2-4卫地距测量.
- 格式:ppt
- 大小:4.91 MB
- 文档页数:23
平面控制测量规范1 地面平面控制网应按城市轨道交通工程建设规划网中各条线路建设先后次序,沿线路独立布设。
布网时应根据线路延伸和其他线路交叉状况,在线路延伸和交叉地段,必须有两个以上的控制点相重合。
城市近期规划与建设的城市轨道交通线路较多构成网络且原城市控制网不能满足建设需要时,宜建设一个覆盖全部线路的整体控制网。
2 平面控制网由两个等级组成,一等为卫星定位控制网,二等为精密导线网,并分级布设。
3 平面控制网的坐标系统应与所在城市现有坐标系统一致。
投影面高程应与城市现有坐标系投影面高程一致,若城市轨道交通工程线路轨道的平均高程与城市投影面高程的高差影响每千米大于5mm时,应采用其线路轨道平均高程作为投影面高程。
4 想隧道内传递坐标和方位时,应在每个井(同)口或车站附近至少布设三个平面控制点作为联系测量的依据。
5 反符合卫星定位控制网和精密导线网要求的现有城市控制网点的标石应充分利用。
6 对于建成的卫星定位控制网和精密导线网应定期进行复测。
第一次复测应在开工前进行,之后应每年或两年复测1次,且应根据控制点稳定情况适当调整复测频次。
复测精度不应低于初测精度。
3.2 卫星定位控制网测量3.2.1 卫星定位控制网测量前,应根据城市轨道交通线路规划设计,收集、分析线路沿线现有城市控制网的标石、精度等有关资料,并按静态相对原理进行控制网设计。
3.2.2 卫星定位控制网的主要技术指标应符合表3.2.2的规定。
表3.2.2 卫星定位控制网主要技术指标3.2.3 卫星定位控制网相邻点间基线精度3.2.3式计算。
σ= (3.2.3)式中σ——标准差,即基线向量的弦长中误差(mm);a——固定误差(mm);b——比例误差系数(1x10-6);c——相邻点间的距离(km)。
3.2.4 卫星定位控制网的布设应遵守以下原则:1 卫星定位控制网内应重合3—5个现有城市一、二等控制点,控制点应均匀布设;在不同线路交叉有联络线处或同一线路前后期工程衔接处布设2个以上的重合点,重合点坐标较差应满足表3.2.2的相关要求;2 卫星定位控制网应沿线路两侧布设,控制点宜布设在隧道出入口、竖井或车站附近,车辆段附近布设3—5个控制点,相邻控制点应满足通视要求;3 卫星定位控制网非同步独立观测时,必须构成闭合环或复合路线。
铁路工程测量规范全文(2008.7.28)《新建铁路工程测量规范》(报批稿)《新建铁路工程测量规范》编写组2008年7月前言本规范系根据铁道部经规院经规标准(2005)17号文的要求,对《新建铁路工程测量规范》(TB10101-99)进行全面修订而成。
本规范共分八章,主要内容为:总则、术语和符号、平面控制测量、高程控制测量、线路测量、隧道测量、桥涵测量、构筑物变形测量,另有三个附录。
本次修订的主要内容:1.强调了控制测量在新建铁路工程测量中的重要性,增加了第3章平面控制测量和第4章高程控制测量的内容,把线路、桥梁、隧道有关控制测量的主要技术要求都集中到第3章和第4章中。
2.体现了新建铁路工程测量“三网合一”的测量理念为保证控制网的测量成果质量满足新建铁路勘测、施工、运营维护三个阶段测量的要求,适应铁路工程建设和运营管理的需要,三阶段的平面、高程控制测量必须采用统一的基准。
3.确定了新建铁路工程平面控制测量分级布网的布设原则。
4.提出了新建铁路工程测量平面坐标系统宜满足投影长度变形值≤25mm/km的要求。
5.提高了新建铁路工程测量高程控制网的精度等级。
6.将采用定测中线控制桩作为联系铁路勘测设计与施工的线路平面测量控制基准,修改为以平面控制网为新建铁路设计与施工测量的基准。
7.对施工复测的内容进行修改。
8.增加GPS RTK定测放线及航测法测绘路基横断面等内容。
9.在高程控制测量中增加了在山区采用光电测距三角高程测量方法进行三等水准测量的内容。
10.增加构筑物变形测量和轨道施工测量章节的内容。
在执行本规范过程中,希望各单位结合工作实践,认真总结经验,积累资料。
如发现需要修改和补充之处,请及时将意见和有关资料寄交中铁二院工程集团有限责任公司(四川省成都市通锦路3号,邮政编码:610031),并抄送铁道部经济规划研究院(北京市海淀区羊坊店路甲8号,邮政编码100038),供今后修订时参考。
本规范由铁道部建设管理司负责解释。
浙教版七年级上册第一章第四节科学测量【知识点分析】课堂导入:要准确而严密的解释一些科学现象,往往要对研究对象进行定量描述。
因此,我们必须对研究对象进行测量。
测量是一个把待测量的与公认的标准进行比较的过程。
一.长度的测量1.长度的单位:长度的常用单位是米( m ) 测量较大的距离时一般用千米( km ) ;测量较小的距离时-般用分米( dm )、厘米( cm )和毫米( mm );在研究微观世界时,还会用到微米( μm )和纳米( nm )等单位。
1千米=1000米 1米=10分米 1分米=10厘米1厘米=10毫米 1毫米=1000微米 1微米=1000纳米2.长度的测量工具:直尺、卷尺、米尺、皮尺等。
3.认识刻度尺:(1)零刻度线:测量的起点。
(2)分度值(最小刻度):最小格表示的量。
(3)量程(测量范围) :刻度尺一次能测出的最大长度。
(4)单位:就是该刻度尺标注的单位。
4.使用刻度尺:(1)选取量程、分度值、单位和测量范围合适的刻度尺。
(2)正确放置:有刻度线一端与被测物体紧贴,被测物体与零刻度线对齐,测量端要与刻度尺平行。
(3)正确观察:视线要正对刻度线,即视线与尺面垂直,不能斜视。
(4)正确读数:区分大小格的分度值后准确读数,并且需要往后估读一位(分度值后一位)。
(5)正确记录:按照读数的方式,记录读出的数据4.长度测量的特殊方法:(1)累积法:当被测物体较小,产生的误差较大的时候,我们可以采用累积法,先测量多个,再除以数目。
(2)平移法:当一个物体的长度无法直接测量时,我们可以采用平移的方法来测物体的长度或高度。
(3)以直代曲法:用曲线与待测物体紧贴,再拉直测量长度(4)滚轮法:利用滚轮的周长和半径关系,滚动的圈数加上角度,乘以周长,即可得到长度。
二.体积的测量1.体积的单位::米3(m3)。
其他单位:分米3(dm3)、厘米3(cm3)、升(L)、毫升( mL )。
单位换算:1米3= 103分米3 (升)= 106厘米3(毫升)。
距离测量方法范文距离测量是科学和工程领域中一个重要的测量任务。
它是指通过其中一种方法来确定两点之间的距离或长度。
在地理学、建筑学、土木工程、航空航天等领域,距离测量是必不可少的。
本文将介绍几种常见的距离测量方法。
一、直尺和量尺法直尺和量尺法是直接测量距离的最简单方法。
直尺是一个具有标尺刻度的直线工具,可以直接使用它来测量直线距离。
量尺是一个带有分度线的软质杆状工具,可以通过将其紧贴物体进行测量。
二、三角测量法三角测量法是一种基于几何原理的间接测量方法。
它利用三角形的性质,通过测量三角形的角度和边长来计算出其他未知边长。
三角测量法主要有两种类型:射线法和边长法。
射线法是利用一支射线仪器,如光学仪器或全站仪,从测量点发出一条射线,在目标点上偏转射线,形成一个可以测量的角度。
再通过测量角度和测量点之间的距离,可以通过三角函数来计算出目标点之间的距离。
边长法是通过测量三角形的边长来计算目标点之间的距离。
它可以通过使用测距仪、测角仪或激光设备来测量边长,并利用三角函数计算出距离。
三、测距仪测距仪是一种使用光学或电动测量方法来测量距离的仪器。
常见的测距仪有激光测距仪和超声波测距仪。
激光测距仪通过发射一束激光束,然后通过接收反射回来的激光束来测量距离。
这种测距仪具有高精度和高速度的特点,广泛用于建筑测量、工程测量和地理测量等领域。
超声波测距仪是利用超声波在空气中传播的属性来测量距离。
它通过发射超声波,并计算超声波从发射点到目标点并返回的时间来确定距离。
超声波测距仪被广泛应用于机器人导航、汽车停车辅助等领域。
四、全站仪和GPS全站仪是一种同时具备测角、测距和测高等多种功能的测量仪器。
它可以通过激光或电子测距仪进行测距,通过测角仪测量角度,以及通过测高功能来确定高度。
全站仪可以非常精确地测量距离,广泛应用于土木工程、建筑测量和地理测量等领域。
GPS(全球定位系统)是一种基于卫星定位技术的导航系统。
它通过接收来自卫星的信号,通过计算信号的传播时间来确定接收器所处的位置。
GPS定位原理和简单公式GPS是全球定位系统的缩写,是一种通过卫星系统来测量和确定地球上的物体位置的技术。
它利用一组卫星围绕地球轨道运行,通过接收来自卫星的信号来确定接收器(GPS设备)的位置、速度和时间等信息。
GPS定位原理基于三角测量原理和时间测量原理。
1.三角测量原理:GPS定位主要是通过测量接收器与卫星之间的距离来确定接收器的位置。
GPS接收器接收到至少4颗卫星的信号,通过测量信号的传播时间得知信号的传播距离,进而利用三角测量原理计算出接收器的位置。
2.时间测量原理:GPS系统中的每颗卫星都具有一个高精度的原子钟,接收器通过接收卫星信号中的时间信息,利用接收时间和发送时间之间的差值,计算出信号传播的时间,从而进一步计算出接收器与卫星之间的距离。
简单的GPS定位公式:1.距离计算公式:GPS接收器与卫星之间的距离可以通过测量信号传播时间得到。
假设接收器与卫星之间的距离为r,光速为c,传播时间为t,则有r=c×t。
2.三角测量公式:GPS定位是通过测量与至少4颗卫星的距离,来计算接收器的位置。
设接收器的位置为(x,y,z),卫星的位置为(x_i,y_i,z_i),与卫星的距离为r_i,根据三角测量原理,可得到以下方程:(x-x_1)^2+(y-y_1)^2+(z-z_1)^2=r_1^2(x-x_2)^2+(y-y_2)^2+(z-z_2)^2=r_2^2...(x-x_n)^2+(y-y_n)^2+(z-z_n)^2=r_n^2这是一个非线性方程组,可以通过迭代方法求解,求得接收器的位置。
3.定位算法:GPS定位一般使用最小二乘法来进行计算。
最小二乘法是一种数学优化方法,用于最小化误差的平方和。
在GPS定位中,通过最小化测量距离与计算距离之间的差值的平方和,来确定接收器的位置。
总结:GPS定位原理基于三角测量和时间测量原理,通过测量接收器与卫星之间的距离,利用三角测量公式和最小二乘法来计算接收器的位置。
建筑工程测量规范GB50026—2007 (建设部国家标准)3.1 一 般 规 定3.1.1 平面控制的建立,可采用卫星定位测量﹑导线测量﹑三角形网测量等方法。
3.1.2 平面控制网精度等级的划分,卫星定位测量控制网依次为 二﹑三﹑四等和一﹑二级,导线及导线网依次为三﹑四等和一﹑二﹑三级,三角形网依次为二﹑三﹑四等和一﹑二级。
3.1.3 平面控制网的布设,应遵循下列原则:1 首级控制网的布设应因地自宜,且适当考虑发展;当与国家坐标系统联测时,应同时考虑联测方案。
2 首级控制网的等级,应根据工程规模﹑控制网的用途和精度要求合理确定。
3 加密控制网,可越级布设或同等级扩展。
3.1.4 平面控制网的坐标系统,应在满足测区内投影长度变形不大于2.5c m /km 的要求下,作下列选择:1 采用统一的高斯投影3°带平面直角坐标系统。
2采用统高斯投影3°带,投影面为测区抵偿高程面或测区平均高程面的平面直角坐标系统:或任意带,投影面为1985国家高程基准面的平面直角坐标系统。
3 小测区或有特殊精度要求的控制网,可采用独立坐标系统。
4 在已有平面控制网的地区,可沿用原有的坐标系统。
5 厂区内可采用建筑坐标系统。
3.2 卫星定位测量(Ⅰ)卫星定位测量的主要技术要求3.2.1 各等级卫星定位测量控制网的主要技术指标,应符合表3.2.1的规定。
表 3.2.1 卫星定位测量控制网的主要技术要求各等级控制网的基线精度,按(3.2.2)式计算。
σ=22)(d B A ∙+ (3.2.2)式中σ----基线长度中误差(mm );A----固定误差(mm ); B---比例误差系数(mm /Km ) d----平均边长(km)。
3.2.3 卫星定位测量控制网观测精度的评定,应满足下列要求: 1控制网的测量中误差,按(3.2.3-1)式计算;m=[]nWWN 31 (3.2.3-1) 式中 m----控制网的测量中误差(mm );N----控制网中异步环的个数;n---异步环的边数;W---异步环环线全长闭合差(mm)。
卫星测距的原理(一)卫星测距卫星测距是一种利用卫星技术进行距离测量的方法。
通过测量卫星与地面上的特定点之间的时间差,可以精确计算出两点之间的距离。
以下是关于卫星测距的一些相关原理。
原理一:卫星轨道卫星测距依赖于卫星的轨道,而卫星的轨道受到地球引力的影响。
卫星通常处于圆形、椭圆形或近地点高度轨道上。
这些不同类型的轨道会对测距的精度产生影响。
•圆形轨道:卫星处于固定高度的圆形轨道上,便于测距的计算。
•椭圆形轨道:卫星沿着椭圆形轨道运行,测距需要考虑卫星位置的变化。
•近地点高度轨道:卫星的轨道离地面较近,需要考虑大气层的影响。
原理二:测距方法卫星测距主要有两种方法:单点测距和双点测距。
单点测距单点测距是指利用单个卫星与地面上一个接收器之间的信号传输时间来计算距离。
该方法的原理如下:1.卫星发射一个信号,信号经过大气层传播到达地面上的接收器。
2.接收器接收到信号后,开始计时,并记录接收到信号的时间。
3.接收器将接收到的时间信息传输给测距系统进行计算。
4.测距系统利用已知的速度光在大气中传播的速度,乘以信号传输时间,计算出距离。
双点测距双点测距是指利用两个接收器分别接收卫星信号,并测量信号到达每个接收器的时间差。
该方法的原理如下:1.首先,确定两个接收器之间的距离,可以通过测量其经纬度坐标或使用已知的地理信息。
2.两个接收器同时接收卫星信号,并记录到达时间。
3.接收器将接收到的时间信息传输给测距系统进行计算。
4.测距系统利用两个接收器之间的距离,以及到达时间的差异,计算出距离。
原理三:测距误差在卫星测距中,还会存在一些误差,影响测量的精度。
以下是一些常见的测距误差:•信号传播时间:信号在大气层中的传播速度可能受到天气条件和大气密度的影响,从而导致测距误差。
•时钟误差:卫星和接收器上的时钟可能存在差异,会引起时间测量误差。
•大气效应:大气层中的湿度、温度和其他环境因素,会对信号的传播速度造成影响。
•地球引力变化:地球的引力场可能会导致卫星轨道发生微小的变化,从而引起测距误差。