 3、由柱的剪力求柱的弯矩 对刚架,求得柱顶剪力后,根据柱弯矩零点(即反弯点)在柱中点的条件,可得到各柱的杆端弯矩等于柱顶剪力与其高度一半的乘积。
对排架,因弯矩零点在柱顶,各柱底弯矩等于柱顶剪力与其高度乘积。
4、求出各立柱弯矩后,刚性横梁的弯矩可按如下方法确定:若结点只连接一根刚性横梁,可直接由结点力矩平衡条件确定横梁在该结点处的杆端弯矩;若结点连接了两根刚性横梁,可近以认为两根刚性横梁的转动刚度相同,从而分配到相同的杆端弯矩。
5、当水平荷载为非结点荷载时,必须等效化成结点荷载。
先在各层结点加水平支杆,求得各杆端固端弯矩及支杆反力;再将支杆反力反向施加于各层结点上,按剪力分配法求出各杆端弯矩;最后将上述两种情况下相应杆端弯矩叠加即可。