2019-2020年高中数学 1.2应用举例教案(2) 新人教版必修5
- 格式:doc
- 大小:1.32 MB
- 文档页数:8
平果二中“一课一研”教学设计表课题人教版必修5 第一章 1.2 应用举例课型新授课参备人修改建议教学目标1.能将实际问题转化为解三角形问题(难点).2.能够用正、余弦定理求解与距离、高度有关的实际应用问题(重点).参备教师签名重难点1.能将实际问题转化为解三角形问题(难点).2.能够用正、余弦定理求解与距离、高度有关的实际应用问题(重点).教法教具教学过程与自主预习:1.基线的概念与选择原则(1)定义在测量上,根据测量需要适当确定的叫做基线.(2)性质在测量过程中,要根据实际需要选取合适的,使测量具有较高的精确度.一般来说,基线越长,测量的精确度越.思考:在本章“解三角形”引言中,我们遇到这么一个问题,“遥不可及的月亮离地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?2.测量中的有关角的概念(1)仰角和俯角与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫,目标视线在水平视线下方时叫。
(如图所示).(2)方向角从指定方向线到目标方向线所成的水平角.如南偏西60°,即以正南方向为始边,顺时针方向向西旋转60°.(如图所示)板书设计思考:李尧出校向南前进了200米,再向东走了200米,回到自己家中,你认为李尧的家在学校的哪个方向?当堂练习1.如图所示,为了测量隧道口AB的长度,给定下列四组数据,测量时应选用数据( )A.α,a,b B.α,β,aC.a,b,γD.α,β,b2.小强站在地面上观察一个建在山顶上的建筑物,测得其视角为α,同时测得观察该建筑物顶部的仰角为β,则小强观测山顶的仰角为( ) A.α+βB.α-βC.β-αD.α3.某人先向正东方向走了x km,然后他向右转150°,向新的方向走了3 km,结果他离出发点恰好为 3 km,那么x的值为( )A. 3 B.2 3 C.23或 3 D.34.如图所示,为测量一树的高度,在地面上选取A,B两点,从A,B 两点测得树尖的仰角分别为30°和45°,且A,B两点之间的距离为60m,则树的高度为( )A.(30+303)m B.(30+153)m C.(15+303)m D.(15+33)m 合作探究例1.海上A,B两个小岛相距10 海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是( )A.10 3 海里B.1063海里C.52海里D.56海里三角形中与距离有关的问题的求解策略(1)解决与距离有关的问题,若所求的线段在一个三角形中,则直接利用正、余弦定理求解即可;若所求的线段在多个三角形中,要根据条件选择适当的三角形,再利用正、余弦定理求解.(2)解决与距离有关的问题的关键是转化为求三角形中的边,分析所解三角形中已知哪些元素,还需要求出哪些元素,灵活应用正、余弦定理来解决.练习:1.如图所示,为了测定河的宽度,在一岸边选定两点A ,B ,望对岸标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为________ m.【例2】(1)如图所示,从山顶望地面上C ,D 两点,测得它们的俯角分别为45°和30°,已知CD =100米,点C 位于BD 上,则山高AB 等于( )A .100米B .503米C .502米D .50(3+1)米 (2)在一幢20m 高的楼顶测得对面一塔吊顶的仰角为60°,塔基的俯角为45°,那么这座塔吊的高是( )A .20⎝⎛⎭⎪⎫1+33 m B .20(1+3)m C .10(6+2)m D .20(6+2)m[探究问题]1.已知A ,B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足.试画出符合题意的示意图.【例3】如图所示,为了测量河对岸的塔高AB ,有不同的方案,其中之一是选取与塔底B 在同一水平面内的两个测点C 和D ,测得CD =200米,在C 点和D 点测得塔顶A 的仰角分别是45°和30°,且∠CBD =30°,求塔高AB .测量高度问题的两个关注点(1)“空间”向“平面”的转化:测量高度问题往往是空间中的问题,因此先要选好所求线段所在的平面,将空间问题转化为平面问题.(2)“解直角三角形”与“解斜三角形”结合,全面分析所有三角形,仔细规划解题思路.1.本节课要掌握三类问题的解法(1)测量距离问题.(2)测量高度问题.(3)与立体几何有关的测量问题.2.解三角形的应用题时,通常会遇到两种情况(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理和余弦定理解之.(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.课后练习:1.身高相同的甲、乙两人在同一地平面上的不同方向观测20m高的旗杆,甲观测的仰角为50°,乙观测的仰角为40°,用d1,d2分别表示甲、乙两人离旗杆的距离,那么有( )A.d1>d2B.d1<d2C.d1>20 m D.d2<20 m 2.一艘船上午9:30在A处,测得灯塔S在它的北偏东30°的方向,且与它相距82海里,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°的方向,此船的航速是( )海里/小时.A.8(6+2) B.8(6-2) C.16(6+2) D.16(6-2) 3.在高出海平面200m的小岛顶上A处,测得位于正西和正东方向的两船的俯角分别是45°与30°,此时两船间的距离为________m.4.海上某货轮在A处看灯塔B在货轮北偏东75°,距离为126海里;在A处看灯塔C,在货轮的北偏西30°,距离为83海里;货轮向正北由A处航行到D处时看灯塔B在北偏东120°,求:科研处盖章审核人年月日。
1.2应用举例教材分析三维目标知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.过程与方法通过将实际问题建立数学模型,使学生充分认识到建立数学模型的重要性,进行测量,掌握数学术语及数学作图方法,体会数学的严谨性.情感态度与价值观数学来源于生活,又应用于生活,一方面,三角形知识广泛应用于实际问题中,另一方面,实际问题的解决又推动了三角形的进一步完善和发展,通过亲自动手测量,写出实习报告等体会到数学市有用的,我能用数学,也能用好数学.教学重点分析测量问题的实际情景,从而找到测量距离的方法.教学难点实际问题向数学问题转化思路的确定,即根据题意建立数学模型,画出示意图.教学建议解三角形知识在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识.对于解三角形的实际问题,我们要在理解一些术语(如坡角、仰角、俯角、方位角、方向角等)的基础上,正确地将实际问题中的长度、角度看成三角形相应的边和角,创造可解的条件,综合运用三角函数知识以及正弦定理和余弦定理来解决.学习这部分知识有助于增强学生的数学应用意识和解决实际问题的能力.本节的例1、例2是两个有关测量距离的问题.例1是测量从一个可到达的点到一个不可到达的点之间的距离问题,例2是测量两个不可到达的点之间距离的问题.对于例1可以引导学生分析这个问题实际上就是已知三角形两个角和一边解三角形的问题,从而可以用正弦定理去解决.对于例2首先把求不可到达的两点A、B之间的距离转化为应用余弦定理求三角形的边长的问题,然后把求未知的BC和AC的问题转化为例1中测量可到达的一点与不可到达的一点之间的距离问题.导入新课一湖北省十堰市郧县柳坡镇马蹄沟村,是一个世代被大山阻隔的小山村,在无法承载贫穷重负和生命重压之下,毅然决然以一己之力,用比较落后的方式,开始了一段长达五年的艰难的开山之旅。
他们经历了令人难以想象的风险,终于打通了一条长400米的隧洞,从而大大拉近了闭塞小山村与现代大都市的时代距离。
1.2 应用举例学习目标:1.通过回顾正弦定理、余弦定理的表达式及文字语言的叙述,进—步熟悉正、余弦定理的内容,作用及所解三角形的类型.能够联系勾股定理、三角形面积定理及三角形内角和公式等有关三角形问题灵活地解三角形.2.善于利用分类讨论的思想、先易后难、逐层推进的思想解决一些繁、难三角形问题,把对学生的思维训练贯穿整节课的始终.重点难点重点:灵活选用正弦定理、余弦定理并结合面积公式进行有关的三角形中的几何计算.难点:利用正、余弦定理进行边角互化及正弦、余弦定理与三角形有关性质的综合应用.知识点:三角形的面积公式问题导思:如图,△ABC中,边BC、CA、AB上的高分别记为h a,h b和h c.1.你能用△ABC 的边角分别表示h a ,h b ,h c 吗? 答:h a =b sin C =c sin B .h b =c sin A =a sin C .h c =b sin A =a sin B .2.你能用边a 与高h a 表示△ABC 的面积吗?答:S △ABC =12ah a =12ab sin C =12ac sin B .三角形面积公式已知△ABC 中,a ,b ,c 所对的角分别为A ,B ,C ,其面积为S ,则S = = = . 12ab sin C 12bc sin A 12ca sin B类型1:三角形中的面积计算例1:在△ABC中,已知∠C=120°,AB=23,AC=2,求△ABC的面积.解:由正弦定理AB sin C =AC sin B, ∴sin B =AC sin C AB =2sin 120°23=12. 因为AB >AC ,所以∠C >∠B ,∴∠B =30°,∴∠A =30°.所以△ABC 的面积S =12AB ·AC ·sin A =12·23·2·sin 30°= 3.变式训练1:在△ABC中,∠A=60°,AB=2,且△ABC的面积S△ABC=32,则边BC的长为________.【解析】由S △ABC =32,得12AB ·AC sin A =32, 即12×2AC ×32=32,∴AC =1.由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A =22+12-2×2×1×12=3. ∴BC = 3.【答案】 3类型2:三角形中的证明问题例2:在△ABC中,求证:a(sin B-sin C)+b(sin C-sin A)+c(sin A-sin B)=0.解:由正弦定理asin A=bsin B=csin C,则a sin B=b sin A,a sin C=c sin A,b sin C=c sin B,所以左边=a sin B-a sin C+b sin C-b sin A+c sin A-c sin B =(a sin B-b sin A)+(b sin C-c sin B)+(c sin A-a sin C)=0+0+0=0=右边,所以原式成立.变式训练2:在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A-2cos Ccos B=2c-ab.求证sin Csin A=2.证明:由正弦定理,设a sin A =b sin B =c sin C=k , 则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B, 所以cos A -2cos C cos B =2sin C -sin A sin B, 即(cos A -2cos C )sin B =(2sin C -sin A )cos B .化简可得sin(A +B )=2sin(B +C ),又∠A +∠B +∠C =π,所以sin C =2sin A ,因此sin C sin A=2.类型3:三角形中的综合问题例3:△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,若a 、b 、c 成等比数列且cos B =35.(1)求cos Asin A +cos Csin C 的值;(2)设BA →·BC →=3,求a +c 的值.解:(1)由已知b 2=ac ,及正弦定理得sin 2B =sin A sinC ,由cos B =35,则sin B =45.cos A sin A +cos C sin C =sin C cos A +cos C sin A sin A sin C=sin (A +C )sin A sin C =sin B sin A sin C =1sin B =54.(2)由BA →·BC →=3,得ac cos B =3,ac =3cos B =5,由余弦定理:b 2=a 2+c 2-2ac ×35, 得ac =a 2+c 2-65ac , a 2+c 2+2ac =215ac =21, ∴(a +c )2=21.∴a +c =21.变式训练3:△ABC中,∠A、∠B、∠C的对边分别为a、b、c,且2b·cos A=c·cos A+a·cos C,(1)求∠A的大小;(2)若a=7,b+c=4,求△ABC的面积.解:(1)由已知条件得2cos A sin B =sin A cos C +cos A sin C =sin(A +C )=sin B .又∵sin B ≠0,∴cos A =12. 又∵0°<∠A <180°,∴∠A =60°.(2)由余弦定理得7=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc =(b +c )2-3bc , 将b +c =4代入,得bc =3.故△ABC 面积为S =12bc sin A =334.课堂小结:1.对于三角形中的几何计算问题,首先要把所求的量转化到三角形中,然后选用正弦定理、余弦定理解决.求三角形的面积的问题,先观察已知什么,尚缺什么,用正弦定理和余弦定理算出需要的元素,就可以求出三角形的面积.证明三角恒等式的关键是用正、余弦定理实现边角转化.2.许多问题既可用正弦定理也可用余弦定理解决,甚至可以两者兼用,当一个公式求解受阻时要及时考虑其他公式列式.3.解三角形问题除了应用正、余弦定理外,也经常用到内角和定理以及三角变换公式中的平方关系、两角和与差的正、余弦公式等.当堂检测:1.在△ABC 中,∠A =60°,AB =1,AC =2,则S △ABC 的值为( )A .12B .32C .3D .2 3【解析】S △ABC =12AB ·AC sin A =sin 60°=32.【答案】B2.△ABC中,若∠A=60°,b=16,此三角形的面积S=2203,则a的值为()A.20 6 B.25C.55 D.49【解析】由12bc sin A=2203,∴c=55.又a2=b2+c2-2bc cos A=2 401.∴a=49. 【答案】D3.边长为a的等边三角形的高为________.【解析】高h=a sin 60°=3 2a.【答案】3 2a4.已知△ABC 中,AB =3,BC =13,AC =4,求AC 边上的高. 解:设AC 边上的高为h ,由余弦定理知cos B =32+(13)2-162×3×13=1313,∴sin B =23913, ∴S =12×3×13×23913=332×2=3 3. 又S =12×4×h ,∴2h =33,∴h =332, ∴AC 边上的高为332.5.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,cos A =13,a =3,探究△ABC 的面积S 的最大值.解:∵cos A=13,∴sin A=223,由正弦定理得b=asin A·sin B=364sin B,c=asin A·sin C=364sin C,∴bc=(364)2sin B sin C=278·12[cos(B-C)-cos(B+C)],又∵cos(B +C )=-cos A =-13, ∴bc =2716[cos(B -C )+13]≤94,∴S =12bc sin A ≤324. 故△ABC 的面积S 的最大值为324.。
2019-2020学年高中数学 1.2 应用举例学案 新人教B 版必修5在△ABC 中用余弦定理求ABAB =a sin CB +C①AC =a sin∠ADCACD +∠ADC ;②BC =a sin∠BDCBCD +∠BDC;③AB =AB =a sin∠BDC ×tan∠ACB BCD +∠BDC4.解三角形应用题的一般步骤(1)读懂题意,理解问题的实际背景,明确已知与所求,理清量与量之间的关系; (2)根据题意画出示意图,将实际问题抽象成解三角形模型; (3)正确选择正、余弦定理求解;(4)将三角形的解还原为实际问题,注意实际问题中的单位、近似计算的要求. 可用下图描述:一、测量距离问题方法链接:测量平面距离时,往往把要测量的距离化为某一个三角形的一条边,再运用正弦定理或余弦定理加以求解.当涉及的三角形较多时,应寻求最优解法.例1如图所示,某炮兵阵地位于A 点,两观察所分别位于C ,D 两点.已知△ACD 为正三角形,且DC = 3 km ,当目标出现在B 时,测得∠CDB =45°,∠BCD =75°,求炮兵阵地与目标的距离是多少?(结果保留根号)分析 要求AB 的长,可转化为解△ABC 或△ABD ,不管在哪个三角形中,AB 边所对的角∠ACB 或∠ADB 都是确定的,AC =AD =CD =3,所需要的是BC 边(或BD 边),所以需先求BC 边(或BD 边),可在△BCD 中,结合余弦定理求解.解 在△BCD 中,∠CDB =45°,∠BCD =75°, ∴∠CBD =180°-∠BCD -∠CDB =60°.由正弦定理,得BD =CD sin 75°sin 60°=12(6+2).在△ABD 中,∠ADB =45°+60°=105°, 由余弦定理,得AB 2=AD 2+BD 2-2AD ·BD cos 105°=3+14(6+2)2+2×3×12(6+2)×14(6-2)=5+23.∴AB =5+2 3 (km).∴炮兵阵地与目标的距离是5+2 3 km. 二、测量高度问题方法链接:1.与测量高度有关的实际应用题主要有两类:一类是与铅垂线有关的问题,解决这类问题的关键是勾画出平面图形,再分析有关三角形中哪些边与角已知,要求高度,需要知道哪些边与角,其次要注意正弦定理、余弦定理以及解直角三角形的应用;另一类是立体问题,解决这类问题的关键是依据题意画好立体图形.2.与测量高度有关的问题多数会涉及到直角三角形中线段的计算,注意直角三角形中边角关系的运用.3.解决测量高度应用题易错的地方是:对有关术语没有正确理解,从而无法画出有关图形.例2 (1)如图所示,在山底测得山顶仰角∠CAB =45°,沿倾斜角为30°的斜坡走1 000米至S 点,又测得山顶仰角∠DSB =75°,求山高BC ;(2)某人在塔的正东沿着南偏西60°的方向前进40米以后,望见塔在东北方向,若沿途测得塔的最大仰角为30°,求塔高.解 (1)∵∠SAB =∠CAB -∠CAS =45°-30°=15°, ∠SBA =∠ABC -∠SBC =45°-15°=30°, ∴∠ASB =180°-30°-15°=135°.在△ABS 中,AB =AS ·sin 135°sin 30°=1 000×2212=1 0002(米).∴BC =AB ·sin 45°=1 0002×22=1 000(米). 答 山高BC 为1 000米. (2)依题意画出图,某人在C 处,AB 为塔高,沿CD 前进,CD =40米,此时∠DBF =45°,从C 到D 测塔的仰角,只有B 到CD 最短时,仰角才最大,这是因为tan∠AEB =ABBE,AB 为定值,要求出塔高AB ,必须先求BE ,而要求BE ,须先求BD (或BC ).在△BDC 中,CD =40(米), ∠BCD =30°,∠DBC =135°.由正弦定理得CD sin∠DBC =BDsin∠DCB ,∴BD =40sin 30°sin 135°=202(米).在Rt△BED 中,∠BDE =180°-135°-30°=15°.∴BE =DB sin 15°=202×6-24=10(3-1) (米).在Rt△ABE 中,∠AEB =30°,∴AB =BE tan 30°=103(3-3)(米).故所求的塔高为103(3-3)米.三、测量角度问题方法链接:对于有些与角度有关的实际问题,我们无法直接测量其角度,则需要在实际问题中构造相关三角形,通过解三角形,求出相关角度.例3 一缉私艇发现在北偏东45°方向且距离12 n mile 的海面上有一走私船正以10 n mile/h 的速度沿东偏南15°方向逃窜.缉私艇的速度为14 n mile/h ,若要在最短的时间内追上该走私船,缉私艇应沿北偏东45°+α的方向去追,求追及所需的时间和α角的正弦值.解 设A ,C 分别表示缉私艇,走私船的位置,设经过x 小时后在B 处追上,则有AB =14x ,BC =10x ,∠ACB =120°.∴(14x )2=122+(10x )2-240x cos 120°,∴x =2,AB =28,BC =20,sin α=20s in 120°28=5314.∴所需时间为2小时,sin α=5314.四、三角形中的求值问题方法链接:涉及三角形中的计算问题时,一些基本关系式经常用到,这些关系式是: (1)A +B +C =π,A =π-(B +C ); (2)A +B 2+C 2=π2,B +C 2=π2-A 2;(3)sin C =sin (A +B ),cos(A +B )=-cos C ; (4)tan(A +B )=-tan C ,tan A +tan B +tan C =tan A tan B tan C ;(5)sin C 2=cos A +B 2,cos C 2=sin A +B2,tan A +B 2·tan C 2=1;(6)A >B >C ⇔sin A >sin B >sin C .例4 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且满足(2a -c )cos B =b cos C . (1)求角B 的大小;(2)若b =7,a +c =4,求△ABC 的面积. 解 (1)在△ABC 中,由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C , 代入(2a -c )cos B =b cos C ,整理得2sin A cos B =sin B cos C +sin C cos B , 即2sin A cos B =sin(B +C )=sin A , 在三角形中,∵sin A >0,∴2cos B =1, ∵B 是三角形的内角,∴B =60°. (2)在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac ·cos B =(a +c )2-2ac -2ac ·cos B , 将b =7,a +c =4,代入整理,得ac =3.故S △ABC =12ac sin B =32sin 60°=334.五、证明平面几何问题 方法链接:正弦定理和余弦定理是研究三角形的重要工具,在处理平面几何问题中有着广泛的应用.一些三角形中重要线段的求解和著名定理的证明都离不开正、余弦定理的综合运用.例5 已知凸四边形的边长分别为a 、b 、c 、d ,对角线相交成45°角,若S 为四边形的面积,求证:S =14(a 2-b 2+c 2-d 2).证明 设凸四边形ABCD 的对角线相交于点O ,设AO 、CO 、BO 、DO 分别为m 、n 、p 、q ,则由面积公式得:S =12(mp +pn +nq +qm )sin 45°由余弦定理得a 2=m 2+p 2+2mp cos 45°① b 2=n 2+p 2-2np cos 45°② c 2=n 2+q 2+2nq cos 45°③ d 2=q 2+m 2-2qm cos 45°④由①-②+③-④得:a 2-b 2+c 2-d 2=2(mp +pn +nq +qm )cos 45° ∵(mp +pn +nq +qm )sin 45°=2S . ∴a 2-b 2+c 2-d 2=4S ,即S =14(a 2-b 2+c 2-d 2).1.忽略角的隐含范围而致错例1 在△ABC 中,B =3A ,求b a的取值范围. [错解] 由正弦定理得 b a =sin B sin A =sin 3A sin A=A +2A sin A =sin A cos 2A +cos A sin 2Asin A=cos 2A +2cos 2A =4cos 2A -1.∵0≤cos 2A ≤1,∴-1≤4cos 2A -1≤3, ∵b a >0,∴0<b a≤3.[点拨] 忽略了三角形内角和为180°,及角A 、B 的取值范围,从而导致b a取值范围求错.[正解] 由正弦定理得b a =sin B sin A =sin 3Asin A=A +2A sin A =sin A cos 2A +cos A sin 2Asin A=cos 2A +2cos 2A =4cos 2A -1 ∵A +B +C =180°,B =3A .∴A +B =4A <180°,∴0°<A <45°.∴22<cos A <1,∴1<4cos 2A -1<3,∴1<b a<3. 温馨点评 解三角问题,角的取值范围至关重要.一些问题,角的取值范围隐含在题目的条件中,若不仔细审题,深入挖掘,往往疏漏而导致解题失败.2.忽略角的大小隐含关系而致错例2 在△ABC 中,已知cos A =513,sin B =35,则cos C 的值为( )A.1665 B.5665 C.1665和5665 D .-1665[错解] ∵cos A =513,0<A <π2,∴sin A =1213.∵sin B =35,0<B <π,∴cos B =±45.当cos B =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1213×35-513×45=1665. 当cos B =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1213×35-513×⎝ ⎛⎭⎪⎫-45=5665,选C. [点拨] 本题解答中关键一步是sin A >sin B ⇒∠A >∠B .从而确定cos B =45而不是cosB =±45,否则会错选C.事实上,在△ABC 中,我们可以由正弦定理可证得sin A >sin B 的充要条件是A >B .[正解] ∵cos A =513,0<A <π2,∴sin A =1213.∵sin A >sin B ,从而a >b ,故∠A >∠B ,∴cos B =45,∴cos C =-cos(A +B )=sin A sin B -cos A cos B =1665,∴选A.3.忽略审题环节,画图不准而致错例3 在湖面上高h m 处,测得云C 的仰角为α,而湖中云之影(即云在湖中的像)的俯角为β,试证:云高为h ·α+ββ-αm.[点拨] 本题常因审题不准,题意不清画不出合乎题意图形而放弃或因画错图形而致错.[正解] 分析 因湖面相当于一平面镜,故云C 与它在湖中的影D 关于湖面对称.设云高为CM =x ,则由△ADE 可建立含x 的方程,解出x 即可.解 如图所示,设在湖面上高为h m 处的A ,测得C 的仰角为α,而C 在湖中的像D 的俯角为β,CD 与湖面交于M ,过A 的水平线交CD 于E ,设云高CM =x ,则CE =x -h ,DE =x +h ,AE =(x -h )cot α.又AE =(x +h )cot β,所以(x -h )cot α=(x +h )cot β.解得x =tan β+tan αtan β-tan α·h =h ·α+ββ-α(m).例在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图1所示)的东偏南θ (cos θ=210)方向300 km 的海面P 处,并以20 km/h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km ,并以10 km/h 的速度不断增大.问几小时后该城市开始受到台风的侵袭?解 方法一 (构建三角形,解三角形)设在时刻t (h)台风中心为Q ,此时台风侵袭的圆形区域半径为10t +60 (km),如图2所示.若在时刻t 城市O 受到台风的侵袭,则OQ ≤10t +60. 由余弦定理知OQ 2=PQ 2+PO 2-2·PQ ·PO ·cos∠OPQ . 由于PO =300,PQ =20t , cos∠OPQ =cos(θ-45°)=cos θcos 45°+sin θsin 45°=210×22+ 1-2102×22=45, 故OQ 2=(20t )2+3002-2×20t ×300×45=202t 2-9 600t +3002.因此202t 2-9 600t +3002≤(10t +60)2,即t 2-36t +288≤0,解得12≤t ≤24.答 12小时后该城市开始受到台风的侵袭. 方法二 (构建动圆,利用点圆关系)如图3所示,建立坐标系,以O 为原点,正东方向为x 轴正向.在时刻t (h)台风中心P (x t ,y t )的坐标为 ⎩⎪⎨⎪⎧x t =300×210-20×22t ,y t=-300×7210+20×22t .此时台风侵袭的区域是(x -x t )2+(y -y t )2≤[r (t )]2, 其中r (t )=10t +60.若在t 时刻城市O 受到台风的侵袭,则有(0-x t )2+(0-y t )2≤(10t +60)2,即⎝⎛⎭⎪⎫300×210-20×22t 2+⎝⎛⎭⎪⎫-300×7210+20×22t 2≤(10t +60)2,即t 2-36t +288≤0,解得12≤t ≤24.答 12小时后该城市开始受到台风的侵袭.1.如图,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.分析 为求∠DEF 的余弦值,应先求出线段DE 、DF 、EF 的长,求这三条线段的长时要充分构造直角三角形.解 作DM ∥AC 交BE 于点N ,交CF 于点M . DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m)EF =BE -FC2+BC 2=902+1202=150(m)在△DEF 中,由余弦定理的变形公式,得cos∠DEF =DE 2+EF 2-DF 22DE ·EF=1302+1502-102×2982×130×150=1665.赏析 本题是2009年宁夏、海南高考试题,有一定计算量,但难度不大,涉及到的三条线段DE 、DF 、EF 均可以借助直角三角形计算.2.如图,某市拟在长为8 km 的道路OP 的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM ,该曲线段为函数y =A sin ωx (A >0,ω>0),x ∈[0,4]的图象,且图象的最高点为S (3,23);赛道的后一部分为折线段MNP ,为保证参赛运动员的安全,限定∠MNP =120°.(1)求A ,ω的值和M ,P 两点间的距离;(2)应如何设计,才能使折线段赛道MNP 最长?解 (1)依题意,有A =23,T4=3,又T =2πω,∴ω=π6.∴y =23sin π6x .当x =4时,y =23sin 2π3=3,∴M (4,3).又P (8,0),∴MP =42+32=5. (2)在△MNP 中,∠MNP =120°,MP =5. 设∠PMN =θ,则0°<θ<60°. 由正弦定理得 MP sin 120°=NP sin θ=MN-θ,∴NP =1033sin θ,MN =1033sin(60°-θ),∴NP +MN =1033sin θ+1033sin(60°-θ)=1033⎝ ⎛⎭⎪⎫12sin θ+32cos θ=1033sin(θ+60°). ∵0°<θ<60°,∴60°<θ+60°<120°,∴当θ=30°时,折线段赛道MNP 最长.即将∠PMN 设计为30°时,折线段赛道MNP 最长.赏析 本题考查了三角函数的图象与性质以及解三角形等基础知识,旨在引导学生利用所学知识分析和解决实际问题.。
第一章解三角形1.2应用举例1.2应用举例(第1课时)学习目标1.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语.2.体会数学的应用价值;同时提升运用图形、数学符号表达题意和应用转化思想解决数学问题的能力.合作学习一、设计问题,创设情境问题1:在日常生活和工农业生产中,为了达到某种目的,常常想测得一个点与另一个不可到达的点间的距离或在远处的两个物体之间的距离,这样的想法能实现吗?如何实现呢?例如:一个世代被大山阻隔的小山村,在无法承载贫穷重负和生命重压之下,毅然决然以一己之力,用比较落后的方式,开始了一段长达五年的艰难的开山之旅.他们经历了令人难以想象的风险,终于打通了一条长400米的隧道,从而大大拉近了闭塞小山村与现代大都市的时代距离.试思考,在隧道未打通之前,我们如何测量小山村与大都市的距离?二、信息交流,揭示规律学习了正弦定理、余弦定理后,上述所提的问题是能够实现的.有时由于条件所限,需要测量像一个点与河对面一点或船到礁石这类不可到达点的距离时,一般作法是在河这边或主航道上发生一段位移,从两个不同地点测出到这个不能到达点的视角及这段位移的长度,从而通过计算得出答案.该作法只将实际问题转化为一个数学问题:已知一个三角形的两角及夹边,要求这个三角形的其中一边,显然只要根据正弦定理,就可以达到目的.例如:当我们想在河这边测出河对面两点之间距离的时候,往往可以这样做:在河这边的两个不同的地点分别测出望河对面两点及另一地点的视角,再结合这两个地点之间的距离,通过应用正弦定理、余弦定理计算求得河对面两点之间的距离.解决实际测量问题的过程一般要充分认真理解题意,正确作出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.三、运用规律,解决问题【例1】如图,设A,B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=51°,∠ACB=75°.求A,B两点的距离(精确到0.1m).问题1:在△ABC中,根据已知的边和对应角,运用哪个定理比较恰当?问题2:运用该定理解题还需要哪些边和角呢?请学生回答.四、变式训练,深化提高【例2】如图,A,B两点都在河的对岸(不可到达),设计一种测量A,B两点间距离的方法.五、限时训练1.海上有A,B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°视角,则B,C间的距离是()A.10海里B.海里C.5海里D.5海里2.某人朝正东方向走x km后,向右转150°,然后朝新方向走3km,结果他离出发点恰好km,那么x的值为.3.如图,设A,B两点在河的两岸,一测量者在点A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为m.4.为了测量河的宽度,在一岸边选定两点A和B,望对岸的标记物C,测得∠CAB=45°,∠CBA=75°,AB=120m,求河的宽度.六、反思小结,观点提炼解三角形应用题的一般步骤:参考答案一、略二、略三、运用规律,解决问题【例1】解:根据正弦定理,得,≈65.7(m).AB=--答:A,B两点间的距离为65.7米.问题1:从题中可以知道角A和角C,所以角B就可以知道,又因为AC可以量出来,所以应该用正弦定理.问题2:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边.四、变式训练,深化提高【例2】解:测量者可以在河岸边选定两点C,D,测得CD=a,并且在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ,在△ADC和△BDC中,应用正弦定理得,AC=-BC=.-计算出AC和BC后,再在△ABC中,应用余弦定理计算出A,B两点间的距离AB=-.五、限时训练1.D2.或23.504.解:如图,在△ABC中,由已知,可得AC==20(3)(m),设C到AB的距离为CD,CD=AC=20(+3)(m),所以河的宽度为20(+3)m.六、反思小结,观点提炼(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解三角形,求得数学模型的解;(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.。
1.2应用举例第2课时预习案【学习目标】1.2.学会用正弦定理、有关的实际问题的方法。
3分析问题和解决问题的能力。
.【重点】 : 问题。
【难点】 将预习不能解决的问题中标出来,并写到后面“我的疑惑”处.Ⅰ.相关知识 仰角和俯角在视线和水平线所成的角中,视线在 上方的角叫仰角,在 下方的角叫俯角(如图①).2)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如②).Ⅱ.教材助读1. 课本例3可转化为“已知任意两角与 ”的解三角形问题,可利用 定理得到解决。
2. 在测量上,我们根据测量需要适当确定的线段叫做 ,一般来说, 越长,测量的精度 。
例3中 是基底。
【预习自测】如图所示,B 、C 、D 在地平面同一直线上,DC =10 m ,从D 、C 两地测得A 的仰角分别为30°、45°,则点A 距地面的距离等于( )A .10 mB .5 3 mC .5(3-1) mD .5(3+1) m图1【我的疑惑】探究案Ⅰ.质疑探究——质疑解惑、合作探究探究点1:测量底部不能到达的某物体的高度(重点) 【例1】 如图2,测量河对岸的塔高AB 时,可以 选与塔底在同一水平面内的两个测量点C 与D. 现测得∠BCD=α,∠BDC=β,CD=s,并在点C 处 测得塔顶A 的仰角为θ,求塔高AB.图2【规律方法总结】解决该类问题时,一定要准确理解和的概念.Ⅱ.我的知识网络图→训练案一、基础巩固------把简单的事做好就叫不简单!2.如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离.二、综合应用-----挑战高手,我能行!3.(09·宁夏海南)如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C三点进行测量.已知AB=50 m,BC=120 m,于A处测得水深AD=80 m,于B处测得水深BE=200 m,于C处测得水深CF=110 m,求∠DEF的余弦值.1.在某点B处测得建筑物AE的顶端A的仰角为θ,沿BE方向前进30 m至点C处测得顶端A的仰角为2θ,再继续前进103 m至D点,测得顶端A的仰角为4θ.则θ的值为( )A.15°B.10°C.5°D.20°三、拓展探究题------战胜自我,成就自我!4.为了测量两山顶M,N间的距离,飞机沿水平方向在A,B,M,N在同一个铅垂平面飞机能够测量的数据有俯角和A,B间的距离。
1.2 应用举例【课题】:1.2.3解三角形在三角形面积计算上的应用【学情分析】:在学习本节之前学生能解决直角三角形以及已知三角形的一边和这边上的高的三角形面积计算问题。
学生学了正弦定理和余弦定理并积累了一些解三角形的知识后,对三角形的面积的计算就可以向学生提出更高的要求了。
因此,在学生已掌握了正弦定理、余弦定理的基础上,让学生探讨解决“已知二边及夹角和已知三边求三角形面积”的问题,就有了可能。
【教学目标】:(1)知识与技能:使学生掌握在“已知二边及夹角”和“已知三边”的条件下求三角形面积的方法;提高计算和使用计算工具的能力;进一步领会方程的思想,提高解决问题尤其是实际问题的能力(2)过程与方法:通过合作与探究,加深对正弦定理、余弦定理的理解,提高方程思想在实际中的运用能力(3)情态与价值:体验探求的乐趣,体会正弦定理、余弦定理的结构美,激发并提高学生学习数学的热情和兴趣【教学重点】:(1)公式的发现和它的灵活应用(2)方程思想的运用【教学难点】:在不同的条件下灵活的应用公式【课前准备】:Powerpoint或投影片【教学过程设计】:教学环节教学活动设计意图创设情景问题1:在三角形ABC中,a=4,b=3,C = 60°,则ABCS∆=______ 生:求出对应边上的高,再利用12S a h=⋅求解∵AC=b,BC=a,作AD⊥BC,则AD为三角形BC边上的高∴AD=bsinC1sin2ABCS ab C=创设情景,引出问题,让学生主动学习,积极思考,由浅入深,寻求答案,灵活应用例1:在△ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2)(1)已知a=14.8cm,c=23.5cm, B=148.50;(2)已知B=62.70,C=65.80,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm.例2:如图,在某市进行环境建设中,要把一个三角形的区域改造成市内公园,经过测量得到这个三角形区域的三条边分别为68cm ,88cm,127cm,这个区域的面积是多少?(精确到0.1cm2)例3:在△ABC中,求证:(1)222222sin sinsina b A Bc C++=(2)2222(cos cos cos)a b c bc A ca B ab C++=++例1,2是在不同条件下求三角形的面积问题,归根到底是灵活运用正弦定理和余弦定理,应让学生归纳总结方法并提高计算能力,例3是边化角或角化边思想的体现练一练1.在△ABC中,A=600,b=1,3ABCS=,则△ABC外接圆的半径是_________________.2. 在△ABC中,已知B=600,cosC=13,AC=36,则△ABC的面积是____3.在ABC∆中,193,32,222==++=acbbccba,求ABC∆的面积4.在△ABC中,2sin cos2A A+=,AC=2,AB=3,则△ABC的面积是_________________.通过练习进一步熟悉公式,灵活地针对不同的条件解决问题,从而增加学生学好数学的兴趣和信心基础练习:1、在△ABC 中,a=2,A=030,C=045,则△ABC 的面积是_________________ 解:由正弦定理sin sin a bA B=有sin 2sin1051)sin sin 30a B b A === ∴11sin 21)1222ABC S ab C ∆==⋅⋅= 2、在△ABC 中,a,b,c 分别为A ,B ,C的对边,且tan tan tan A B A B +=⋅,a=4,b+c=5,则△ABC 的面积为________________________35. 3 C.D.222A 解:由tan tan tan A B A B ++=⋅得tan tan 1tan tan A BA B+=-⋅∴ A+B=23π C=3π又 ∵ 22222cos 1645c a b ab C b bb c ⎧=+-=+-⎨+=⎩∴ b=32113sin 4sin 2223ABCS ab C π==⋅⋅⋅=∴选C3、在△ABC 中,已知a 比b 长2,b 比c 长2,且最大角的正弦是32,则△ABC 的面积是____________________解:由已知可知A 是最大角,所以3sin 2A =A=0060120或 又222(4)(2)2(2)cos c c c c c A +=++-⋅⋅+当A=0120时,上式化为260c c --=,解得c=3或c=-2(舍去) 当A=060时,上式无意义∴ 113153sin 532224ABCSbc A ==⋅⋅⋅= 4、在△ABC 中,a,b,c 分别为A ,B ,C 的对边的长,S 是△ABC 的面积,若a=4,b=5,S=53,求c 的长度。
1.2 应用举例
知识1:方位角与方向角
顺时针方向
0°~360°
90°
向西正南
夹角
仰角
俯角
∠1 ∠2
坡面的垂直高度和水平宽度的比 水平面
知识2
:俯角、仰角与坡角
类型1:确定航向的角度问题
类型2:不确定航向的角度问题
课堂小结:
1.测量角度问题是指无法直接用量角器和测角仪测量角度的求解问题.在实际生活中,要测量角的大小,求三角形中角度的大小,求不能直接测得的角,求轮船航行时航速与航向等问题都可以结合正、余弦定理,通过解三角形解决.2.在解决与角度有关的题目时,要搞清仰角、俯角、坡角、方位角和方向角的含义,合理的构造三角形把实际问题转化为数学问题加以解决.
【答案】B
【答案】B
【答案】16。
1. 2应用举例第二课时:测量高度问题一、教学目标:1、能力要求:①综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题; ②体会数学建摸的基本思想,掌握求解实际问题的一般步骤;③能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力2、过程与方法:利用仰角和俯角等条件测量底部不可到达的建筑物高度这类问题不能直接用解直角三角形的方法解决,但常常用正弦定理和余弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题。
二、教学重点、难点:重点:综合运用正弦定理、余弦定理等知识和方法解决一些实际问题。
难点:底部不可到达的建筑物高度的测量。
三、名词解释:1、仰角:朝上看时,视线与水平面夹角为仰角。
2、俯角:朝下看时,视线与水平面夹角为俯角。
3、方位角:从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角。
4、坡度:坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率。
四、例题讲解:例1、AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点。
设计一种测量建筑无高度AB 的方法。
解:选择一条水平基线HG ,使H ,G ,B 三点在同一条直线上。
由在H ,G 两点用测角仪器测得A 的仰角分别为βα,,a CD =,测角仪器的高度为h 。
在ACD ∆中,βα-=∠CAD∴在ACD ∆中,由正弦定理可得:在ACE ∆中,()βαβαα-==sin sin sin sin a AC AE 例2、在某建筑物顶部有一铁塔,在铁塔上B 处测得地面上一点A 的俯角 45=α,在塔底C 处测得A 处的俯角30=β。
已知铁塔BC 部分高为30m ,求出此建筑物的高度CD 。
(精确到m 01.0)解:由已知条件可知 4590=-=∠αABC , 6090=-=∠βACD ,在ABC ∆中,由正弦定理可得:()13304262230sin sin +=-⨯=∠∠=BAC ABC BC AC , 在直角ACD ∆中, 60,90=∠+∠=∠=∠CAB ABC ACD ADC所以,山的高度约为98.40米。
2019-2020年高中数学 1.2应用举例教案(2)新人教版必修5●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。
其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。
对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力●教学重点实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解●教学难点根据题意建立数学模型,画出示意图●教学过程Ⅰ.课题导入1、[复习旧知]复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、[设置情境]请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。
如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。
于是上面介绍的问题是用以前的方法所不能解决的。
今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。
Ⅱ.讲授新课(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解[例题讲解](2)例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,BAC=,ACB=。
求A、B两点的距离(精确到0.1m)启发提问1:ABC中,根据已知的边和对应角,运用哪个定理比较适当?启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。
分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。
解:根据正弦定理,得=AB ====≈ 65.7(m)答:A 、B 两点间的距离为65.7米变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30,灯塔B 在观察站C 南偏东60,则A 、B 之间的距离为多少?老师指导学生画图,建立数学模型。
解略:a km例2、如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。
分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。
首先需要构造三角形,所以需要确定C 、D 两点。
根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离。
解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得BCA=,ACD=,CDB=,BDA =,在ADC 和BDC 中,应用正弦定理得AC = =BC = =计算出AC 和BC 后,再在ABC 中,应用余弦定理计算出AB 两点间的距离AB = αcos 222BC AC BC AC ⨯-+分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。
变式训练:若在河岸选取相距40米的C 、D 两点,测得BCA=60,ACD=30,CDB=45,BDA =60 略解:将题中各已知量代入例2推出的公式,得AB=20评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。
学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。
Ⅲ.课堂练习课本第14页练习第1、2题Ⅳ.课时小结解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解Ⅴ.课后作业课本第22页第1、2、3题●板书设计●授后记课题: §1.2解三角形应用举例第二课时授课类型:新授课●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题过程与方法:本节课是解三角形应用举例的延伸。
采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架。
通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法。
教学形式要坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯。
作业设计思考题,提供学生更广阔的思考空间情感态度与价值观:进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力●教学重点结合实际测量工具,解决生活中的测量高度问题●教学难点能观察较复杂的图形,从中找到解决问题的关键条件●教学过程Ⅰ.课题导入提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题Ⅱ.讲授新课[范例讲解]例1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。
分析:求AB长的关键是先求AE,在ACE中,如能求出C点到建筑物顶部A的距离CA,再测出由C点观察A的仰角,就可以计算出AE的长。
解:选择一条水平基线HG,使H、G、B三点在同一条直线上。
由在H、G两点用测角仪器测得A的仰角分别是、,CD = a,测角仪器的高是h,那么,在ACD中,根据正弦定理可得AC =AB = AE + h= AC+ h= + h例2、如图,在山顶铁塔上B处测得地面上一点A的俯角=54,在塔底C处测得A处的俯角=50。
已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)师:根据已知条件,大家能设计出解题方案吗?(给时间给学生讨论思考)若在ABD中求CD,则关键需要求出哪条边呢?生:需求出BD边。
师:那如何求BD边呢?生:可首先求出AB边,再根据BAD=求得。
解:在ABC中, BCA=90+,ABC =90-,BAC=- ,BAD =.根据正弦定理,=所以AB ==解RtABD中,得 BD =ABsinBAD=将测量数据代入上式,得BD ==≈177 (m)CD =BD -BC≈177-27.3=150(m)答:山的高度约为150米.师:有没有别的解法呢?生:若在ACD中求CD,可先求出AC。
师:分析得很好,请大家接着思考如何求出AC?生:同理,在ABC中,根据正弦定理求得。
(解题过程略)例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.师:欲求出CD,大家思考在哪个三角形中研究比较适合呢?生:在BCD中师:在BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?生:BC边解:在ABC中, A=15,C= 25-15=10,根据正弦定理,= ,BC ==≈ 7.4524(km)CD=BCtanDBC≈BCtan8≈1047(m)答:山的高度约为1047米Ⅲ.课堂练习课本第17页练习第1、2、3题Ⅳ.课时小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化。
Ⅴ.课后作业1、课本第23页练习第6、7、8题2、为测某塔AB的高度,在一幢与塔AB相距20m的楼的楼顶处测得塔顶A的仰角为30,测得塔基B的俯角为45,则塔AB的高度为多少m?答案:20+(m)●板书设计●授后记课题: §1.2解三角形应用举例第三课时授课类型:新授课●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题过程与方法:本节课是在学习了相关内容后的第三节课,学生已经对解法有了基本的了解,这节课应通过综合训练强化学生的相应能力。
除了安排课本上的例1,还针对性地选择了既具典型性有具启发性的2道例题,强调知识的传授更重能力的渗透。
课堂中要充分体现学生的主体地位,重过程,重讨论,教师通过导疑、导思让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三。
情感态度与价值观:培养学生提出问题、正确分析问题、独立解决问题的能力,并在教学过程中激发学生的探索精神。
●教学重点能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系●教学难点灵活运用正弦定理和余弦定理解关于角度的问题●教学过程Ⅰ.课题导入[创设情境]提问:前面我们学习了如何测量距离和高度,这些实际上都可转化已知三角形的一些边和角求其余边的问题。
然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题。
Ⅱ.讲授新课[范例讲解]例1、如图,一艘海轮从A 出发,沿北偏东75的方向航行67.5 n mile 后到达海岛B,然后从B 出发,沿北偏东32的方向航行54.0 n mile 后达到海岛C.如果下次航行直接从A 出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)学生看图思考并讲述解题思路教师根据学生的回答归纳分析:首先根据三角形的内角和定理求出AC 边所对的角ABC ,即可用余弦定理算出AC 边,再根据正弦定理算出AC 边和AB 边的夹角CAB 。
解:在ABC 中,ABC=180- 75+ 32=137,根据余弦定理, AC=ABC BC AB BC AB ∠⨯⨯-+cos 222 =︒⨯⨯⨯-+137cos 0.545.6720.545.6722≈113.15根据正弦定理,=sinCAB ==≈0.3255,所以 CAB =19.0,75- CAB =56.0答:此船应该沿北偏东56.1的方向航行,需要航行113.15n mile例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2,再继续前进10m至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。