蛋白质 翻译
- 格式:ppt
- 大小:2.55 MB
- 文档页数:59
proteins翻译proteins的中文翻译为蛋白质。
蛋白质是生命体内重要的营养物质,由氨基酸构成。
它在维持身体健康和功能方面起着重要作用。
以下是一些蛋白质的用法和中英文对照例句:1. 蛋白质的功能:- 蛋白质是构成细胞、组织和器官的基本组成部分。
Proteins are the basic building blocks of cells, tissues, and organs.- 蛋白质参与细胞信号传导和调节生物化学反应。
Proteins are involved in cell signaling and regulating biochemical reactions.- 蛋白质在免疫系统中起到抗体和免疫调节剂的作用。
Proteins play a role in the immune system as antibodies and immune modulators.- 蛋白质在运输和储存营养物质方面具有重要功能。
Proteins have important functions in transporting and storing nutrients.- 蛋白质参与肌肉收缩和运动能力的维持。
Proteins are involved in muscle contraction and maintaining physical performance.2. 蛋白质的来源:- 动物性食品,如肉、鱼、奶制品和蛋类,富含高质量的蛋白质。
Animal-based foods such as meat, fish, dairy products, and eggs are rich sources of high-quality proteins.- 植物性食品,如豆类、谷物、坚果和种子,也含有蛋白质。
Plant-based foods such as legumes, grains, nuts, and seeds also contain proteins.- 蛋白质补充剂可以作为蛋白质摄入的补充或替代品。
蛋白质翻译名词解释蛋白质(Protein),又称朊(Carboxylic),化学结构通式为C16 H12O10(NH2)2,由20种氨基酸按一定顺序连接而成的一大类生物大分子。
它是与生命及与各种形式的生命活动紧密联系在一起的物质。
它是我们身体的重要组成部分,是在生物遗传、变异和自然选择中起决定性作用的主要遗传物质。
各种蛋白质之间在结构上具有一定的相似性,所以,常常把它们称为同源性物质。
1。
蛋白质:(1) protein,蛋白质: protein2。
蛋白质: ( 1) protein,蛋白质: protein2。
protein,蛋白质: ( 2)RNA(ribonucleic acid)核糖核酸: nucleic acid3。
蛋白质:RNA(ribonucleic acid)核糖核酸: nucleic acid4。
蛋白质:DNA(deoxyribonucleic acid)脱氧核糖核酸: deoxyribonucleic acid5。
蛋白质: RNA(ribonucleic acid)核糖核酸:deoxyribonucleic acid6。
蛋白质: DNA(deoxyribonucleic acid)脱氧核糖核酸: deoxyribonucleic acid7。
蛋白质:DNA(deoxyribonucleic acid)脱氧核糖核酸: deoxyribonucleic acid8。
蛋白质: RNA(ribonucleic acid)核糖核酸:deoxyribonucleic acid9。
蛋白质: DNA(deoxyribonucleic acid)脱氧核糖核酸: deoxyribonucleic acid10。
蛋白质:RNA(ribonucleic acid)核糖核酸: deoxyribonucleic acid11。
蛋白质: RNA(ribonucleic acid)核糖核酸: deoxyribonucleic acid12。
教案首页课程名称分子生物学任课教师李市场第四章蛋白质翻译计划学时9教学目的和要求:掌握遗传密码的构成及特点。
遗传密码的破译;密码的简并性与变偶假说;密码子的使用频率;起始密码子与终止密码子;遗传密码的突变;重叠密码。
掌握原核生物和真核生物RNA的翻译过程。
核糖体及RNA的结构;氨基酸的激活与氨酰-tRNA的合成;原核生物的蛋白质的生物合成;GTP在蛋白质合成中的作用;真核生物的蛋白质的生物合成;蛋白质折叠与蛋白质生物合成中多肽链的修饰;蛋白质的易位与分泌。
重点:密码的简并性与变偶假说;密码子的使用频率;起始密码子与终止密码子;重叠密码。
核糖体及RNA的结构;氨基酸的激活与氨酰-tRNA的合成;原核生物的蛋白质的生物合成;GTP在蛋白质合成中的作用;真核生物的蛋白质的生物合成;蛋白质折叠与蛋白质生物合成中多肽链的修饰;蛋白质的易位与分泌难点:核糖体及RNA的结构;氨基酸的激活与氨酰-tRNA的合成;原核生物的蛋白质的生物合成;GTP在蛋白质合成中的作用;真核生物的蛋白质的生物合成;蛋白质折叠与蛋白质生物合成中多肽链的修饰;蛋白质的易位与分泌。
思考题:1、以Prok.为例,说明蛋白质翻译终止的机制。
2、简要说明真核生物蛋白质的不同转运机制。
3、说明Prok.和Euk.体内蛋白质的越膜机制。
4、简要说明Prok.与Euk.的翻译起始过程的差别。
第四章蛋白质翻译(Protein Translation)概述:蛋白质翻译是基因表达的第二步,tRNA在翻译过程中起“译员”的作用,参与翻译的RNA 除tRNA外,还有rRNA 和mRNA;tRNA既是密码子的受体,也是氨基酸的受体,tRNA 接受AA要通过氨酰tRNA合成酶及其自身的paracodon的作用才能实现,tRNA通过其自身的anticodon而识别codon,密码子有自身的特性,三联体前两个重要通用性摇摆性,有一定的使用效率;多种翻译因子组成翻译起始复合物,完成翻译的起始、延伸和终止,并且保证其准确性。
蛋白翻译后修饰综述蛋白质翻译后修饰 (Protein translational modifications,PTMs) 通过功能基团或蛋白质的共价添加、调节亚基的蛋白水解切割或整个蛋白质的降解来增加蛋白质组的功能多样性。
三羧酸循环是葡萄糖在线粒体代谢的一个重要环节。
葡萄糖产生的乙酰辅酶A进入三羧酸循环,产生大量还原型烟酰胺腺嘌呤二核苷酸(reduced nicotinamide adenine dinucleotide,NADH)和还原型黄素腺嘌呤二核苷酸(reduced flavin adenine dinucleotide,FADH2),为呼吸链提供电子,推动氧化磷酸化反应合成三磷酸腺苷(adenosine triphosphate,ATP)。
三羧酸循环有8个关键催化酶,它们的催化活性均受翻译后修饰的调节。
(一)乙酰化及琥珀酰化在调节三羧酸循环中,乙酰化的作用以抑制为主,而琥珀酰化以激活为主。
琥珀酸脱氢酶(succinate dehydrogenase,SDH)是三羧酸循环关键酶之一,位于线粒体内膜。
由A和B两个亚基组成。
SDH催化琥珀酸转为富马酸,并且产生FADH2。
A亚基(SDHA)活性既受乙酰化调节也受琥珀酰化调节,而两种修饰作用相反:乙酰化抑制该亚基活性,去乙酰化后该亚基活性提高[13]。
动物模型研究发现,胚胎期母亲低蛋白饮食可增加出生后肥胖及T2DM发生率,机制是SIRT3表达减少,增加SDH 乙酰化状态,降低SDH活性[14]。
柠檬酸合酶和异柠檬酸脱氢酶2(isocitrate dehydrogenase 2,IDH2)的催化活性也受乙酰化抑制[15,16]。
但是,乙酰化修饰也可增加三羧酸循环中某些酶的活性,如苹果酸脱氢酶(malate dehydrogenase,MDH)和顺乌头酸酶[16,17]。
与乙酰化修饰的作用相反,琥珀酰化增加SDH活性[13],但抑制IDH2的活性[18]。
氨基酸的活化a.起始信号(AUG-甲硫氨酸密码子)和缬氨酸(GUG)极少出现i.真核生物起始氨基酸—甲硫氨酸,原核生物-甲酰甲硫氨酸ii.SD序列:存在于原核生物起始密码子AUG上游7~12个核苷酸处的一种4~7个核苷酸的保守片段,与16srRNA3’端反向互补。
功能将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。
1)原核生物的SD序列:原核mRNA起始密码子上一段可与核糖体结合的序列。
30s小亚基首先与翻译因子IF-1(与30s结合)和IF-3(稳定小亚基,帮助其与mRNA结合位点的识别)结合,通过SD序列与mRNA模板相结合。
iii.真核生物依赖于结合5'帽,核糖体小亚基沿mRNA5'端帽子结构扫描到RBSiv.在IF2起始因子和GTP的帮助下,fMet-tRNA进入小亚基的P位,tRNA上的反密码子与mRNA密码子配对。
v.小亚基复合物与50s大亚基结合,GTP水解,释放翻译起始因子vi.翻译的起始b.后续氨基酸与核糖体的集合:第二个氨酰-tRNA与EF-Tu.GTP形成复合物,进入核糖体的A位,水解产生GDP并在EF-Ts的作用下释放GDP并使EF-Tu结合另一分子GTP形成新的循环。
i.肽键的生成:AA-tRNA占据A位,fMet-tRNA占据P位,在肽基转移酶的催化下,A位上的AA-tRNA转移到P位,P位上的起始tRNA转移至E位,与fMet-tRNA上的氨基酸生产肽键。
起始RNA随后离开。
ii.移位:核糖体通过EF-G介导的GTP水解所提供的能量向mRNA模板3'末端移动一个密码子,二肽基-tRNA完全进入P位点iii.肽链的延申c.当终止密码子UAA,UAG,UGA出现在核糖体的A位时,没有相应的AA-tRNA能与其结合,而释放因子能识别密码子并与之结合,水解P位上的多肽链与tRNA之间的二酯键,然后新生的肽链释放,核糖体大小亚基解体i.肽链的终止d.N端fMet或Met的切除i.二硫键的形成ii.特定氨基酸的修饰iii.新生肽段非功能片段的切除iv.蛋白质前体的加工e.无义突变:DNA序列中任何导致编码氨基酸的三联密码子突变转变为终止密码子UAA,UGA,UAG中的突变,使得蛋白质合成提前终止,合成无功能或无意义的多肽。
蛋白质的翻译名词解释是什么蛋白质是生命中至关重要的大分子有机化合物,也被称为蛋白质质量可变区域,蛋白质的翻译名词解释指的是将基因编码的信息转化为蛋白质的过程。
1. 蛋白质的重要性蛋白质在生命活动中扮演着重要的角色,包括参与维持细胞结构、运输物质、催化化学反应、传递信号等功能。
蛋白质的种类多样,形态也各异,由氨基酸组成,具有极高的结构多样性和功能多样性。
2. 基因与蛋白质基因是生命的基本单位,在细胞核中携带着遗传信息。
基因包含了DNA序列,通过蛋白质的翻译过程将这些信息转换为具体的蛋白质。
3. DNA到RNA的转录在蛋白质的翻译过程中,首先发生的是基因的转录,即DNA的信息转录为RNA。
在细胞核中,RNA聚合酶酶与DNA结合,根据DNA序列合成RNA分子。
这个过程称为转录,生成的RNA被称为信使RNA(mRNA)。
4. mRNA的剪接在转录过程完成后,产生的mRNA分子常常需要通过剪接过程进一步加工。
在剪接过程中,mRNA分子的某些部分被剪除,剩下的部分重新连接。
这种剪接现象使同一个基因可以编码出多种不同的蛋白质,增加了基因的表达多样性。
5. mRNA的转运和翻译刚合成出来的mRNA分子会从细胞核移动到细胞质中,这个过程称为mRNA 的转运。
在细胞质中,mRNA与核糖体相结合,开始蛋白质的翻译。
翻译过程是将RNA的信息转化为蛋白质序列的过程。
6. 转运的氨基酸和蛋白质的合成在翻译过程中,mRNA上的信息会被读取,根据RNA的密码子与转运RNA (tRNA)上的氨基酸配对。
随着mRNA的运动,新的氨基酸被连接到蛋白质的链上,形成特定的氨基酸序列。
这种蛋白质的合成被称为多肽链延伸。
7. 翻译的终止当合成蛋白质的链达到“终止密码子”时,翻译过程会停止。
在这个过程中,释放因子与终止密码子结合,使蛋白质链从核糖体上释放。
8. 蛋白质的修饰和折叠翻译完成的蛋白质并不一定是最终活性的形式,在细胞中通常会发生一系列修饰和折叠的过程。
翻译蛋白质Protein TranslationProtein translation, also known as protein biosynthesis, is the process by which cellular ribosomes synthesize proteins. This process occurs in all living organisms and is crucial for maintaining various cellular functions.The process of protein translation involves several steps. Firstly, the DNA sequence of a gene is transcribed into a complementary RNA sequence through a process called transcription. This RNA molecule, known as mRNA (messenger RNA), carries the genetic information from the DNA to the ribosome for protein synthesis.Next, the mRNA molecule is transported out of the nucleus and into the cytoplasm, where the ribosomes reside. The ribosome binds to the mRNA at a specific location called the start codon, which marks the beginning of a protein-coding sequence.Once the ribosome has recognized the start codon, it begins the process of protein synthesis. The ribosome moves along the mRNA molecule, reading the genetic code in the form of codons - three nucleotide bases that specify a particular amino acid or signal the termination of protein synthesis.At each codon, the ribosome recruits a specific transfer RNA (tRNA) molecule that carries the corresponding amino acid. The tRNA molecule recognizes the codon through its anticodon, a complementary sequence of nucleotides. This ensures that the appropriate amino acid is added to the growing protein chain.As the ribosome continues to move along the mRNA, it joins the amino acid carried by each tRNA to the growing protein chain through a peptide bond. This process repeats until the ribosome encounters a stop codon, indicating the completion of protein synthesis.After protein translation, the newly synthesized protein undergoes further modifications to become functional. These modifications may include folding, post-translational modifications such as phosphorylation or glycosylation, and subcellular localization.The accuracy and efficiency of protein translation are essential for cellular health. Errors in translation can lead to the production of faulty proteins, which can have detrimental effects on cellular functions and contribute to the development of various diseases.In conclusion, protein translation is a complex and highly regulated process that is vital for the synthesis of functional proteins. Understanding the mechanisms of protein translation can provide valuable insights into cellular processes and disease mechanisms.。
蛋白质的生物合成⎯⎯翻译一切生命现象不能离开蛋白质,由于代谢更新,即使成人亦需不断合成蛋白质(约400g/日)。
蛋白质具有高度特异性。
不同生物,它们的蛋白质互不相同。
所以食物蛋白质不能为人体直接利用,需经消化、分解成氨基酸,吸收后方可用来合成人体蛋白质。
mRNA含有来自DNA的遗传信息,是合成蛋白质的“模板”,各种蛋白质就是以其相应的mRNA为“模板”,用各种氨基酸为原料合成的。
mRNA不同,所合成的蛋白质也就各异。
所以蛋白质生物合成的过程,贯穿了从DNA分子到蛋白质分子之间遗传信息的传递和体现的过程。
mRNA生成后,遗传信息由mRNA传递给新合成的蛋白质,即由核苷酸序列转换为蛋白质的氨基酸序列。
这一过程称为翻译(translation)。
翻译的基本原理见图14-1。
由图14-1可见,mRNA穿过核膜进入胞质后,多个核糖体(亦称核蛋白体,图中为四个)附着其上,形成多核糖体。
作为原料的各种氨基酸在其特异的搬运工具(tRNA)携带下,在多核糖体上以肽键互相结合,生成具有一定氨基酸序列的特定多肽链。
合成后从核糖体释下的多肽链,不一定具有生物学活性。
有的需经一定处理,有的需与其他成分(别的多肽链或糖、脂等)结合才能形成活性蛋白质。
第一节参与蛋白质生物合成的物质参与蛋白质合成的物质,除氨基酸外,还有mRNA(“模板”)、tRNA(“特异的搬运工具”)、核糖体(“装配机”)、有关的酶(氨基酰tRNA合成酶与某些蛋白质因子),以及ATP、GTP等供能物质与必要的无机离子等。
一、mRNA与遗传密码天然蛋白质有1010~1011种,组成蛋白质的氨基酸却只有20种。
这20种氨基1酸排列组合的不同,形成了形形色色的蛋白质。
蛋白质中氨基酸的序列如何决定?(一)三联体密码与密码的简并研究表明,密码子(codon)共有64个,每个密码子是由三个核苷酸(称为三联体,triplet)组成的。
有的氨基酸有多个密码子,这种现象称为简并(degenerate),如UUU和UUC都是苯丙氨酸的密码子,UCU、UCC、UCA、UCG、AGU和AGC都是丝氨酸的密码子,同一氨基酸的不同密码子称为同义词(synonyms)。