线路 单调谐回路谐振放大器
- 格式:doc
- 大小:67.50 KB
- 文档页数:4
实验三高频小信号谐振回路仿真实验按图1所示电路参数在Multisim中画出相应的电路。
T1
46.5MHz 0°18.6MHz
0°
注:T1的初次级电感量均为58.3nH 图1 高频谐振回路仿真实验图
一、静态分析
该电路为放大电路,首先需要选择合适的偏置电阻使其工作在放大区。
使用参数扫描法,进行在改变R5情况下的静态工作点分析。
要求R5从12kΩ~20kΩ,10个观测点,观测三极管三个极电压V2、V3、V8。
将分析结果填入下表中。
表1 R5参数扫描的静态工作点
二、谐振频率的计算
C6选择51%,即15pF,T1的初次级电感量均为58.3nH。
可得谐振频率:
三、电压增益
使用双踪示波器(oscilloscopc)观察输入和输出电压波形。
使用电压表测量输入和输出电压的有效值,得到电压增益:
四、幅频特性及通频带
用波特图仪观察频率特性,如图。
移动标尺至幅频下降3dB,得到下限频率,上限频率,通频带为:。
五、负载对频率特性曲线的影响
使用参数扫描法,进行在改变RL情况下的交流分析。
单调谐回路谐振放大器图6-3 单调谐回路谐振放大器实验电路【实验步骤】1)AS1637函数信号发生器用作扫频仪时的参数预置频率定标的目的是为频率特性设定频标。
每一频标实为某一单频正弦波的频谱图示。
(1)频率定标个数:共设8点频率,并存储于第0~7存储单元内。
存储频率依次为:0单元—7.2 MHz,1单元—8.2 MHz,2单元—9.2 MHz,3单元—10.2 MHz,4单元—11.2 MHz,5单元—12.2 MHz,6单元—13.2 MHz,7单元—14.2 MHz。
(2)频率定标方法:A.准备工作:对频率范围、工作方式、函数波形作如下设置。
●频率范围:2~20MHz范围(按“频段手动递增/减”按键调整);●工作方式:内计数(“工作方式”按键左边5个指示灯皆暗);●函数波形:正弦波;●输出幅度设置为80mV。
设置方法为:使-40dB衰减器工作,再调“输出幅度调节(AMPL)”旋钮,使输出显示为80mV(峰-峰值),并在定标过程中保持不变。
B.第0单元频率定标与存储●调“频率调谐”旋钮,使频率显示为7200(与此同时,kHz灯点亮,标明频率为7.2MHz);●单击STO键,相应指示灯点亮,再调“频率调谐”旋钮,使存储单元编号显示为0;●再单击STO键,相应指示灯变暗,表明已把7.2 MHz频率存入第0单元内。
C.第1单元频率定标与存储●调“频率调谐”旋钮,使频率显示为8200(与此同时,kHz灯点亮,标明频率为8.2MHz);●单击STO键,相应指示灯点亮,再调“频率调谐”旋钮(只需顺时针旋转1格),使存储单元编号显示为1;●再单击STO键,相应指示灯变暗,表明已把8.2 MHz频率存入第1单元内。
D.依此类推,直到把14.2 MHz频率存入第7单元内为止。
除了频率定标,还包括其他参数设置。
(1)扫描时间设置为20ms,即示波器上显示的横坐标(频率)的扫描时间为20ms。
设置方法为按“工作方式”键,使TIME灯点亮;再调“频率调谐(扫描时间)”旋钮,使扫描时。
202X年高频实验报告(一)单调谐回路谐振放大器一、实验目的1. 掌握单调谐回路的工作原理和谐振放大器的特点。
2. 能够熟练测量单调谐回路的谐振频率和带宽,并能够计算回路品质因数。
3. 能够使用单调谐回路组装谐振放大器,并观察其输出波形和增益特性。
二、实验原理1. 单调谐回路单调谐回路由电感L、电容C和电阻R串联而成,如下图所示:当串联谐振回路中的电感L、电容C和电阻R的数值满足以下条件时,回路将在某一频率处产生谐振现象,电压幅度将增大。
其中,L为电感,单位为亨,C为电容,单位为法拉,R为电阻,单位为欧姆。
谐振频率f0为:谐振频率f0与电感L和电容C有关,当L或C的数值改变时,谐振频率f0会相应改变。
谐振频率f0与电阻R有关,当电阻R变化时,谐振频率f0也会发生变化。
带宽BW为:品质因数Q为:品质因数Q与电阻R、电感L、电容C有关,当电阻R、电感L或电容C的数值改变时,品质因数Q也会发生变化。
2. 谐振放大器谐振放大器是一种利用谐振回路进行放大的电子电路,其基本原理为,将输入信号加到谐振回路的输入端,由于回路在谐振频率处有较大的放大,因此放大后的信号输出到输出端将比输入信号增加一个较大的幅度。
三、实验内容四、实验器材与设备1. 示波器2. 汽笛发生器3. 电感L4. 电容C5. 变阻器8. 喇叭9. 电源10. 万用表五、实验步骤1. 使用汽笛发生器产生一个频率为500Hz的信号。
2. 将信号输入到单调谐回路中,同时使用万用表测量回路的电压。
3. 调节变阻器的电阻,找到回路谐振频率。
4. 测量谐振频率f0,并记录下数值。
5. 测量谐振频率两侧的电压幅值,计算出回路的带宽BW,并记录下数值。
6. 计算回路品质因数Q,并记录下数值。
9. 使用示波器观察输出波形,并记录下输出幅度。
10. 测量谐振放大器的增益特性,即输入信号与输出信号之比的对数值,记录下数值。
11. 连接喇叭到谐振放大器输出端,观察喇叭的声音变化。
单调谐小信号谐振放大器设计引言谐振放大器是一种电子放大电路,它的输入和输出都是谐振频率。
在无线通信、放大放大器、滤波器和振荡器等电子设备中广泛应用。
本文将介绍单调谐小信号谐振放大器的设计方法和步骤。
一、谐振放大器的原理谐振放大器的设计基于谐振频率的放大,其原理如下:1.输入信号通过输入网络进入放大器。
2.放大器中的增益网络对输入信号进行放大。
3.输出信号通过输出网络输出。
二、单调谐小信号谐振放大器的设计步骤在进行单调谐小信号谐振放大器的设计之前,我们需要明确一些重要的参数:1.频率范围:确定需要放大的频率范围。
2.谐振频率:确定谐振频率。
3.放大增益:确定需要的放大增益。
4.设计目标:根据应用需求确定设计目标。
设计步骤如下:1.确定放大器的类型:根据应用需求选择合适的放大器类型,如共射放大器、共基放大器或共集放大器等。
2.确定大信号参数:计算输入信号的最大振幅和最大频率。
3.确定放大器的频率特性:根据输入信号的频率范围和谐振频率,计算并选择带通滤波器的元件参数。
4.进行放大器设计:根据放大增益的要求,计算并选择放大器的元件参数,如电阻、电容、电感等。
5.进行电源设计:计算并选择适当的电源电压和电源稳压电路。
6.进行仿真和优化:利用电磁仿真软件进行电路仿真,并根据仿真结果优化电路参数。
7.进行实验验证:根据设计结果制作实际电路并进行实验验证。
三、设计注意事项在进行单调谐小信号谐振放大器设计时,需要注意以下几个方面:1.输入和输出的匹配:确保输入输出网络与放大器的输入输出阻抗匹配,以提高功率传输效率。
2.稳定性:通过适当选择电容或电感等元件,可以提高放大器的稳定性。
3.线性度:在设计过程中,需要考虑放大器的线性度,以保证输入输出信号的准确性。
4.功率容量:根据应用需求确定放大器的功率容量。
结论单调谐小信号谐振放大器是一种常用的电子放大电路,其设计步骤包括确定放大器类型、大信号参数、频率特性、元件参数、电源设计,进行仿真和优化以及实验验证。
仿真一 单调谐谐振回路放大器仿真
一、绘制电路
工作原理:
高频小信号谐振放大器由LC 单调谐回路作为负载构成晶体管调谐放大器。
晶体管基极为正偏,工作在甲类工作状态,负载回路调谐在输入信号频率0f 上。
该放大电路能够对输入的高频小信号进行反相放大。
LC 调谐回路的作用主要有两个:一是选频滤波,选择放大0f f 的工作频率,抑制其他频率的信号;二是提供晶体管集电极所需的负载电阻,同时进行阻抗变换。
二、测试静态工作点
1、方法:
2、参数
1)分析三极管的直流工作点,其中 3.45937BQ U V =, 2.80383EQ U V =,
6.41516CQ U V =,判断三极管工作状态 。
2)用示波器观察输出信号的幅度,V omax= V ,放大倍数Avmax= 。
3)调节可变电容C 3的容量,观察输出信号幅度的变化,当增大或减小C 3时,输出信号幅度变 (大或小)了。
23%:=73.6U mV -峰峰
43%:=69.9
U mV
峰峰
80%:=60.7
U mV
峰峰
结论:
4、波特图
R 分析此电路的宽带与矩形系数。
改变电阻
1。
单调谐回路谐振放大器的工作原理单调谐回路谐振放大器,这听起来就像是一道高深的数学题,但其实它就像是电路中的一位“大厨”,把微弱的信号放大,让我们能听到更清晰的声音。
想象一下,生活中有时候你在街头走着,突然听见一段动人的音乐,刚开始听不太清楚,但等你靠近一点,就发现原来是街边的乐队在演奏。
这个过程,其实就是谐振放大器在帮你做的事,越靠近信号越强,声音越清晰。
这个“大厨”到底是怎么工作的呢?谐振放大器像个调味大师,它需要精准的调料——也就是电路的元件。
我们说的电阻、电感和电容就像是盐、糖和酱油,缺一不可。
它们组合在一起,形成一个特定的频率,只有当信号的频率与这个“调味”频率相吻合时,声音才会被放大。
想想看,就像你喜欢的歌曲,只有在对的时间听到,才能引起共鸣。
这里的关键是谐振,简单来说,就是当输入信号的频率正好匹配回路的谐振频率时,电流会像是打了鸡血一样,激增。
哦,这个时候你能想象那种能量吗?就像是火山爆发,瞬间的力量让你瞠目结舌。
这样一来,微弱的信号被放大到足够的强度,驱动扬声器,让你听得清清楚楚。
这种现象就像是把微小的种子培育成参天大树,瞬间让人惊艳。
再说说这个谐振回路的构造,电感和电容就像是电路的两位搭档,电感储存能量,而电容则像是个储存器,把能量释放出来。
它们在电路里相互配合,玩得不亦乐乎。
这种“你推我,我拉”的关系,像极了我们生活中朋友之间的默契。
要是有一个调皮捣蛋的元件不合作,那这道菜肯定不好吃,所以每一个元件都得各司其职,才能让整体运作得顺利。
谐振放大器还有个独特的“秘密武器”,就是增益。
增益就像是你听歌时的音量调节器,能够把微弱的信号放大到让人惊喜的程度。
想象一下,你在家里聚会,调到最大音量,瞬间整个房间都充满了音乐,这种感觉,简直爽翻天。
可是,增益不是无限制的,过了某个点就会出现失真,音质就像是喝了太多的咖啡,变得嘈杂而不清晰。
说到这里,大家可能会好奇,为什么要用单调谐回路呢?它的“单调”就是它的优点。
深圳大学实验报告课程名称:
实验项目名称:
学院:
专业:
指导教师:
报告人:学号:班级:
实验时间:
实验报告提交时间:
教务处制
(2)幅频特性测量:仍取R3=10 kΩ、R4=1 kΩ,观测放大器幅频特性,并作如下调试:
●调实验板6上的“频标幅度”旋钮,可调节频标高度;
●调实验板1上的单调谐放大器的电容C3,可调节谐振频率点;
●调AS1637的输出幅度(AMPL)旋钮,可调节频率特性高度。
最后,把谐振频率调节到10.7MHz,记下此时的频率特性,并测量相应的-3dB
频率点和带宽。
(3)观察静态工作点对单调谐放大器幅频特性的影响
改变R4的大小,可改变静态工作点。
观察并记录幅频特性曲线的变化规律。
(4)观察集电极负载对单调谐放大器幅频特性的影响
改变R3的大小,观察并记录幅频特性曲线的变化规律。
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。
实验一单调谐回路谐振放大器
一、实验目的
1.熟悉电子元器件和高频电路实验箱。
2.熟悉谐振回路的幅频特性—通频带与选择性。
3.熟悉信号源内阻及负载对谐振回路的影响,从而了解频带的扩展方法。
4.熟悉和了解单调谐回路谐振放大器的性能指标和测量方法。
二、实验仪器
1.双踪示波器
2.扫频仪
3.高频信号发生器
4.数字频率计
5.万用表
6.实验板G1
三、预习要求
1.复习谐振回路的工作原理。
2.了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间的关系。
3.实验电路中,若电感量L=1μh,回路总电容C=220pf(分布电容包括在内),计算
回路中心频率f0。
四、实验内容及步骤
1.实验电路见图1-l
(1)按图1-1所示连接
电路(注意接线前先测量
+12V电源电压,无误后,
关断电源再接线)。
(2)接线后仔细检查,
确认无误后接通电源。
2.静态测量
实验电路中选R e=1K
测量各静态工作点,计算
并填表1.1。
表1.1
原因:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。
*V B,V E是三极管的基极和发射极对地直流电压。
3. 动态研究
(l)测量放大器(谐振时)V O的动态范围(Vi的数值见表中所示)
选R=10K,R e=IK。
把高频信号发生器接到电路输入端,电路输出端接示波器,选择正常放大区的输入电压Vi,调节频率f使其为10.7MHz,调节C T使回路谐振,使输出电压幅度为最大。
此时调节Vi由峰峰值10毫伏变到210毫伏,逐点记录入V O电压,并填入表1.2。
Vi的各点测量值可根据(各自)实测情况来确定。
(2)当Re分别为500Ω、2K时,重复上述过程,将结果填入表1.2。
在同一坐标纸上画出R不同时V0的动态范围曲线,并进行比较和分析。
(3)用扫频仪调回路谐振曲线。
仍选R=10K,Re=1K。
将扫频仪射频输出送入电路输入端,电路输出接至扫频仪检波器输入端。
观察回路谐振曲线(扫频仪输出衰减档位应根据实际情况来选择适当位置),调回路电容C T,使f0=10.7MHz。
(4)测量放大器的频率特性
当回路电阻R=10K时,选择正常放大区的输入电压Vi,将高频信号发生器输出瑞接至电路输入端,调节频率f使其为10.7MHz,调节C T使回路谐振,使输出电压幅度为最大,此时的回路谐振频率f0=10.7MHz为中心频率,然后保持输入电压Vi不变,改变频率f由中心频率向两边逐点偏离,测得在不同频率f时对应的输出电压V0,将测得的数据填入表1.3。
频率偏离范围可根据(各自)实测情况来确定。
测得f0=11.7MHz。
表1.3
计算f0=10.7MHz 时的电压放大倍数及回路的通频带和Q值。
(5)改变谐振回路电阻,即R分别为2KΩ,470Ω时,重复上述测试,并填入表 2. 3比
较通频带情况。
五、实验报告要求
1.写明实验目的。
2.画出实验电路的直流和交流等效电路,计算直流工作点,与实验实测结果比较。
3.写明实验所用仪器、设备及名称、型号。
4.整理实验数据,并画出幅频特性。
(1)单调谐回路接不同回路电阻时的幅频特性和通频带,整理并分析原因。
(2)双调谐回路耦合电容C对幅频特性、通频带的影响。
从实验结果找出单调谐回路和双调谐回路的优缺点。
5.本放大器的动态范围是多少(放大倍数下降ldB的折弯点V0定义为放大器动态范围),讨论Ic对动态范围的影响。
实验二双调谐回路及通频带展宽实验
一、实验目的
1.了解双调谐回路的电路构成和工作原理。
2.了解影响谐振放大器通频带的因素,并通过实验逐一检验。
二、实验仪器
1.双踪示波器
2.扫频仪
3.高频信号发生器
4.数字频率计
5.万用表
6.实验板G1
三、预习要求
1.复习双调谐回路的工作原理。
2.了解影响谐振放大器通频带的各个因素,并在实验板1的基础上自行设计实验步骤
对通频带进行展宽并通过数据证明。
四、实验内容及步骤
1.实验线路见图2—1
(1)用扫频仪调双回路谐振曲线
接线方法同单调谐实验电路。
观察双回路谐振曲线,选C=3pf,反复调整C T l、
C T2使两回路谐振在10.7MHz。
图2-1 双调谐回路谐振放大器原理图
(2)测双调谐回路放大器的频率特性
按图2-所示连接电路,将高频信号发生器输出端接至电路输入端,选C=3pf,置高频信号发生器频率为10.7MHz,反复调整C T l、C T2使两回路谐振,使输出电压幅度为最大,此时的频率为中心频率,然后保持高频信号发生器输出电压不变,改变频率,由中心频率向两边逐点偏离,测对应的输出频率f和电压值,并填入表2.1
2.改变耦合电容C为10P,12Pf,重复上述测试,并填入表2.1
3.自行设计实验步骤对通频带进行展宽。
五、实验报告要求
1.写明实验目的。
2.双调谐回路耦合电容C对幅频特性、通频带的影响。
从实验结果找出单调谐回路和双调谐回路的优缺点。
3.对通频带展宽的思路进行整理,数据分析。