凝汽器真空分析
- 格式:docx
- 大小:18.68 KB
- 文档页数:5
凝汽器真空度对汽轮机效率的影响分析凝汽器真空度对汽轮机效率的影响是非常重要的。
凝汽器是汽轮机中的一个关键部件,用于将汽轮机排出的蒸汽冷凝为水,并回收蒸汽能量。
凝汽器真空度是指凝汽器中的压力,通常用真空度(即压力与大气压的差值)来表示。
凝汽器真空度的提高能够改善汽轮机的效率,主要表现在以下几个方面。
首先,凝汽器真空度的提高可以降低汽轮机的背压。
背压是指在透平蒸汽流出后的压力,也即出口压力。
凝汽器真空度越高,背压越低,蒸汽在透平中流动时的委内瑞拉降低,使得透平可以更充分地获得蒸汽的能量,并将其转化为机械能。
因此,提高凝汽器真空度可以提高汽轮机的利用效率。
其次,凝汽器真空度的提高可以增加汽轮机排放的热量回收率。
由于凝汽器中的蒸汽冷凝为水,回收的热量可以再利用。
凝汽器真空度的提高可以增加蒸汽冷凝时释放出的热量,提高热量回收率。
回收的热量可以用于加热锅炉的给水,提高了汽轮机的综合效能。
再次,凝汽器真空度的提高可以降低汽轮机的蒸汽耗费。
在汽轮机运行过程中,由于凝汽器中的蒸汽冷凝为水,实际上是将蒸汽的能量转化为水的能量。
凝汽器真空度的提高可以加快蒸汽的冷凝速度,减少蒸汽的消耗。
从而降低了蒸汽消耗率,提高了汽轮机的热效率。
最后,凝汽器真空度的提高可以减小汽轮机的冷却水需求量。
在凝汽器中,冷却水用于冷却冷凝蒸汽。
凝汽器真空度的提高会增加冷却效果,降低冷却水的需求量。
这在一定程度上减少了对冷却水资源的消耗,提高了汽轮机的环境友好性。
综上所述,凝汽器真空度对汽轮机效率的影响是非常重要的。
提高凝汽器真空度可以降低汽轮机的背压、提高热量回收率、减少蒸汽耗费和降低冷却水需求量。
因此,在设计和运营汽轮机时,应该注重提高凝汽器真空度,以提高汽轮机的效率和经济性。
凝汽器真空影响因素分析及处理措施摘要:凝汽设备是凝汽式汽轮机装置的一个重要组成部分,在整个热力系统中起着冷源的作用。
凝汽器真空作为火力发电机组汽机侧一项重要的经济指标对整个机组的热经济性起着至关重要的作用。
本文从冷端系统角度分别研究凝汽器端差,循环水温升,循环水进口温度等对机组真空的影响,并提出了一系列真空下降的解决方法和处理措施,为全国凝汽式汽轮机组解决真空降低问题提供了一定的依据。
关键词:真空冷端系统端差循环水温升循环水进口温度处理措施0 引言凝汽设备在电厂凝汽式汽轮机组的热力系统中的功能主要体现在将汽轮机的排汽凝结成水。
除此之外,作为整个热力循环中的冷源,凝汽设备还要在汽轮机排汽口建立并维持一定的真空。
凝汽器真空是衡量机组热经济性的重要指标,真空过高或过低不仅对汽轮机装置的效率产生重大的影响,而且会影响汽轮机组的安全。
因此研究凝汽器真空对提高整个汽轮机组的热经济性有着重大而积极的影响。
本文从汽轮机冷端系统角度分析,将影响机组真空的原因进行了系统分析。
1 影响真空的因素具体包括以下三个方面①凝汽器传热端差因素。
②冷却水温升因素。
③冷却水进口温度因素。
2 运行中影响凝汽器端差的因素凝汽器排汽温度与冷却水出口温度之间的差值,就是凝汽器的传热端差。
2.1 凝汽器的冷却面积的影响因素。
一般设计时凝汽器的冷却面积已经确定,但是在实际运行过程中凝汽器水位会影响凝汽器实际的换热面积。
凝汽器水位过高会带来两种后果:一是会造成汽轮机低压缸排汽空间的减少,从而导致换热面积减少,低压缸排汽温度升高,真空降低;二是会造成凝结水过冷,从而降低机组经济性。
2.2 传热系数的影响因素。
影响凝汽器传热系数的因素比较复杂,主要包括凝汽器传热性能、热负荷、清洁系数、空气量等。
2.2.1 凝汽器热负荷。
机组负荷升高,相应的汽轮机排汽量增大,凝汽器热负荷越高,会导致凝汽器真空下降。
当真空下降到某一数值,要进行限制出力,使凝汽器热负荷降低,维持机组真空。
汽轮机凝汽器真空低故障的分析与排除摘要:凝汽器是凝汽式汽轮机的重要组成部分。
凝汽器与冷却水系统、抽气器、凝结水泵等组成凝汽设备,用以在汽轮机排汽口建立并维持要求的真空;将排汽凝结成水,供往锅炉给水系统。
从而提高了整个装置的热效率及水的重复利用。
而汽轮机凝汽器运行中的主要监视项目是冷凝器真空度。
凝汽器真空对汽轮机运行经济性影响较大,如其它条件不变,真空度每变化1%,汽轮机的汽耗率平均要变化1~2%。
为此,正常运行中应尽可能地使凝汽器在经济真空下工作,真空过高将导致排汽缸温度过低,过冷度增加对汽轮机也是不利的,真空过低除影响机组经济性外,还会威胁机组的安全。
关键词:凝汽器;真空一、凝汽器应安装有准确的检测仪表以便判断问题为了能及时而准确地判断凝汽系统存在的问题,对凝汽系统监视仪表的装置应给予足够重视。
凝汽器应装有真空表,测点应接近自动排汽阀的地方,并应注意校正其零点。
凝汽器喉部、热井、冷却水进/出口处应装设温度计。
热井应装设液位指示器,根据需要还可以装设凝结水高、低液位报警器或(和)液位自动调节器。
抽气器应装设压力表、温度计。
二、凝汽器真空低故障原因分析及解决方法2.1. 冷却水中断冷却水中断引起真空急剧下降的主要特征是:真空表指示快速回零;冷却水泵出水口侧压力急剧降落;冷却塔喷水池无水喷出。
冷却水中断时,应迅速解除汽轮机负荷,以备用水源向冷凝器供水。
并注意当真空降低到允许低限值时进行故障停机。
由于冷却水中断使凝汽器超过正常温度时,应当停机并关闭冷却水入口门,一般应等到凝汽器冷却到50℃左右时,再往凝汽器送冷却水,否则将急剧冷却凝汽器,造成冷凝管胀口松漏。
2.2. 冷却水量不足主要特征是:真空逐步降落;冷却水出口和入口温度差增大。
由于引起冷却水量不足的原因不同,还有其不同的特征,因此,可根据这些特征去分析判断故障之所在,并加以解决。
①若此时凝汽器中的流体阻力增大(表现为冷却水进出口压差增大,冷却水泵出口和凝汽器进口冷却水压均增高),喷水池喷水高度降低,则可断定是凝汽器内管板堵塞。
#4机凝汽器真空低原因分析和处理刘海洋1概述大唐耒阳发电厂#4机组为300MW汽轮发电机组,采用我国东方汽轮机厂制造300MW亚临界、中间再热、高中压合缸、双缸、双排汽、单轴、凝汽式汽轮机。
2014年对机组进行通流部分改造,改造后型号为N310-16.67/537/537。
凝汽器为N-17000-1型铜管单壳体、双流程、表面式凝汽器。
机组设计真空值为94.6KPa,报警值85.3 KPa,停机值80.3 KPa。
机组配置2台真空泵,正常时1台运行,1台备用。
并且在2012年对凝汽器胶球清洗装置进行改造。
2机组真空异常现象#4机组2014年通流部分改造后,夏季存在机组高负荷(250MW 以上)真空偏低,而且随机组负荷的增加,机组真空下降、凝汽器端差增大的异常现象。
图一:#4机组负荷真空变化(三台循环水泵运行)序号负荷MW真空KPa排汽温度℃循环水进水温度℃A侧循环水出水温度℃B侧循环水出水温度℃A侧凝汽器端差℃B侧凝汽器端差℃2015年7月底 #4机数据(#5循环水泵扩容后)1 151 93.8 38.3 29.5 34.2 36.2 4.1 2.12 180 93.5 38.8 28.5 34.2 36.15 4.6 2.653 212 93.2 40.4 28.8 35.38 37.18 5.02 3.224 258 91.9 43.2 29.35 37.26 39.02 5.94 4.185 280 91.52 43.88 29.16 37.56 39.30 6.32 4.586 300 91.33 44.98 28.77 37.92 39.48 7.06 5.57 320 90.18 46.74 29.22 39.12 40.81 7.62 5.93 2015年7月底 #3机数据(#5循环水泵扩容后)1 150 94.10 39.13 28.4 36.73 35.93 2.4 3.22 180 93.62 40.8 28.5 37.96 37.42 2.84 3.383 208 93.15 41.77 28.4 38.3 37.95 3.47 3.824 245 93.5 41.2 29.2 36.93 35.83 4.27 5.375 281 92.2 43.7 30 38.8 37.8 4.9 5.96 300 92.42 43.51 29 38.46 37.30 5.05 6.217 320 91.55 45.06 29.76 39.48 38.39 5.58 6.67 2013年7月中旬 #4机组数据(机组改造前)1 150 94.27 37.66 28.2 34.64 34.64 3.02 3.022 171 94.01 39.07 28.26 35.4 35.69 3.67 3.383 223 93.31 40.89 27.77 36.62 36.85 4.27 4.044 303 92.01 44.38 28.61 38.21 38.39 6.17 5.99图二: #4机组真空变化(二台循环水泵运行)7.18日序号负荷MW真空KPa排汽温度℃循环水进水温度℃A侧循环水出水温度℃B侧循环水出水温度℃A侧凝汽器端差℃B侧凝汽器端差℃1 153 94.15 34.42 25.81 31.95 34 2.47 0.422 172 93.67 35.68 25.89 32.96 34.86 2.72 0.823 220 92.79 38.56 25.99 34.80 36.71 3.76 1.85在汽轮机组运行中,凝汽器工作状况恶化将直接导致汽轮机汽耗增加和机组出力下降。
凝汽器真空的影响因素与改善措施凝汽器真空是表征凝汽器工作特性的主要指标,是影响汽轮机经济运行的主要因素之一。
真空降低使汽轮机的有效焓降减少,会影响汽轮机的出力和机组设备的安全性。
电站凝汽器一般运行经验表明:凝汽器真空每下降1kPa,汽轮机汽耗会增加1.5%—2.5%。
而且,凝汽器真空的降低,会使排汽缸温度升高,引起汽轮机轴承中心偏移,严重时会引起汽轮机组振动。
此外,当凝汽器真空降低时,为保证机组出力不变,必须增加蒸汽流量,而蒸汽流量的增加又将导致铀向推力增大,使推力轴承过负,影响汽轮机的安全运行。
所以在实际的热电厂运行中,最好使凝汽器在设计真空值附近运行。
4.1 真空降低的危害凝汽器是凝汽式机组的一个重要组成部分,其工况的好坏,直接影响整个机组的安全性和经济性。
例如一台200MW的机组,真空每下降1%,引起热耗增加0.029%,少发电约58KW,而一台600MW的机组,真空每下降1%,引起热耗增加0.05%,少发电约306KW。
有资料显示,凝汽器每漏入50kg/h的空气,凝汽器真空下降1Kpa,机组的热耗增加约6%-8%。
1)经济方面的影响a. 真空降低,使汽轮机热耗增加。
对于高压汽轮机,真空每降低1%,可使机组热耗增加4.9%。
b真空降低,使凝结水过冷度增加。
对于高压汽轮机,凝结水每过冷1℃,也使热耗增加0.15%。
c 为了提供真空,开大铀封供汽压力和流量,导致油中带水,增大了油耗。
2)安全方面的影响a.由于真空降低,使排汽压力,排汽温度升高,降低了汽轮机经济性。
严重时,由于排汽温度过高,还将引起汽轮机低压缸胀差发生异常变化和低压缸变形,改变机组的中心,造成机组振动,可能引起故障停机。
b.由于真空降低,凝结水中含氧量增加,最高超过100%,凝结水系设备和管道被腐蚀产生的氧化铁进入锅炉,腐蚀炉方的水冷壁、过热器等设备和管道。
c.为了提高真空运行,开大轴封供汽压力和供汽流量,导致轴封漏汽进入润滑油系统,使油中带水,使调节系统失灵,造成机组运行不稳定,给机组的安全运行带来严重的隐患。
鼹塑:垒凰某公司汽轮机凝汽器真空低原因分析及改进措施贺晓燕吕应智胡海滨(洛阳阳光热电有限公司,河南洛阳471023)睛蜀机组自投运以来,真空值一直较低,严重影响机组的安全经济运行。
经过全面分析和试验,找出了真空低的原因.提出改进方案并付诸实施,解决了该问题。
鹾焉载鄙真空;端差;过冷度;密水塔效率;真空严静巨某公司一期工程2。
侣5M W机组是由哈尔滨汽轮机厂生产的型号为C C l10/N135—13.24船8灼34/535/535型汽轮机,机组真空系统的主要设备为2台2B W5303—0EK4型水环式真空泵和N一7650—1型凝汽器。
凝汽器冷却水源取自陆混水库水,由1200H L B K一20岛型斜流循环泵进行升压。
真空泵设计为1台运行1台备用,循环水泵设计为冬天一运一备、夏天”1机2泵”运行。
2008年6月之前,夏季真空泵都为。
1机2泵。
运行,循环泵全年春、秋、夏季都为“1机2泵4供水,而目凝汽器真空还比较低。
本文主要针对所存在的真空低问题进行原因分析探讨并寻找艇决办法。
1真空低对机组的影响1)火力发电厂热经济性取决于工质循环过程中的各种损失及循环效率,众所周知,理想循环时的冷源损失是电厂能量转换过程中损失最大的部分,而凝汽器真空及凝汽器排汽温度则直接影响着这部分损失,真空刚氏,使机组的汽耗量增加。
由于真空降低,使机组的排汽压力、排汽温度升高,机组的热经济性降低。
严重时还将引起汽轮机低压缸胀差发生异常变化和低压缸变形,造成机组振动增大,严重时造成故障停批2)真空降低,使凝结水过冷度增加。
凝结水每过冷1℃,汽耗率增加o.1%左右。
由于空气的存在,降低了凝汽器的除氧效果,使得凝结水中凝结了—些气体。
凝结水中溶解氧的存在,造成了凝结水系统中设备与管道的氧腐蚀,影响机组的安全运行。
3)为了提高真空,提高轴封压力和流量,使汽耗量增加。
同时使油中进水量增大,机组运行稳定性差,给棚组安全运行带来隐患。
因此,为了保证机组的安全、经济运行,必须保持凝汽器真空在设计范围内,否则,必须查明原因,采取措施,消除隐患。
汽轮机凝汽器真空降低的原因及措施分析摘要:汽轮机凝汽器真空度与装置的安全稳定运行密切相关,在实际运行中,有多种原因会导致汽轮机凝汽器真空下降。
需要相关人员熟悉设备和系统的特性,加强监视及管理,及时发现问题,并进行全面分析,查找原因并处理,使凝汽器在最佳真空状态,保证真空系统的稳定运行。
关键词:凝汽器;真空下降原因;对策1、汽轮机凝汽器真空形成原理在恒压下,汽轮机排汽通过换热冷凝成水,蒸汽经过凝结,体积变小,进而在凝汽器中形成真空。
其危害主要体现在以下几点:一是机组效率降低,供电气耗增加,凝汽器端差变大;二是真空泵出力增加,使其能耗增加;三是凝结水中的含氧量不断增加,这就有可能造成系统产生管束腐蚀。
产生真空度低的原因主要有凝汽器换热效果差(换热管结垢、端差大);真空泵出力不足或故障;真空严密性差(泄漏点多);凝汽器水位不正常或热负荷过高。
2、汽轮机凝汽器真空急剧下降的原因及处理2.1循环水中断循环水是汽轮机低压缸排汽的冷却介质,循环水的流量、温度影响低压缸排汽温度以及凝汽器真空。
风力越小、环境温度越高,冷水塔淋水盘下落时,循环水换热效果越差,被风带走的热量越少,循环水温降越小,循环水温度越高。
相同的凝汽器冷却效果下,增加循环水出水温度,也会增加对应的低压缸排汽温度,导致凝汽器真空下降。
冷水塔的配水方式影响循环水温度。
为维持凝汽器较高的真空,通常在全塔配水的方式下运行。
如果循环水泵跳闸,循环水通过直接回到凉水塔,凝汽器失去冷却水,凝汽器真空下降。
必须开启备用循环水泵,降低机组负荷。
循环水泵电机跳闸、用电中断等,都会出现循环水中断,导致凝汽器真空迅速下降。
如果运行泵发生故障,就需要确保可以随时启动备用泵,进而防止断水事故。
2.2抽气器工作失灵抽气器效率降低或者工作不正常,与凝汽器端差增大有关,可以检查射水池水温是否过高,射水泵出口压力是否正常,电流是否正常,抽气器真空系统的严密性是否正常,有条件的可以对抽气器的工作能力进行试验。
引起凝汽器真空异常的原因:
图1真空变化因素示意图
若1~2间的虚线斜率大于实线,则表示冷却水量变少;若2~3间的虚线斜率大于实线,则表明传热情况恶化,如凝汽器钛管脏污、结垢等;若3~4间的虚线斜率大于实线,则表明过冷度增加,如漏入空气等;若各虚线的斜率不变,则主要是由于冷却水进口水温不同引起的。
1.2真空下降
当其他参数不变时,凝汽器真空降低,蒸汽总焓降减少,即蒸汽在汽轮机内做功减少,循环冷却水系统带走的热量损失增加,对机组经济性和安全性有较大的影响,主要表现为:
1)真空降低、排汽温度升高,循环冷却导出到最终热阱的热量增加,蒸汽做功后的冷源损失增大,机组的热效率下降,经济性降低。
2)当凝汽器真空降低,保持机组负荷不变时,蒸汽流量增加,这时
所以应做到防患于未然,定期检查相关设备。
亦余心之所善兮身为教师我们不会辜负人民的重托。
以上是本人在基层支部建设工作中发现问题和解决问题的。
凝汽器真空值
凝汽器真空值是汽轮机低压缸排汽端真空占大气压的百分数,即凝汽器真空度(%)。
其计算公式为:凝汽器真空度(%)=(大气压-汽轮机排汽压力绝对值(kPa))/大气压(kPa)100%。
另外,也可以用凝汽器真空度=凝汽器真空(kPa,表压)/大气压力100%来计算。
凝汽器真空度是衡量凝汽器性能的一个重要指标,其值越高,冷凝效果越好,对汽轮机组的发电效率也会有很大的提高。
一般来说,常规凝汽器真空度应在5~15kPa左右,但对于一些大型、高效的汽轮机组,其凝汽器真空度可以达到20kPa以上。
当然,对于一些老旧、磨损较大的凝汽器,其真空度可能会偏低,甚至不足5kPa。
影响凝汽器真空度的因素有多种,例如:
1.冷却水质量:凝汽器的冷却水质量将直接影响到其冷凝效
果,从而影响其真空度。
2.轮机系统负荷:轮机系统的负荷越大,凝汽器的冷凝量也
就越大,真空度也相应降低。
3.凝汽器的结构和材料:凝汽器的结构和材料会直接影响到
其导热和传热性能,从而影响其冷凝效果和真空度。
醺塑姐凝汽器真空度偏低的原因分析及处理张桂芹(山东省滨州市技术学院,山东滨州256600)B商要]凝汽器设备的工作性能宣接影响到整个汽‘孝仑瘫R细的热经济f生和安全陡。
对凝汽器低真空进行故障诊断以蕊时查明造成凝汽器真空偏低的原因,并采取相应对策有着重要意义。
睽喇l j司]真空系统;原因;判断;处理凝汽器是火力发电机组的重要辅助设备之一,对其内部压力低于大气压力的部分,称为凝汽器真空,真空值与当地大气压的比值的百分数称为真空度。
真空度的大小直接影响机组热效率,真空度高,不仅可以提高机组热效率,使其获得较好的经济性,同时还可以节约宝贵的不可再生能源——原煤。
凝汽器真空过低不仅会使蒸汽在机组中有效焓降减小,还会导致汽轮机排汽温度升高,排汽缸变形和振动等故障,其运行状态的好坏直接影响机组的经济性和安全性。
因此,对凝汽器低真空进行故障诊断以及时查明造成凝汽器真空偏低的原因,并采取相应对策有着重要意义。
1凝汽器真空偏低的原因分析运行中,引起凝汽器真空下降的因素很多,涉及设计、安装、检修和运行管理等诸方面因素,其主要原因可能有以下几个方面:1)冷却水量减少或中断。
当循环水泵出现严重故障时,循环水中断,此时,汽轮机的排气没有足够的循环水j令却,不能凝结,真空急剧下降,表现出的特征为循环泵电机电流降低至O A,循环泵出口压力降至O M pa,抽气器抽出的空气温度与冷却水进口温度之差增加。
2)抽真空设备系统故障。
抽气器工作不正常,凝汽器中的空气不能及时抽出,真空无法维持,真空下降,表现为端差增大,凝结水过冷度增加,凝汽器抽气口至抽气器进口之间的压差减小。
3)凝汽器水位高。
凝汽器冷却水管发生破裂,热井水位升高,淹没一部分受热面,传热效果变差,凝汽器中温度升高,真空下降,表现为端差增大,凝结水过冷度增加,凝结水泵出口压力增加,凝结水泵电机电流增大。
4)处于真空状态下的设备或系统不严密。
设备或系统不严密,会是大量的空气漏入,导致真空下降。
汽轮机凝汽器真空度下降原因分析在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。
汽轮机的真空下降会使汽轮机的可用热焓降减少器综合性.凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如机组真空下降1%,机组热耗将要上升0.6%~1%。
因此保持凝汽器良好的运行工况,保证凝汽器的最有利真空;是每个发电厂节能的重要内容。
而凝汽器内所形成的真空受凝汽器传热情况、真空系统严密性状况、冷却水的温度、流量、机组的排汽量及抽气器的工作状况等因素制约。
因此有必要分析机组凝汽器真空度下降的原因,找出预防真空度下降的措施,提高凝汽器性能,维持机组经济真空运行,直接提高整个汽轮机组的热经济性。
引起汽轮机凝汽器真空度下降的原因主要有循环水量中断或不足、循环水温升高、后轴封供汽中断、抽气器或真空泵故障、凝汽器满水(或水位升高)、凝汽器结垢或腐蚀,传热恶化、凝汽器水侧泄漏、凝汽器真空系统不严密,汽侧泄漏导致空气涌入等。
就这些问题我将分别做出分析、阐述:一、循环水量中断或不足⑴循环水中断循环水中断引起真空急剧下降的主要特征是:真空表指示回零;凝汽器前循环水泵出口侧压力急剧下降;冷却塔无水喷出。
循环水中断的原因可能是:循环水泵或其驱动电机故障;循环水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内等。
循环水中断时,应迅速卸掉汽轮机负荷,并注意真空降到允许低限值时进行故障停机。
⑵循环水量不足循环水量不足的主要特征是:真空逐步下降;循环水出口和人口温差增大。
由于引起循环水量不足的原因不同,因此有其不同的特点,所以可根据这些特征去分析判断故障所在,并加以解决:①若此时凝汽器中流体阻力增大,表现为循环水进出口压差增大,循环水泵出口和凝汽器进口的循环水压均增高,冷却塔布水量减少,可断定是凝汽器内管板堵塞,此时可采用反冲洗、凝汽器半面清洗或停机清理的办法进行处理。
凝汽器真空度降低原因分析及处理措施摘要:本文对凝汽器真空度降低造成的影响进行分析,并对导致凝汽器真空度降低的原因加以阐述,提出循环冷却系统优化、凝汽器冷却面定期清洗等处理措施,希望能为有效优化凝汽器真空系统提供参考。
关键词:凝汽器;真空度;原因分析;处理措施引言:大型发电机组是目前大多数发电厂所常用的设备,才能为当下经济社会发展提供充足电力供应,其中凝汽器真空系统稳定运行对发电机组而言十分重要,凝汽器真空度降低过于频繁,会极大地降低汽轮机工作效率。
已明确凝汽器真空度降低原因前提下,如何采取有效处理措施,是目前各相关人员需要考虑的问题。
1.凝汽器真空度降低造成的影响凝汽器真空度降低对整个机组带来的影响主要表现在以下几点:(1)当凝汽器真空度降低时,其蒸汽功能作用也会受到一定影响,即使机组负荷保持良好的稳定性,随着蒸汽流量加大,也会导致叶片因蒸汽流量加大而出现负荷过高问题。
(2)凝汽器真空度降低,机组轴向推力增加,随着推力负荷逐渐超过限制,促使机组性能出现损坏[1]。
(3)凝汽器真空度降低,促使低压缸排汽温度增大,导致低压转子发生热膨胀或热变形等问题,也会提升低压缸中心线发生位移可能性,其机组振动幅度、低压胀差变大,低压缸动静间距缩短或消失,进而出现动静摩擦故障问题,影响汽轮机运行效率。
2.导致凝汽器真空度降低的原因2.1循环水量不充足或中断2.1.1循环水量不充足凝汽器真空度呈逐渐降低趋势,其循环水出入处位置存在较大温度差,导致循环水量不充足因素诸多,所显现出来的特征也具有较大的差异性。
主要体现以下几点:第一,当循环水处于水量不足状态下,其中凝气器中流体阻力明显增加,导致循环水出入口压差产生变化,压差变大促使循环水泵和凝汽器的循环水压提高,冷却塔的布水量降低,可判断是由凝汽器中管板受阻而造成真空度降低。
第二,当循环水处于水量不足状态下,凝汽器内流体阻力减弱,此时冷却塔布水量变少,循环水出入口压差产生变化,压差变小促使循环水泵和凝汽器出口处的循环水压增大,可判断是由循环水出水管被堵塞而造成真空度降低。
影响凝汽器真空低的原因分析:真空是影响汽轮机带负荷和热效率的一个重要经济指标,为此探讨凝汽器的合理真空具有重要意义。
传热效能直接影响真空的高低,真空系统泄漏也决定了真空的高低,真空系统设计的合理性也对真空的高低有一定影响。
从传热学角度以及真空系统的防漏,再结合电厂运行实践分析凝汽器真空低的原因,并提出改善凝汽器真空低的方法。
标签::凝汽器真空度换热泄漏冷却水1 前言凝汽器是汽轮机组的一个重要组成部分,其作用是汽轮机排汽受冷却凝结成水,形成高度真空,使进入汽轮机的蒸汽能膨胀到低于大气压力,多做功,其运行工况的正常与否,直接影响到整个机组的安全和经济运行。
2 传热与真空的分析正常运行时凝汽器的排汽压力与排气温度的关系是饱和蒸汽的压力和温度的关系,也就是说凝汽器的排汽压力是由相应的饱和蒸汽温度来决定的,而饱和蒸汽的温度与外界冷却介质的热交换程度有关。
在凝汽器中,蒸汽受冷却发生相变,相变时凝结水在整个换热面上保持饱和温度t1,蒸汽汽化潜热被冷却水吸收[1]。
蒸汽凝结放出的热量为:Q放=(hc-hc/)Gc=rGc其中:hc:排汽焓,kJ/kg;hc′:凝结水焓,kJ/kg;Gc:排汽量,kJ/s;r:汽化潜热,kJ/kg。
凝汽器热量传递满足Q传=KF△tm△tm——整个换热面对数平均温压,℃K——传热系数,kW/(m2.℃)F——传热面积,m2冷却水吸收的热量为:Q吸=cm(t2//-t2/)(1)其中:c:比热容,kJ/(kg.℃);m:质量流量,kg/s;根据温度变化曲线我们可以看出:影响t1的因素:1)当冷却水进口温度下降,其吸收的热量Q吸就增加,蒸汽冷凝温度t1就越低。
2)当受热面积F增加则冷却水出口水温度上升,其吸收热量就增加,蒸汽冷凝温度t1就越低。
3)当冷却水流量增加时其吸收的热量就增加,其增加的幅度由(1)式可看出,按数量级估算,就不及上面两种情况,当然它同样也可使蒸汽温度t1降低。
总之,冷凝温度的下降可使排汽压力相应降低,增大蒸汽在汽机内部的焓降,使得有更多的热能在汽轮机中转化成机械能。
凝汽器真空分析
排汽真空度对汽轮机正常运行起着非常重要的作用。
真空度下降, 会使汽轮机的汽耗和最后几级叶片的反动度增加、轴向推力增大.随着排汽温度升高, 会引起汽轮机转子旋转中心漂移而产生振动,
甚至引起汽缸变形及动静间隙增大。
如因冷水量不足而引起故障的, 还会导致铜管过热而产生振动及破裂, 缩短凝汽器的使用寿命。
凝汽器传热端差值的变化标志着凝汽器运行状况的好坏, 可作
为判别凝汽器运行状态的依据。
运行中端差值越小, 则运行情况越好,机组的热效率越高。
凝汽器的传热端差是指凝汽器排汽温度与冷却水出口温度的差值。
影响凝汽器传热端差的因素比较复杂, 主要包括凝汽器传热性能、热负荷、清洁系数、空气量及循环水系统的特性等。
1.空气量
凝汽器的空气来源有二个,一是由新蒸汽带入汽轮机的, 由于锅炉给水经过除氧, 这项来源极少;二是处于真空状态下的各级与相应的回热系统、排汽缸、凝汽设备等不严密处漏入的, 这是空气的主要来源。
空气严密性正常时进入凝汽器的空气量不到蒸汽量的万分之一, 虽然少但危害很大。
主要是空气阻碍蒸汽放热, 使传热系数减小, 端差增大从而使真空下降。
空气的第二大危害是使凝结水的过冷度增大。
降低空气量主要从真空严密性和真空泵的工作性能考虑。
2.真空严密性
真空严密性差是造成汽轮机真空低的主要原因, 在根据工程调
试的经验, 真空系统易泄漏空气的薄弱环节有:
1)凝汽器热井、低压加热器玻璃管水位计经常出现漏点、缺陷, 漏
入空气, 造成严密性下降。
2)轴封加热器水位自动调节失灵导致水位偏低, 水封无法建立, 导
致空气漏入。
3)采用迷宫式水封的给水泵, 其密封水排至凝汽器, 水封无法有效
建立, 导致空气漏入。
4)低压缸防爆门、小汽机排汽管防爆门、凝汽器入孔门等也经常由
于密封不严, 或防爆门出现裂缝, 导致空气漏入。
5)大机、小机低压轴封由于轴封压力不能满足需要, 造成轴封泄漏,
另外, 汽封间隙的大小、汽封的完好程度也是造成轴封泄漏的重要因素。
6)凝结水泵进口法兰、凝泵水封泄漏也经常导致凝结水溶氧不合格。
7)管道安装。
目前的新建机组, 安装质量较好, 压力管道均进行水
压试验, 真空管道均进地灌水试验, 由于法兰, 阀门盘根等原因导致泄漏的情况较小。
8)部分低压管道上的疏水阀、排汽阀, 关闭不严, 导致真空泄漏。
根据实际情况及分析研究, 可采用以下处理措施:
机组运行过程中维持轴封系统各疏水、U形水封的正常工作。
1)机组运行过程中维持好轴封加热器的正常水位。
2)按设计要求调整汽轮机轴端汽封间隙, 减小轴端漏汽量。
3)运行中严格控制低压汽封供汽压力、温度, 遇到汽封系统运行不
正常, 应及时进行分析,不可随意提高汽封供汽压力、温度。
4)负压部位管道设计时, 应充分考虑膨胀问题, 应设有一定长度的
弯头或膨胀节。
5)运行中应尽量避免剧烈工况出现。
6)及时更换泄漏的阀门。
此外,凝汽器热井水位高、真空泵出力不足、凝结水补水箱水位过低等也将导致真空下降。
3.清洁度
凝汽器冷却表面积脏污, 凝汽器铜管内结有不同程度的硬垢时, 影响了循环水流量及其传热效果。
凝汽器传热面的结垢和污染使传热系数降低, 从而使凝汽器端差增大,真空下降。
结垢和污染的来源分为两种:即外部污染和内部结垢。
外部污染:对于开式循环水系统外部污染源主要是水中的泥沙、有机物及杂质。
对于闭式循环水系统, 主要是因循环水浓缩易结垢。
内部结垢:内部结垢主要是运行机组汽水品质控制不严, 导致凝汽器汽侧结垢, 降低了传热效果。
4.凝汽器热负荷
凝汽器性能随其热负荷的增加而降低、随着凝汽器冷却面积的增加而有所改善, 但是, 热负荷对凝汽性能的影响远大于冷却面积的
影响。
5.凝汽器传热性能
正常运行时凝汽器的排汽压力与排汽温度的关系是饱和蒸汽的
压力和温度的关系, 也就是说凝汽器的排汽压力是由相应的饱和蒸
汽温度来决定的, 而饱和蒸汽的温度与循环冷却水的热交换程度有关。
所以, 凝汽器的传热系数越大, 传热端差越小, 真空越低。
凝汽器的传热性能与清洁度、冷却水温、管径、管材等因素。
此外,冷却水入口温度循环水量和循环水温, 也影响到传热系数。
6.循环水系统
循环水系统的影响包括循环水流量、流速、冷却水进水温度。
冷却水进水温度与水塔性能、环境温度等有关。
结论.
为了提高机组真空,保证机组稳定运行,应注意以下几点:
1)进行真空严密性检漏, 及时消除漏空现象。
2)从维持轴封系统及水封的正常工作; 维持好轴封加热器的正常水
位; 调整续轴端汽封间隙, 减小轴端漏汽量; 严格控制低压汽封供汽压力、温度, 遇到汽封系统运行不正常, 应及时进行分析, 负压部位管道设计时, 应充分考虑膨胀问题: 应尽量避免剧烈工况出现; 及时更换泄漏的阀等方面改进真空的严密性; 提高抽气器效率。
3)保证正常的凝汽器热井水位、检查真空泵出力、控制凝结水补水
箱水位不会过低。
4)保持凝汽器管壁和水侧的清洁度, 减轻汽器铜管结垢, 目前最有
效的方法是胶球清洗。
5)冷却水流量和流速的合理调整。
6)检查冷却塔热力性能, 加强运行维护, 调整到最佳工况运行。