凝汽器传热端差对机组经济性能的影响
- 格式:docx
- 大小:27.00 KB
- 文档页数:2
加热器端差对经济性影响的分析摘要:在关于汽轮机组的经济性问题上人们往往把目光放在汽轮机的初终参数上,认为它们的变化对机组的经济性影响较大,这无疑是正确的。
但分析整台机组的经济性仅限于此也是不全面的,还应关注汽轮机的回热系统,因为汽轮机的回热系统也有相当的节能潜力,现代热力发电厂的汽轮机组都无例外的采用了给水回热加热,回热系统既是汽轮机热力系统的基础,也是全厂热力系统的核心,它对机组和电厂的热经济性起着决定性的作用。
关键词:加热器端差;机组经济性;影响1分析加热器端差对机组热经济性影响的意义在再热机组中,高加的端差变化通常不但影响新蒸汽等效焓降,而且还会通过影响再热器的吸热量进而影响循环吸热量。
加热器端差增大,一方面导致加热器出力下降,使能级较低的抽汽量减少,汽轮机的排汽量增大;另一方面使上一级加热器的负荷增大,使能级较高的抽汽量增加,降低汽轮机的作功能力;而高压加热器端差过大又使循环吸热量增加,这些因素导致汽轮机的循环效率下降,影响机组运行的经济性。
因而定量分析加热器端差对机组热经济性的影响,对热力系统的设计优化、节能改造、现场运行管理有重要的意义。
因此,对加热器端差变化造成的机组经济性的影响进行定量的分析、计算是十分必要的。
加热器端差减小,机组热经济性提高,每台加热器对机组热经济性的影响程度也是不一样的,1号高加、3号高加、6号低加的端差变化对机组经济性的影响较大,不同容量机组加热器端差变化对机组经济性的影响程度也不一样,根据不同机组、不同加热器,按实际情况选择不同的加热器端差以及对某些端差影响机组热经济性较大的加热器加强监视与运行维护是可取的。
2回热加热器端差增大的原因分析不同机组,不同加热器,不同的运行情况下,加热器端差增大的原因也是不同的,具体情况要具体分析。
下面是我对加热器端差增大的可能原因作的简要总结:(1)回热加热器泄漏堵管,影响加热器的传热效果,导致上下端差加大。
其泄漏、堵管原因如下:加热器设计、制造存在缺陷。
凝汽器真空影响因素分析及处理措施摘要:凝汽设备是凝汽式汽轮机装置的一个重要组成部分,在整个热力系统中起着冷源的作用。
凝汽器真空作为火力发电机组汽机侧一项重要的经济指标对整个机组的热经济性起着至关重要的作用。
本文从冷端系统角度分别研究凝汽器端差,循环水温升,循环水进口温度等对机组真空的影响,并提出了一系列真空下降的解决方法和处理措施,为全国凝汽式汽轮机组解决真空降低问题提供了一定的依据。
关键词:真空冷端系统端差循环水温升循环水进口温度处理措施0 引言凝汽设备在电厂凝汽式汽轮机组的热力系统中的功能主要体现在将汽轮机的排汽凝结成水。
除此之外,作为整个热力循环中的冷源,凝汽设备还要在汽轮机排汽口建立并维持一定的真空。
凝汽器真空是衡量机组热经济性的重要指标,真空过高或过低不仅对汽轮机装置的效率产生重大的影响,而且会影响汽轮机组的安全。
因此研究凝汽器真空对提高整个汽轮机组的热经济性有着重大而积极的影响。
本文从汽轮机冷端系统角度分析,将影响机组真空的原因进行了系统分析。
1 影响真空的因素具体包括以下三个方面①凝汽器传热端差因素。
②冷却水温升因素。
③冷却水进口温度因素。
2 运行中影响凝汽器端差的因素凝汽器排汽温度与冷却水出口温度之间的差值,就是凝汽器的传热端差。
2.1 凝汽器的冷却面积的影响因素。
一般设计时凝汽器的冷却面积已经确定,但是在实际运行过程中凝汽器水位会影响凝汽器实际的换热面积。
凝汽器水位过高会带来两种后果:一是会造成汽轮机低压缸排汽空间的减少,从而导致换热面积减少,低压缸排汽温度升高,真空降低;二是会造成凝结水过冷,从而降低机组经济性。
2.2 传热系数的影响因素。
影响凝汽器传热系数的因素比较复杂,主要包括凝汽器传热性能、热负荷、清洁系数、空气量等。
2.2.1 凝汽器热负荷。
机组负荷升高,相应的汽轮机排汽量增大,凝汽器热负荷越高,会导致凝汽器真空下降。
当真空下降到某一数值,要进行限制出力,使凝汽器热负荷降低,维持机组真空。
火电厂空冷与湿冷机组性能分析与比较在火力发电过程中,空冷机组和湿冷机组之间的运行性能进行比较和分析是空冷技术在电厂发电应用的前提和基础。
文章对这两个机组的技术和经济效益指标进行详细的分析,对提高空冷机组运行经济性有着显著的作用和意义。
本文主要结合实际的现状,就火电厂空冷机组和湿冷机组的性能进行比较分析,然后分析了这两种机组的经济效益,希望通过本次研究对更好促进火电厂空冷技术的应用有一定的帮助。
标签:火电厂空冷机组湿冷机组性能比较经济效益随着国内直接空冷电站的技术发展和进步,其主要的技术经济效益,与同等量的湿冷机组的性能比较和分析逐渐成为了研究重点和难点。
在进行火力发电过程中,空冷汽轮机组是相对于常规的湿冷汽轮机组而言的,这两个机组最为主要的区别就是在汽轮机组尾部的排汽冷却所采用的冷却方式不同,冷却方式的不同导致了汽轮机组尾部运行参数发生了显著的变化,因此汽轮机在设计和制造过程中,必须对其结构进行有效改变。
一、火电厂空冷和湿冷机组冷却系统的结构对比在直接空冷机组冷却系统中,汽轮机所排的汽直接进入到空冷热交换器中,其会直接与空气进行交换,系统中的冷凝水会由凝结水泵进入汽轮机组的回热系统中,空冷系统的冷却风通常情况下都是由机械通风方式进行提供。
通常情况下,系统都会采用大直径的轴流风机进行通风。
而湿冷冷却系统中,汽轮机排汽系统进入表面式凝汽器中。
在系统中,冷凝水主要由凝结水泵进入汽轮机组的回热系统中,冷却水在凝汽器和冷却塔之间进行循环往复的循环。
这两个机组的结构在设计和制造过程中存在较大的差异性。
其中直接空冷系统使用的是大型的风机风扇,湿冷系统采用的主要是凝汽器和冷却塔。
直接空冷机组中,汽轮机排汽直接进入到空冷热交换器中,直接空冷系统冷却介质主要空气,并且空气不需要进行循环,湿冷机组中汽轮机排汽直接进入表面式凝汽器中,湿冷系统冷却介质是循环冷却水,需要其无限循环。
二、不同冷却方式能效对比1.凝汽器换热端差对机组热耗的影响首先,端差的变化和空冷机组的之间的热耗关系。
电厂凝汽器端差异常分析及处理实践摘要:社会发展迅速,电厂建设也突飞猛进。
在凝汽式汽轮机装置中,凝汽设备发挥着十分重要的作用,且在整个热力系统中具有冷源的效果。
凝汽器真空是发电机组汽机侧中的一项重要经济指标,直接影响着整个机组的热经济性。
基于此,本文阐述了凝汽器端差值的关系,通过分析凝汽器端差的影响因素,研究了降低凝汽器端差的措施,希望能够有效地降低凝汽器的端差。
关键词:电厂凝汽器;端差异常分析;处理实践引言端差升高分为正常工况影响和异常因素导致。
因此出现端差升高后,首先需确定其成因,如有异常,须尽快恢复端差正常,确保汽轮机正常运行。
运行中,若端差值升高,可能原因有单位面积蒸汽负荷升高、冷却水温度降低(冬季)、冷却水流速下降、凝汽器密闭性变差、凝汽器钛管洁净度下降。
前三项引发的端差升高一般情况下属于正常工况变化。
而后两项引发的端差升高,则是必须及时排查的安全生产隐患。
一般造成凝汽器钛管洁净度下降的原因为配套循环水系统的阻垢和生物黏泥控制效果下降,因此提升钛管洁净度的传统方法是进行化学清洗,一般需要耗费大量药剂及5天以上的时间。
本方法通过分析污垢种类,针对性选用高效药剂,确定最佳投加时间间隔,以最小投加量在最短时间内使凝汽器端差恢复正常。
1凝汽器传热端差与汽轮机排汽压力的关系对不同的排汽压力,△h基本为常数;冷却倍率m与汽轮机排汽量和循环水量有关(与机组负荷及循环水泵运行方式有关),当机组负荷及循环水泵运行方式不变时,m为固定值;对不同的循环水进、出口温度,Cp基本为常数。
由此可见,当机组负荷及循环水泵运行方式不变时,循环水的温升为固定值,此时,汽轮机排汽压力完全取决于循环水入水温度和凝汽器传热端差。
循环水入水温度取决于自然环境温度和供水方式,对于已经投产运行的发电厂,环境温度和循环水供水方式人为无法改变,因此,凝汽器传热端差是影响汽轮机排汽压力的决定因素。
2凝汽器的传热性能饱和蒸汽温度直接影响着凝汽器的排汽压力,饱和蒸汽的温度直接关系着循环冷却水的热交换程度,具体体现在以下方面:①蒸汽在钛管外壁的凝结换热。
联合循环机组凝汽器端差大原因分析及措施摘要:凝汽器端差是影响汽轮机效率的一个重要指标,也是衡量机组运行经济性的一个重要因素。
凝汽器端差偏大,会严重影响汽轮机的运行经济性。
近期萧电#3机组凝汽器端差出现持续偏大的现象,探索其中原因并采取措施降低凝汽器端差,对机组运行经济性有着重大的意义。
关键词:凝汽器端差、中压旁路、轴封压力、真空泄漏。
一、设备简介萧山电厂#3机组为SCC5-4000F.1S单轴联合循环发电机组,由西门子SGT5-4000F(2)型燃气轮机、HE 型三压再热双缸凝汽式汽轮机、THDF108/53型水氢氢冷却发电机、和NG-V94.3A-R 型三压再热无补燃卧式自然循环余热锅炉组成。
凝汽器为轴向排气布置,型号 N-10546 ,管道有效总面积 10544m2,绝对设计压力5.7 kPa,循环水量 23145m3/h,循环水通过凝汽器的最大温升8.6 ℃。
2021年下半年#3机组出现了端差异常升高的现象,端差从原先的4℃左右升至13℃左右,较运行规定值7℃偏高非常多,而相同型号和设备结构的#4机组在同时期端差未出现明显变化。
二、原因分析1、凝汽器热负荷2021年7月起机组存在中压旁路内漏的缺陷,该缺陷经阀门行程调整和阀芯研磨处理后能减少一定的内漏量,但仍存在的内漏增加了凝汽器的热负荷,一定程度上增加了凝汽器端差。
2、循环水流量(1)循泵工作情况循环水系统配置了两台相同的6kV定速混流泵。
通过两台循泵运行电流数值曲线的对比,两台循泵出力基本稳定,没有出现大的偏差。
(2)循环水胶球系统运行情况2021年10月份以来,胶球清洗装置收球率较低,其原因为此时段机组为光伏配套调峰频繁启停,每次机组运行时间在4小时以内,使得凝汽器胶球清洗、收球时间相应较短,无法在机组运行时长内完成整套清洗流程。
收球率不足,留在凝汽器循环水侧的胶球增多,导致钛管或收球网等堵塞,引起循环水管系流动阻力增大,引起循环水流量下降。
凝汽器传热端差的影响因素及改变措施摘要:凝汽器传热端差的影响因素非常繁琐、复杂,主要涉及到清洁系数、冷却水的情况等等,一旦出现传热端差的问题将会导致设备的运行性能受到影响,甚至还会出现严重的经济损失。
因此在设备应用和运行期间需结合凝汽器设备的传热端差影响因素、各类情况等,制定完善的改善方案,合理控制冷却水流量与压力,不断增强清洁系数,做好一系列的改善工作,保证设备与系统的高质量应用。
关键词:凝汽器传热端差;影响因素;改变措施引言:目前我国部分企业在应用凝汽器设备的过程中经常受到诸多因素的影响出现传热端差的不良问题,不能保证设备的应用性能、效果,甚至还会引发严重的安全问题。
因此在实际操作的过程中需结合传热端差不良影响因素,严格进行各类因素的控制、改变,增强设备应用的稳定性、安全性。
1凝汽器传热端差的影响因素1.1.冷却水流量和压力一般情况下冷却水流量发生改变会导致凝汽器设备的传热端差受到一定程度的影响,尤其是热负荷指标与清洁系数指标符合标准要求的情况下,初始温度在25摄氏度左右,如果冷却水流量不能符合标准,将会导致设备的传热端差有所提升,成为最为不良的影响因素,与此同时,冷却水的压力不合理也很容易引发端差问题。
1.1.清洁系数如果系统的清洁系数很低,水分中含有杂质或是污染物会使得清洁系数不断减小,冷却水的流量也会发生改变,尤其是在水体中含有杂质和泥沙成分的情况下污染物质会在钢管中沉淀形成水垢和泥垢,使得热阻力有所提升,端差问题也会由此形成。
1.1.真空严密性由于凝汽器设备中的蒸汽具有分解性特点与容易泄漏性特点,如果不能保证整体系统的真空严密性,就会引发蒸汽泄漏的现象,而蒸汽之内如果存在不凝结气体,就会在凝结期间使得水蒸气与不凝结气体相互聚集浓度不断提升,从界面的位置向着外部区域形成不凝结气体浓度的差异性,在浓度增加的情况下传热端差也会快速增大。
与此同时,在不能确保真空严密性的情况下,由于设备系统存在总压力,界面位置浓度较高的不凝结气体会存在一定程度的分压力,水蒸气的分压力会不断降低,蒸汽会在分压力的影响之下凝结,液膜外部的表面区域温度过低,比主流位置的饱和温度要低很多,相当是附加了热阻力,传热端差必然会受到一定影响。
汽轮机凝汽器与真空汽轮发电机组真空系统漏泄直接影响着汽轮机组的热经济性和安全性,-是影响机组热经济性,一般真空值每降低1,汽耗约增高1.5%--2.5%左右,传热端差每升高1°C,供电煤耗约增加1.5%--2.5%左右,所以真空值的高低对汽轮机的热经济性有很大影响;二是影响二次除氧效果,加剧低压设备管道腐蚀,对机组的安全运行非常不利;三是影响蒸汽凝结及热交换性能,增大过冷度和换热端差,增加真空泵的负担。
凝汽式或抽凝式汽轮机的真空下降原因很多,短时间很难查清或处理,是一项难以解决的问题。
综合自己二十年的工作经验,将影响因素逐级分类,范围逐步缩小,对常见问题基本都能判断准确。
虽然是针对中小机组而言,但大机组也可以借鉴。
大致判断过程是通过端差和过冷却度变化确定大类,再通过温度、压力、液位、负荷及真空波动情况确定原因。
一、当只有真空下降,过冷却度和端差都基本不变时,一般是循环水系统故障。
(1)凝汽器进口管板脏污或出口水室存气会增加设备流动阻力,使循环水进出口压差增大,水量减少,液相传热系数降低,总热阻增大,传热温差(饱和水汽与循环水平均温差)增大,排汽温度升高,真空降低:同时,总传热量基本不变,水量减少,进出口温差增大,进口不变时,出口温度升高。
(2)凝汽器进水管道阻塞,会使循环水泵出口压力与凝汽器入水压力差增大,循环水量减少,真空降低,出口水温升高,凝汽器进出水压差减小。
(3)凝汽器出水管路堵塞或阀门未全开,会使水量减少,真空降低,出口水温升高,整体压力升高,凝汽器进出口压力差下降。
(4)循环水泵故障(水池水温低、入口滤网堵塞、吸入空气、水轮导叶磨损等),会使管路整体压力下降,泵电流降低,真空下降,出水温度升高。
部分循环水泵跳闸,会使水压和排汽真空迅速下降,泵电流消失。
(5)冷却风机断电,会是凝汽器进水温度持续上升,真空不断下降。
循环水故障会使真空降低,但不会使真空波动。
二、当伴随真空下降,只有端差增大,过冷却度没有变化时;此现象基本可以判断为凝汽器铜管结垢。
凝汽器传热端差对机组经济性能的影响
摘要:对凝汽器传热端差的各个主要影响因素及它们之间的关系进行了分析,
解释了有关表达式及相关概念难以理解的问题。
分析了凝汽器传热端差的影响因素,提出了降低端差的措施,以改善凝汽器
的热交换效果,提高机组出力。
关键词:凝汽器;端差;分析1.概述凝汽器的作用是在汽轮机排汽口造成一
定的真空,来增加机组排汽在汽轮机中的膨胀做功,减少冷源损失,提高机组的
循环热效率。
因此凝汽器工作情况是设计和运行需要考虑的问题。
影响凝汽器真
空的因素固然很多,其中传热端差是一个衡量凝汽器换热性能的重要参数(凝汽
器端差——凝汽器压力下的饱和水蒸气温度与凝汽器冷却水出口温度之差)。
2.分析凝汽器传热端差的意义凝汽器内排汽压力所对应的饱和温度由冷却水
入口温度、冷却水温升、凝汽器传热端差所决定。
其中,冷却水入口温度 tw1是
与冷却水的循环方式、电厂的地理位置、季节气候等因素有关的量,在同一时间、地点,该量基本不变,不能反映凝汽器性能的优劣;冷却水温升为c mhDc Dh hc
Dt D h hwcwws cw wc s c ? ? ( ? ) ? ? ? ?,式中 Dc为汽轮机排汽量, hs 为排汽比焓,Dw为冷却水量, cw为冷却水的比热。
?h为蒸汽在凝汽器内凝结时的比焓降,
在真空变化的范围内,其变化很小,在计算时可认为是定值,m为循环倍率,通
常在设计阶段就已经确定,也不能反映出凝汽器的性能。
而端差则反映凝汽器传
热性能、真空严密性和冷却水系统的工作状况,所以在凝汽器设备运行监测中,
传热端差是一个非常重要的参数,只有传热端差才能全面反映凝汽器运行特性。
在设计阶段,因为减小端差可以提高凝汽器的真空,但要以增大冷却面积和
增加冷却水量为代价,所以其值不宜太小。
现代大型凝汽器在设计负荷下能达到的最小端差为1℃~5℃,一般常在
3℃~10℃之间选取,对多流程凝汽器可取偏小的值,对单流程可取5℃。
3.凝汽器传热端差的计算分析根据热力学理论,凝汽器作为一种换热器,不
考虑与外界大气之间的换热,其
其物理意义为:凝汽器冷却水温升 ?t 变化及凝汽器总换热系数K 变化对凝汽器传热端
差 ?t 的影响比冷却水流量Dw对传热端差?t 的影响要快。
冷却水量增加使得传热端差增大,
同时使得冷却水温升下降而导致传热端差减小,由于冷却水温升下降使传热端差变小的速率
要比冷却水量增大使得传热端差增大的速率要大,而且冷却水量增大使得凝汽器总换热系数
增大而使得传热端差减小(减小的速率要大于因冷却水量增加而增大的传热端差速率),也
就是说冷却水量增大最终使得凝汽器的传热端差减小。
根据不同容量级机组的设计参数,对
式(5)、式(6)中11cwDw ?AKe项系数进行极端。
经计算,可得到与式(9)相同的结果,因此它对于任何容量的机组都成立,具有普遍性。
4.工程实际分析凝汽器传热端差是由 ?t、?t、Dw、K 和传热面积 A所决定的,除传热面
积 A以外,参数 ?t、?t、Dw、K之间是相互联系的,且关系复杂,无论是在设计阶段还是运
行阶段,不能孤立的分析其中任何两个参数。
在凝汽器正常稳定运行条件下,冷却水量增加
使得传热端差增大、冷却水温升下降和凝汽器总的换热系数增大,而后两者又使得传热端差
减小。
所以说凝汽器传热端差与冷却水流量有关,但受其影响不大。
冷却水温升一般变化不大,而且降低温升最直接的方法就是提高冷却水流量,但受机组经济性要求的限制,现场用
于降低凝汽器传热端差以提高真空的最有效手段是提高凝汽器总的换热系数,而提高总换热
系数的最有效方法是提高冷却管的清洁度和降低漏入真空系统的空气量。
5.结论1)减小凝汽器传热端差可降低机组排汽压力、提高凝汽器运行真空,从而使蒸汽在
汽轮机内做功有效焓降增加,提高电厂运行经济性。
2)根据凝汽器传热端差的计算式,分析传热端差与凝汽器总的换热系数、冷却水量、冷却水温升之间的变化关系,利用数学方法得出式(9)的结果,并通过实例验证。
该分析方法及结果具有广泛的适用范围,不仅适用于不同容量级机组的凝汽器,还可以用于对其它换热器的分析研究,具有一定的应用价值。
3)运行电厂可通过合理调节冷却水流量、保持凝汽器管壁和水侧的清洁度、严格控制凝汽器的真空严密性和减小不凝结气体在凝汽器水侧的聚集厚度等方法来提高凝汽器的传热强度,降低凝汽器端差,提高机组运行的经济性。
参考文献:[1]杨世铭,陶文铨,传热学,第四版,高等教育出版社,2010[2]沈维道,童钧耕,工程热力学,第四版,高等教育出版社,200716。