project management 项目管理 (37)
- 格式:pdf
- 大小:153.22 KB
- 文档页数:28
100个最流行的管理词汇1. 目标(goal)2. 战略(strategy)3. 任务(task)4. 市场(market)5. 产品(product)6. 客户(customer)7. 利润(profit)8. 成本(cost)9. 绩效(performance)10. 资源(resource)11. 领导力(leadership)12. 团队(team)13. 激励(motivation)14. 沟通(communication)15. 决策(decision-making)16. 变革(change)17. 管理层(management)18. 员工(employee)19. 发展(development)20. 项目(project)21. 创新(innovation)22. 评估(assessment)23. 微观管理(micromanagement)24. 宏观管理(macromanagement)25. 管理风格(management style)26. 组织(organization)27. 策略执行(strategy execution)28. 市场占有率(market share)29. 风险管理(risk management)30. 供应链(supply chain)31. 市场调研(market research)32. 竞争优势(competitive advantage)33. 绩效管理(performance management)34. 战略规划(strategic planning)35. 数据分析(data analysis)36. 技术创新(technological innovation)37. 人力资源(human resources)38. 财务管理(financial management)39. 协作(collaboration)40. 项目管理(project management)41. 品牌管理(brand management)42. 领导力发展(leadership development)43. 市场营销(marketing)44. 战略联盟(strategic alliance)45. 绩效评估(performance evaluation)46. 市场定位(market positioning)47. 创新管理(innovation management)48. 组织文化(organizational culture)49. 资源分配(resource allocation)50. 风险评估(risk assessment)51. 组织结构(organizational structure)52. 项目评估(project evaluation)53. 市场策略(market strategy)54. 盈利能力(profitability)55. 成本控制(cost control)56. 领导能力(leadership skills)57. 团队合作(teamwork)58. 人才管理(talent management)59. 绩效奖励(performance rewards)60. 组织效能(organizational effectiveness)61. 市场份额(market share)62. 风险规避(risk avoidance)63. 竞争分析(competitive analysis)64. 供应链管理(supply chain management)65. 营销策略(marketing strategy)66. 人员发展(staff development)67. 绩效目标(performance goals)68. 全员参与(employee engagement)69. 创新文化(culture of innovation)70. 内部控制(internal control)71. 团队管理(team management)72. 人力资本(human capital)73. 财务规划(financial planning)74. 项目执行(project execution)75. 品牌定位(brand positioning)76. 绩效管理系统(performance management system)77. 营销渠道(marketing channels)78. 技术创新能力(technological innovation capability)79. 人员激励(employee motivation)80. 绩效考核(performance appraisal)81. 战略发展(strategic development)82. 市场导向(market orientation)83. 风险控制(risk control)84. 竞争优势分析(competitive advantage analysis)85. 供应链优化(supply chain optimization)86. 营销计划(marketing plan)87. 人力资源管理(human resource management)88. 财务分析(financial analysis)89. 项目执行评估(project execution evaluation)90. 品牌推广(brand promotion)91. 绩效改善(performance improvement)92. 组织发展(organizational development)93. 财务报表(financial statements)94. 项目规划(project planning)95. 市场细分(market segmentation)96. 风险管理系统(risk management system)97. 竞争对手分析(competitor analysis)98. 供应链协调(supply chain coordination)99. 营销策略执行(marketing strategy implementation)100. 人才培养(talent cultivation)。
项目管理是第二次世界大战后期发展起来的重大新管理技术之一,最早起源于美国。
有代表性的项目管理技术比如关键性途径方法(CPM)和项目评估和反思(PERT)技术,它们是两种分别独立发展起来的技术。
其中CPM是美国杜邦公司和兰德公司于1957年联合研究提出,它假设每项活动的作业时间是确定值,重点在于费用和成本的控制。
PERT出现是在1958年,由美国海军特种计划局和洛克希德航空公司在规划和研究在核潜艇上发射“北极星”导弹的计划中首先提出。
与CPM不同的是,PERT中作业时间是不确定的,是用概率的方法进行估计的估算值,另外它也并不十分关心项目费用和成本,重点在于时间控制,被主要应用于含有大量不确定因素的大规模开发研究项目。
随后两者有发展一致的趋势,常常被结合使用,以求得时间和费用的最佳控制。
20世纪60年代,项目管理的应用范围也还只是局限于建筑、国防和航天等少数领域,但因为项目管理在美国的阿波罗登月项目中取得巨大成功,由此风靡全球。
国际上许多人开始对项目管理产生了浓厚的兴趣,并逐渐形成了两大项目管理的研究体系,其一是以欧洲为首的体系——国际项目管理协会(IPMA);另外是以美国为首的体系——美国项目管理协会(PMI)。
在过去的30多年中,他们的工作卓有成效,为推动国际项目管理现代化发挥了积极地作用。
项目管理发展史研究专家以20世纪80年代为界把项目管理划分为两个阶段。
项目管理(project management )是美国最早的曼哈顿计划开始的名称.。
后由华罗庚教授50年代引进中国(由于历史原因叫统筹法和优选法)。
现在的台湾省叫项目专案。
项目管理是“管理科学与工程”学科的一个分支,是介于自然科学和社会科学之间的一门边缘学科。
所谓四软是面向“人”四软是:风险,沟通,组织与人力资源四硬是面向“过程”四硬:项目的范围、时间、成本和质量一集成:是对四软四硬的集成项目导向型教育方法:1、学生按项目团队的组织形式在课外做5个课程设计作业;2、每个学生的项目团队在课堂上报告其课程设计作业的结果;3、其他项目团队的同学提问然后由老师组织开展对案例和问题进行讨论;4、使用课程设计实例进行分析并指出错误和不足;5、由老师给出改正方法并指导学生修改和更新设计;6、不断循环上几步直至完成整个课程设计。
项目管理中英文常用词汇1. 项目管理概述(Project Management Overview)•项目(Project)•项目管理(Project Management)•项目经理(Project Manager)•项目生命周期(Project Life Cycle)•项目目标(Project Objective)•项目范围(Project Scope)•项目计划(Project Plan)•项目执行(Project Execution)•项目交付(Project Delivery)•项目控制(Project Control)2. 项目计划(Project Planning)•项目需求(Project Requirement)•可行性研究(Feasibility Study)•项目里程碑(Project Milestone)•工作分解结构(Work Breakdown Structure)•项目进度计划(Project Schedule)•资源分配(Resource Allocation)•风险管理(Risk Management)•项目预算(Project Budget)•项目变更管理(Change Management)2.1 项目需求管理(Project Requirements Management)•需求收集(Requirements Gathering)•需求分析(Requirements Analysis)•需求验证(Requirements Validation)•需求优先级(Requirements Priority)•需求冲突(Requirements Conflict)3. 项目执行(Project Execution)•任务分配(Task Assignment)•进度追踪(Schedule Tracking)•工作绩效(Work Performance)•问题解决(Problem Resolution)•里程碑评审(Milestone Review)3.1 团队管理(Team Management)•团队协作(Team Collaboration)•团队沟通(Team Communication)•人员培训(Staff Training)•人员评估(Staff Evaluation)•人员激励(Staff Motivation)4. 项目控制(Project Control)•变更管理(Change Control)•风险控制(Risk Control)•质量控制(Quality Control)•成本控制(Cost Control)•范围控制(Scope Control)•质量保证(Quality Assurance)•关键路径分析(Critical Path Analysis)5. 项目评估(Project Evaluation)•收尾活动(Project Closure)•反馈收集(Feedback Collection)•成果评估(Deliverable Evaluation)•项目总结报告(Project Summary Report)以上是项目管理中常用的中英文词汇,可以帮助你更好地理解和应用项目管理中的相关概念和方法。
项目管理pmp项目管理(Project Management,简称PM)是指通过规划、组织、领导和控制资源,以达成特定目标的临时性工作过程。
它在各个行业和领域得到广泛应用,并成为组织实现其战略目标的关键工具之一。
项目管理专业人士通常通过获得项目管理专业资格认证(Project Management Professional,简称PMP)来证明其在该领域的专业能力。
PMP是由国际项目管理协会(Project Management Institute,简称PMI)所设立的专业认证。
获得PMP认证的项目经理被广泛认可为具备管理和领导项目的专业技能和知识。
PMP认证考试是世界范围内最具权威性的项目管理资格认证之一。
通过PMP认证,可以增加项目管理者的职业竞争力,提升项目管理工作的专业水准。
PMP认证考试主要基于项目管理知识体系,该体系由PMI发布的《项目管理知识体系指南》(Project Management Body of Knowledge,简称PMBOK)进行指导。
PMBOK大纲涵盖了项目管理的五个过程组,十个知识领域和四个项目管理领域。
考生需要了解这些内容,并根据自己的实践经验进行复习。
PMP认证考试难度较高,需要考生具备丰富的项目管理实践经验,并且通过考试来证明自己具备项目管理的专业知识和技能。
考试内容包括项目整合管理、范围管理、时间管理、成本管理、质量管理、资源管理、沟通管理、风险管理、采购管理和相关方人事管理等知识领域。
为了帮助考生更好地备考和应对考试,PMI提供了丰富的培训和准备资源,包括官方教材、模拟试题和培训课程等。
考生可以根据自己的需求选择适合自己的学习方式和资料,提高自己的备考效果。
项目管理作为一门独立的学科和职业,不仅仅在企业中得到广泛应用,也逐渐走入了学术界。
越来越多的大学开始开设项目管理相关的课程和专业,以培养更多的专业人才。
项目管理不仅需要理论知识,还需要实践经验和良好的沟通、领导和决策能力。
企业项目管理企业项目管理简介企业项目管理(Enterprise Project Management,简称EPM)是一种系统化的管理方法,旨在协调、管理和监控企业内所有项目的实施。
这种方法将公司的战略、项目和资源进行整合,最大化地提高企业的效率和业绩。
企业项目管理的目标是帮助企业:1.通过对项目进行系统化管理,提高项目的交付质量,让各个部门的业务更加协调,避免重复投入和误投。
2.明确项目的目标和范围,以便评估项目目标的实现度,确保企业在预算和时间限制下能完成所有项目。
3.提高资产利用率,通过优先考虑战略性和高风险项目,使企业的有限资源得到最大限度的利用。
4.提高企业的绩效,使企业实现长期成功,实现其战略目标。
企业项目管理框架企业项目管理框架包括以下组成部分:1.项目管理流程:这是一组规范的步骤,涵盖项目相关的方方面面。
包括项目计划、执行、监控和结束等阶段。
2.项目组织:这是由高管、项目经理和其他重要直接参与者(如顾客和合作伙伴)组成的结构体系。
这种体系定义了项目组成员之间的职责关系、权利和沟通方式。
3.项目文档:这是项目成果的记录,包括项目基础信息、预算、人力资源和其他方面的信息。
这些文档可以被用来帮助项目领导层跟踪进度和评价项目成功度。
4.项目工具:这是各种工具和技术,可以协助项目成员进行各种项目管理活动。
例如,项目管理软件可以协助项目成员编制日程时间表和跟踪项目进度。
企业项目管理的好处企业项目管理为企业带来以下好处:1.加强团队合作通过明确项目目标和责任,在团队成员之间建立更好的沟通和协作。
这样可以提高员工效率,减少项目延误的风险。
2.提高项目管理水平通过提供一套标准化的、系统化的项目管理流程,可以使项目领导层更好地管理项目,从而提高项目管理水平。
3.优化资源利用企业项目管理可以帮助企业更好地管理资源,包括人力、物力和资金资源,从而提高资产利用率。
4.提高经验和知识分享企业项目管理可以促进经验和知识分享,使更多的人受益。
工程项目管理三控三管一协调内容1.项目管理的三个控制是范围控制、时间控制和成本控制。
The three controls of project management are scope control, time control, and cost control.2.项目管理的三个管理是质量管理、风险管理和资源管理。
The three managements of project management are quality management, risk management, and resource management.3.项目管理的一项协调工作是团队协调和沟通。
One coordination work in project management is team coordination and communication.4.项目经理需要对项目的范围进行精确的控制。
Project managers need to have precise control over the scope of the project.5.时间控制是确保项目按时完成的关键。
Time control is crucial to ensure that the project is completed on time.6.成本控制需要严格管理项目的预算。
Cost control requires strict management of the project budget.7.质量管理是保证项目交付物符合要求的重要部分。
Quality management is an essential part of ensuring that project deliverables meet requirements.8.风险管理是识别和应对项目中的各种风险。
Risk management involves identifying and addressing various risks in the project.9.资源管理涉及对项目团队和物质资源的有效利用。
项目管理的名词解释1、横道图:一种表示计划信息的图形。
在典型的横道图中,活动和其他项目要素的名称从上向下列在图的左边,时间刻度表显示在顶部,活动历时用对应时标轴的横道条表示。
横道图也称甘特图:(Bar Chart)2、完工预算(Budget At Completion) (BAC):估算项目完成时的全部成本。
已完成工作预算成本Budgeted Cost of Work Performed(国内常使用实现投资额):在规定时间范围内(通常是项目目前日期)所有完成的活动(或活动的一部分)批准的成本估算的总和(包括任何管理成本分摊)。
参考挣值。
3、计划工作预算成本Budgeted Cost of Work Scheduled(或计划投资额):在规定时间范围内(通常是项目目前日期),所有计划执行的活动(或活动的一部分)的批准的成本预算总和。
参考挣值法。
4、沟通计划编制:Comunications Planning确定项目干系人对信息和沟通的需要。
5、要素(Component):组成部分,一个元素6、约束(Constraint):影响项目绩效的适当的限制。
影响活动进度安排的任何因素。
7、应急计划编制(Contingency Planning):编制一个管理计划,确定当特定风险发生时,用于保证项目成功所采用的替代策略。
8、合同(Contract):合同是规定卖方履行提供指定产品和买方履行支付义务的双方相互约束的协议。
合同通常概括为以下三大类:l 固定总价合同或总价合同:这类合同包含明确定义的产品的固定总价格,也包括为满足或超过既定的项目目标(如进度目标)所提供的奖励.l 成本补偿合同:这类合同包含按承包商实际成本的支付.成本通常划分为直接成本(项目直接发生的成本,如项目人员的工资)和间接成本(执行机构分摊到项目上的业务成本,如公司管理人员的工资)。
间接成本通常用直接成本的百分比计算。
成本补偿合同通常包含为满足或超过既定的项目目标(如进度目标或总成本)所提供的奖励。
项目管理PMP关键概念(中英文对照)1. 项目(Project)项目是指为创造独特的产品、服务或结果而进行的临时性工作。
是指为创造独特的产品、服务或结果而进行的临时性工作。
A project is a temporary endeavor undertaken to create a unique product, service, or result.project is a temporary endeavor undertaken to create a unique product, service, or result.2. 项目经理(Project Manager)项目经理是负责项目实施和项目团队管理的人员。
是负责项目实施和项目团队管理的人员。
A project manager is the person responsible for project implementation and the management of the project team.project manager is the person responsible for project implementation and the management of the project team.3. 里程碑(Milestone)里程碑是对项目进展的重要标志性事件或状况的描述。
是对项目进展的重要标志性事件或状况的描述。
A milestone is a significant event or condition in the project that marks a major project estone is a significant event or condition in the project that marks a major project progress.4. 范围(Scope)范围是指项目工作的所有产品、服务和结果的总体描述和界定。
项目管理(英文版)课件Project Management (English Version) CoursewareIntroduction:Project management is a crucial process that involves planning, organizing, and managing resources to achieve specific goals and objectives within a defined timeline. It is an essential aspect of any business or organization, and it can help to ensure successful project delivery while optimizing the use of resources. This course will teach you the fundamentals of project management, including the key concepts, principles, and techniques used in this field.Course Objectives:The main objectives of this course include:1. Understanding the key concepts and principles of project management.2. Learning the different project management processes and how they work together.3. Developing the skills needed to plan, organize, and manage projects effectively.4. Understanding the importance of risk management and how to mitigate risks.5. Learning how to measure project performance and trackprogress.6. Developing effective communication and leadership skills for project management.Course Outline:The course will cover the following topics:1. Introduction to project management2. Project initiation3. Project planning4. Project execution5. Project monitoring and controlling6. Project closure7. Risk management8. Team management9. Communication and leadership skillsCourse Methodology:The course will be delivered through a combination of lectures, case studies, group discussions, and practical exercises. Participants will be required to work on a project throughout the course to apply the concepts and techniques learned in class. They will also be provided with access to project management tools and software to aid in project planning and management.Learning OutcoAfter completing this course, participants will be able to: 1. Understand the key concepts and principles of project management.2. Apply project management techniques to plan, organize, and manage projects effectively.3. Identify and mitigate project risks.4. Measure project performance and track progress.5. Develop effective communication and leadership skills for project management.6. Work effectively in a team environment.Conclusion:This course is designed to provide participants with the knowledge and skills needed to manage projects effectively. It is suitable for anyone who is involved in project management or interested in pursuing a career in this field. By the end of the course, participants will have a solid understanding of project management concepts and be able to apply them to real-world projects.。
CSPC NANHAI PETROCHEMICALS PROJECTENGINEERING COMPONENT NUMBERINGPROJECT SPECIFICATION: SP-8820-0000-0005Project Management Contractor (PMC)NO DATE REVISIONBY CHK’DAPPR. 00 22 Nov 01 Issued for ITBMHNG MMTHIS DOCUMENT SUPERSEDES PR-8820-0000-0009ENGINEERING COMPONENT NUMBERINGTABLE OF CONTENTS1.0SCOPE 32.0PURPOSE 33.0DEFINITIONS 34.0RESPONSIBILITIES 45.0INSTRUCTIONS 55.1General Equipment Numbering 55.2Line Numbering 85.3Special Piping Item Numbering 115.4Electrical Component Numbering 125.5Instrument Component Numbering 145.6Instrument Engineering tools Numbering 205.7Buildings 216.0REFERENCES 23ATTACHMENTSAttachment 1 Letter Code Identification 23 Attachment 2 Nominal Pipe Sizes, Metric Equivalents 25 Attachment 3 Outside Battery Limit Pipeline Numbering 261.0 SCOPEThis project specification defines engineering component numbering for all processunits and utilities on the CSPC Nanhai Petrochemicals Project. The specification isapplicable to both the definition and implementation phases of the Project.2.0 PURPOSEThe purpose of this specification is to define a standard engineering componentnumbering system to be adopted across all parts of the project.3.0 DEFINITIONS3.1 Special Piping Items:- Piping components which fall outside the Piping Specificationas described in 5.3.3.2 Project:- A BDEP Process Unit as defined in Reference 6.9, for example EO/MEG,SM/PO, and MPG.3.3 Area Project Engineer:- Project Engineer responsible for a BDEP Process Unit.3.4 Chief Discipline Engineer:- Chief discipline engineer based in the Core Engineeringteam.3.5 SIL:- System Integrity Level.3.6 Core Engineering Team:- PMC engineering team responsible for the quality, formatand consistency of the Project deliverables.3.7 Boundary Limit:- The limit of the area occupied by the entire complex.3.8 Battery Limit:- The limit of the area occupied by a plant, for instance Polyols Plant orSteam and Power Generation.3.9 Unit Limit:- The limit of a unit contained within a plant, for instance Unit 3100 EOReaction.3.10 OSBL:- Outside Battery Limit, refers to the geographical regions of the complex thatare not contained within the battery limit of a plant or unit.3.11 ISBL:- Inside Battery Limit, refers to the geographical area lying within the batterylimit of a plant or unit.4.0 RESPONSIBILITIES4.1 During the definition phase tag numbers shall be controlled and allocated by PMC asfollows:Unit Numbers Equipment numbers Chief Project Engineer Area Project EngineerLine numbers Area Project Engineer Special piping item numbers Area Project Engineer Electrical Equipment numbers Chief Electrical EngineerInstrument Equipment numbers Building Numbers (ISBL) Building Numbers (OSBL) Lead Instrument Engineer (Project based) Area Project EngineerChief Civil Engineer4.2 During the implementation phase tag numbers shall be controlled and allocated bythe relevant EP/C CONTRACTOR. Any tag numbers allocated during the definitionphase shall not be changed without PMC approval.4.3 Project data is being assembled into a Data Warehouse for lifecycle management ofthe plant. As such the use and format of equipment / tag numbers during theImplementation Phase is critical to the compilation of the warehouse as well as itssubsequent use. Therefore the format of the tag numbers during this phase shallfollow the prescribed format exactly (including upper / lower case characters). Thefull tag number shall always be shown in any project document. The use of simplifiednumbering, typically on data sheets, for identical equipment e.g. P-2503A/C/S shallnot be used. If common documents are used for identical equipment then the full tagnumber (P-2503A, P-2503B, etc.) shall be shown for each piece of identicalequipment. It is not acceptable to show one tag number and then include furthernumbers as a note on a document; all tag numbers shall be included in the samemanner. This requirement is specifically for the Implementation Phase and is notreflected in all currently issued documents.5.0 INSTRUCTIONSNumbers5.0.1 UnitUnit Numbers are defined in Standard Document Numbering System Unit CodesIndex IN-8821-0000-0003. Additions or deletions to the Unit numbers shall bereferred to the PMC Chief Project Engineer for approval.5.1 General Equipment Numbering5.1.1 Equipment shall be identified by a tag number of the format: a-xxyyz, in which“a” is a one or two-letter code identifying the device function“xx” is a two-digit number used to identify the unit or facility“yy” is a two-digit serial number“z” is a one-letter code to denote identical equipment used for the samepurposeIdentification“a”Code5.1.2 LetterThe letter code shall be arranged as follows:1. The first letter shall indicate the process function, in accordance with column 1of Attachment 1.2. The optional second letter shall indicate the supporting function in accordancewith column 2 of Attachment 1.5.1.3 Process Unit or Facility Code “xx”For process unit or facility code identification see Reference 6.9.Examples:For unit 1100, xx is 11For unit 100, xx is 1For unit 750, xx is 7 (see 5.1.4 below)For unit 1500, xx is 15For unit 1550, xx is 15 (see 5.1.4 below)5.1.4 Serial Number “yy”Serial numbers shall run consecutively and duplicate numbers for the same equipment type avoided. Where adjacent units are separated by 100 then the serial number shall run from 01 to 99. For units separated by 50 (i.e 1500 and 1550) the serial numbers “yy” will be allocated in batches, where possible the first “y” digit will correspond with the third unit number digit. For units separated by 10 (i.e. 9150 and 9160) the serial numbers “yy” will be allocated such that where possible the first “y” digit will correspond with the third digit of the unit number. Examples showing rang of possible tag numbers for pumps5.1.5 Letter Code Identification “z”This code is used to denote identical equipment for the same purpose and shall be one of the letters: “A”, “B”, “C”, “D”, etc.Air fin cooler bundles shall follow the main equipment numbers; individual bundles shall use “A”, “B”, “C”, etc. Multiple, identical air fin cooler fans and motors serving the same equipment shall be identified by adding the suffix “A”, “B”, “C”, etc, sequentially through the bays.The letter “S” is to be used with common spare equipment. The letter “W” is to be used to denote a warehouse spare equipment item. Example of equipment numbering: P-9204A P-9204B P-9204S P-9204W`Unit 750P-751 up to P-769 Unit 770 P-771 up to P-799 Unit 1500 P-1501up to P-1549 Unit 1550 P-1551 up to P-1599 Unit 1100 P-1101 up to P-1199 Unit 9150 P-9151 up to P-9159 Unit 9160 P-9161 up to P-9199 Unit 9200P-9201 up to P-9299In which P = equipment letter code of a pump9204 = equipment number of pump 4 of unit 9200A and Bare the letters indicating two identical pieces of equipment (either working in parallel or in series or equipment with single spare)S=common spare (e.g. for P-9204 and P-9205 where P-9205 is identical to P-9204)W = warehouse spare.5.1.6Package equipment units shall receive a tag number as described in 5.1.1 through to 5.1.4. Individual equipment items within a Package unit shall be identified using a tag number as described in 5.1.1 through to 5.1.4. Tag numbers will be allocated during the definition phase for some equipment. The CONTRACTOR shall add any additional numbers necessary to comply with the requirements of this specification during the implementation phase. It is the responsibility of the CONTRACTOR to ensure that package equipment tag numbers are not duplicated elsewhere in the unit.5.1.7Equipment Nozzle Identification Nozzle Type Equipment TypeNozzle ID Remarks Pressure Vessels, Tanks, Silos N1, N2. .Shell side S1, S2. . See Note 1. Tube Side T1, T2. . See Note 2. VentV1, V2. . Heat Exchanger DrainD1, D2. .Pumps Compressors, Blowers, FansNotApplicable See Note 3. Package EquipmentN1, N2 . . See Note 4.ProcessOther, i.e. mixers, jets, steam de-superheatersN1, N2 . .Manway All M1, M2 . .SingleK1, K2 etc Pressure gauges, Thermowells etc. Instrument All PairedK1A - K1BLevel Gauges, PressureDifferential etc.Notes1. For Shell and Tube exchangers with multiple inlets (or outlets) all inlets will benumbered S1A, S1B etc. For stacked exchangers the Nozzle numbers shallstart at S1 for inlets to the first exchanger and increment through to the nextstacked exchanger.2. For Air Fins with multiple nozzles on the same bundle, all inlets will benumbered T1 and all outlets will be numbered T2.3. Nozzles have no numeric I.D. but shall be identified according to function, i.e.inlet, outlet, suction, discharge, intermediate suction etc.4. Package units, nozzles/ connections within the package shall be numbered bythe vendor. Package / Unit interface nozzles shall be numbered sequentiallyN1, N2 . . . etc.5.2 LineNumbering5.2.1 All piping shall be identified by a line number that includes the pipe nominal size inmm, process medium, line sequence number, piping class identification, insulationtype.Example:150 - PL110001 - 11011-NZ - HC 150 Represents the nominal pipe diameter DN in mm, see Attachment 2 forthe permitted equivalents.PL110001 represents the sequence number, in the form of “ZXXXYYY” where:“Z” is based on the Process and Utility Codes listed in Reference 6.8.“XXX” represent the process unit or facility code (Reference 6.9).“YYY” represent the sequence number, which will be unique to theline. ISBL (inside battery limit) lines will be numbered sequentiallyfrom 001 to 900, see 5.2.4. OSBL (outside battery limit) lines shall benumbered from 901 to 999, see 5.2.5.Examples:ISBL numbersUnit 800:- Service Water numbers SW80001 to SW80900Unit 800:- Fire Water numbers FW80001 to FW80900Unit 850:- Service Water numbers SW85001 to SW85900Unit 2500:- Process Liquid numbers PL250001 to PL250900Unit 2550:- Process Liquid numbers PL255001 to PL255900Unit 1100:- Process Liquid numbers PL110001 to PL110900 OSBL numbersUnit 800:- Service Water numbers SW80901 to SW80999Unit 800:- Fire Water numbers FW80901 to FW80999Unit 2550:- Process Liquid numbers PL255901 to PL255999Unit 1100:- Process Liquid numbers PL110901 to PL11099911011-NZ represents the piping class.HC represents the insulation type defined in 5.2.3 below.Note: Insulation thickness will be defined in the line lists (not on PEFSs) 5.2.2 To indicate the type of insulation the following letters shall be usedINSULATION CODESRefer to para 5.2.3 below for guidance on use of the codes listed below.Cold Insulation CCHeat Conservation (General) HCHeat Conservation for Hot Oil HH SMPO Unit onlyFire Safe Insulation F1 PP Unit onlyCellular Glass Insulation F2 PP Unit onlyAcoustic Insulation AIAcoustic Insulation – CLASS A AAcoustic Insulation – CLASS B BAcoustic Insulation – CLASS C CAcoustic Insulation – CLASS D DX Definition phase only Acoustic Insulation – CLASS to bedefinedNo Insulation NIPersonnel Protection Insulation PPPersonnel Protection using Guards PGSteam Tracing STCondensate Tracing CTElectric Tracing ETCold Tracing LT LDPE Unit only5.2.3 Where used in conjunction with another insulation code Acoustic Insulation shall beindicated by a suffix A, B, C or D to the insulation code depending on the acousticinsulation class eg. GCA, PPB, ETD, etc (refer to DEP 31.46.00.31 – CSPC fordefinitions of each class. Where Acoustic Insulation class is not yet determined but isused in conjunction with another insulation code Acoustic Insulation shall be indicatedby a suffix “X”, e.g. HCX, PPX, ETX.Where Acoustic Insulation is not applied in conjunction with another insulation codethen the code AIA, AIB, AIC or AID shall be used (depending on acoustic insulationclass to indicate that the only insulation applied is acoustic. Where the class is notyet determined (definition phase only) Al shall be used (without A, B, C or D suffix).Heat Tracing codes ST, CT and ET imply the used of thermal insulation and are notused in conjunction with codes CC HC, HH, F1 or F2.Insulation codes F1, F2 and HH are included for use only on the specific processunits stated above.5.2.4 Pipe lines shall be numbered from apparatus/line to apparatus/line.Parallel lines shall be numbered separately.Pipelines within a battery limit (ISBL) shall be numbered sequentially by the Projectteam responsible for the unit during the definition phase and by the CONTRACTORduring the implementation phase.When numbering lines reference should be made to Preparation of ProcessEngineering Flow Schemes PR-8820-0000-0020.5.2.5 Pipe lines running outside battery limits (OSBL) shall be given a unit identifier asdescribed below, the numbering convention is illustrated in Attachment 3.Outgoing pipelines from one unit to another, either directly or indirectly via a pipebridge, pipe rack or interconnecting system, shall be given line numberscorresponding to the unit of origin, seen in the direction of flow (Attachment 3example 2). For lines running directly from unit to unit without any intermediateisolation or pipe bridge/rack the line number will change to the destination unit at thefirst flange / item of equipment in the downstream unit.Where lines entering a unit from other sources are not included in any otheridentification system they shall be given line numbers corresponding to the unit theyenter (Attachment 3 example 1).Utility headers on common pipe bridges or tracks not entering a specific unit shall begiven a line number corresponding to the unit of origin, seen in the direction of flow(Attachment 3 example 3).Utility lines from utility headers entering a processing unit shall be given number(s) ofthat unit (Attachment 3 example 3).5.3 Special Piping Item Numbering5.3.1 In-line piping components that fall outside the Piping Specification, these items shallbe tagged using a format A-xxyyy.“A” is a two letter identifier defined in the table below“A” DescriptionSP Special PipingFor example inline flow / sight glasses, strainers, steamtraps, non standard fabricated piping items, injectionpoint assemblies, expansion bellows, hose couplings,spring loaded valves.SC SampleConnections“xx” is a two digit unit identification as described in 5.1.4, for 3 digit unitnumbers for example for unit 750 “xx” is 07“yyy” is a sequential identification number. Sequence numbers shall be uniquewithin individual process units. A block of numbers shall be allocated toindividual units to avoid number duplication with adjacent units. Forexample for unit numbers separated by 50 (i.e. 2500 and 2550) the totalsequential identification numbers in the adjacent units will be limited to499. For units separated by 10 numbers (i.e. 8660 and 8670) the numberin the adjacent units is limited to 99.“SP” examples:Unit 800:- sequence numbers SP-08001 to SP-08499Unit 850:- sequence numbers SP-08501 to SP-08999Unit 2500:- sequence numbers SP-25001 to SP-25499Unit 2550:- sequence numbers SP-25501 to SP-25999 etcUnit 1100:- sequence numbers SP-11001 to SP-11999Numbering5.4 ElectricalComponentElectrical Component numbering shall be in accordance with DEP 33.64.10.10Appendix 11 and shall take the format WWxxxYzWW- Two letter equipment reference as stated in 5.4.1xxx- Substation number as defined in section 5.4.2.Y-is the one letter voltage identification or two letters in the case of transformers.z- is a one or two digit identification number5.4.1 The following equipment references shall be used to identify the function of theequipment.AP = Alarm PanelCA = Capacitor bankCP = Control panelIR = Interposing relay boxJB = Junction boxRR = Resistor (earthing)RX = ReactorSB = SwitchboardTR = TransformerUP = UPS unitVS = VSDSNumbering5.4.2 SubstationThe Substation numbering used in the BOD is superseded; the new Substationnumbers are given in the following table.The sources of power, i.e. Main Electrical Intake Station and/or Power StationSwitchboard shall be identified by alphabetic characters.HV substations fed directly from these substations shall be identified by a three digitnumber with a prefix “SS” (i.e. SS-100).HV substations fed from another HV substations shall be identified with a sequencenumber of the second digit (i.e. SS-110).LV substations fed from an HV substation shall be identified with a sequence numberfor the third digit (i.e SS-112).Basis of Design Reference Definition Phase ReferenceSS-0 MISSS-1 SS-100SS-2 SS-200SS-3 SS-130SS-4 SS-120SS-5 SS-230SS-6 SS-220SS-7 SS-112SS-8 SS-110SS-9 SS-210SS-10 SS-140SS-11 SS-121SS-12 SS-111Identification5.4.3 VoltageThe following references shall be used to identify the normal voltage levels(s) of theequipment:A = 60 kV and aboveB = 20 kV - 33 kVC = 10 kV - 11 kVD = 3 kV –6.6 kVE = LV (interruptible, maintained)F = LV (d.c.) N = LV (essential and non essential)V = LV (uninterruptible, maintained)X = LV (controls, alarms and indications, a.c. or d.c.)5.4.4 Cable Numbers shall be sequential within each unit (as identified in Reference6.8)Cable numbers shall be listed in the project cable Schedule, DEP 05.00.54.84 –CSPC sheet 4 stating all the information specified. The destinations shall be specific,stating the switchboard and panel numbers.A block of cable numbers shall be issued for each process unit by the PMC. TheCONTRACTOR during the implementation phase shall allocate a block of cablenumbers for site use within each unit from the block issued by the PMC.5.4.5 ExamplesThe first 6.6kV switchboard in substation 110 would be identified as SB110D1.The third 400V (a.c.) switchboard in substation 112 would be identified asSB112E3.The second 33/6.9 kV transformer located at distribution substation 300 would beidentified as TR300BD2. The tap change control panel associated with thistransformer would be identified as CP300X2.5.5 Instrument Component Numbering5.5.1 Instrument numbering shall in general be in accordance to DEP 32.10.03.10 – CSPCand is described below. This covers the numbering and representation of PEFS, thesymbology used in instrument numbering is additionally defined on drawing 25-8110-0000-0007 and individual component numbering in Engineering Tools. It does notinclude DCS, MMS and other control system numbering; this is covered in “INtoolsProcedure” PR-8550-0000-0001. Instruments specified by vendors, for instance inPackage Units shall be numbered in accordance with this Procedure5.5.2 GeneralEach loop function or instrument on a PEFS should have a tag number of the format:abc-yzin which:“a” is a three digit number used to identify the process unit. For example unit 750 “a”= 075, for unit 1550 “a” = 155.“b” is a measured variable code: one capital letter code identifies the process condition, property measured or initiating variable. Where required anadditional modifier letter is added.“c” is a function code: one or more capital letter codes identifies the function of the instrument or loop.- is a separation dash, used for clarity“y” is a three digit serial number (i.e from 001 through 999)“z” is an optional suffix which shall be used to make a loop component uniquely identifiable, see 5.5.7.5.5.3 Process unit identification “a”The first three digits of the process unit are used to reflect the process unit in theinstrument tag number. The three-digit system is preferred and should be used fornew process units.Examples.Process Unit Identification “a”200 0201100 1101550 155 5.5.4 Measured variable code “b”This code shall indicate the process condition, property measured or initiatingvariable in accordance with drawing 25-8110-0000-0007. A modifier may be requiredto fully define the measured variable.“c”code5.5.5 FunctionThis code shall indicate the loop function in accordance drawing 25-8110-0000-0007.Where two or more letters are required to capture the full functionality, they shall beplaced in the sequence ITBRQCSZA: “IBRQ” for displays, “T” for transmitting, “CSZ”for control/switch functions and “A” for alarm.For computing functions that cannot be manipulated by the operator, the letter “Y”shall be used (e.g. FY, PY, LY, PDY, XY, UY). For computing functions that can bemanipulated by the operator, the letter combination “HY” shall be used.“y”5.5.6 SerialnumberSerial numbers shall be unique in each group of instruments having the samecombination of process unit identification (“a”) and measured variable code (“b”).Serial numbers shall start at 001 and should be assigned so that projected futureexpansions can be accommodated. Some numbers shall be left unused to allow forunforeseen future expansions.Example: Flow instruments in unit 1100 are tagged 110FICA-001, 110FG-002,110FP-003, and 110FIZA-005. In this example, 110F-004 is intentionally left unusedto allow for unforeseen future expansions.NOTES: 1 The practice of allocating separate number series for quality test points (QPs), flow test points (FPs), flow glasses (FGs), pressuregauges/test points (PGs/PPs) and temperature gauges/elements/testpoints (TGs/TEs/TPs) shall no longer be used.2 Deviation from the above tag numbering arrangement may be required incertain cases, for which the CONTRACTOR shall submit an alternativearrangement to the PMC for approval.3 If one process unit contains identical process trains or identical pieces ofequipment, the assignment of serial number “y” should be selected toprovide a logical and recognisable numbering relationExample: Process unit 1100 consists of two identical compressor sets anda future third compressor is projected. Blocks of instrument serial numbersmay be assigned as follows: 001-099 for the common upstream process,100-199 for compressor one, 200 and 299 for compressor two, 300-399reserved for compressor three and 401 and above for the downstreamprocesses. The pressure controllers for compressors 1, 2 and 3 may betagged as 110PICA-101/201/301 respectively.“z”suffix5.5.7 OptionalIf a loop consists of more than one similar component, a suffix letter shall be used onPEFS to make the identification of a component unique for reference purposes.Examples:If two (redundant) transmitters are installed in loop 110PDICA-056 for maintenancepurposes and a manual selector is provided to select one of them, the transmittersshould be shown on the PEFS as 110PDT-056A and 110PDT-056B.If loop 742FIC-001 is provided with a high and low range transmitter, the transmittersshould be shown on the PEFS as 742 FT-001A for the high range transmitter and742FT-001B for the low range transmitter.NOTES: The suffix “z” as specified here applies only to tag numbers used on PEFS.The tag number structures for DCS, Engineering Tools and MMS requireunique tagging at component/function level, see (5.6).5.5.8 Tag Numbering of Individual Instruments and Final Elements on PEFSIf a loop is complicated and individual instruments need to be shown on PEFS, thenthese will be shown with the same number as the loop, except the loop function willbe replaced with the instrument function. For a list of instrument functions refer todrawing 25-8110-0000-0007.Example.For 110FICA-001, if the transmitter is shown on PEFS, then the transmitter is tagged110FT-001.Similarly a final element in throttling service shall be shown on the PEFS with thesame tag number as the controller, with the exception of the function code (“c”) thatshall be “CV”.Example.If 110FICA-001 is the tag number of a controller, the control valve is tagged 110FCV-001.For the tag numbering of final elements associated with (binary) logic functions, see(5.5.9).If a control loop consists of more than one final element, letter A/B/C etc. shall beused as tag number suffix “z” to make the numbering of the final elements unique.Example:If loop 110PIC-101 is provided with two valves in a split-range arrangement, thevalves shall be shown on the PEFS as 110PCV-101A and 110PCV-101B.If loop 742TIC-005 throttles the position of three louvres, the louvres shall be tagged742TCV-005A, 742TCV-005B and 742TCV-005C.5.5.9 Tag Numbering for (Binary) Logic Functions on PEFSBinary logic functions shall be identified as follows:aKS-y for binary logic functions that are not safety related or classified as SIL a2 and below, e.g. sequential control functions, switching functions, automaticstart-up functions.aUZ-y for binary logic functions classified as SIL 1 and above, i.e. binary logic solvers for Instrument Protective Functions.The serial number “y” of the tag number for the binary logic function shall end withzero, e.g. 110KS-100, 110KS-110, 110KS-120, 742UZ-030, 742UZ-110, 742UZ-230.For identification of the outputs from the above binary logic functions and the solenoidvalves/final elements driven by that logic, the last digit shall be used. Final elementsshall be tagged KSV and UZV respectively.Logic function 110KS-110 controls on-off valves 110KS-111, 110KS-112, 110KS-113and provides output 110KS-114 to IPF function 110UZ-180.110UZ-180 controls the position of valve 110FCV-001 via solenoid operated valve110UZV-181 and controls on-off valves 110UZV-182 and 110UZV-183 via solenoidoperated valves with the same tag number. Furthermore, it provides output 110UZ-184 to the DCS controller 110FIC-001.5.5.10 Tag Numbering for Advanced Control Functions on PEFSFunctions for advanced control shall be identified as:aUC-yIdentification of outputs and associated final elements is the same as for binary logicfunctions, see (5.5.9).5.5.11 Tag Numbering of Miscellaneous InstrumentsMiscellaneous instruments such as hand switches, position switches which are part ofa loop, will be shown with the same numbers as the loop and the measure variablewill be prefixed with loop measure variable code.ExamplesPosition switch on control valve on loop 100FICA-002 is tagged 100FGB-002.Signal selector switch on loop 100PICA-003 is tagged 100PHS-003.5.5.12 Loop and Tag Numbering of Fire and Gas InstrumentsLoop and Tag numbering of Fire and Gas instruments shall follow the sameconvention as the Instrument Component Numbering specified in this documentexcept four digits will be used for Serial Numbers (yyyy).All Fire and Gas instruments will be allocated to Unit 8500 and therefore UnitIdentification (a) shall be 850.The Measurable Variable (a) for Fire and Gas instruments shall be as follows:DetectionQ GasH Manual Call PointP Pressure Detection (on tubes, etc)X Fire Detection (Flame, Smoke, Heat, etc)During the Definition phase the PMT (BSF Core) will issue blocks of Serial Numbers(yyyy) for each CONTRACTOR to use on Fire and Gas instruments.In order to minimise the quantity of Serial Numbers, where Fire and Gas instrumentsare performing the same function, Option Suffix (“z”) shall be used. For example。