DLPTM技术在投影机中的应用
- 格式:doc
- 大小:22.50 KB
- 文档页数:6
dlp投影机原理图
很抱歉,由于GPT-3模型为文本生成模型,无法生成和绘制
相关的图像。
为了帮助您更好地理解DLP投影仪的原理,我
可以以文字的形式简要概述。
DLP(Digital Light Processing)投影仪是一种利用数字反射技
术来显示图像的投影设备。
它由以下几个主要部分组成:
1. 光源:DLP投影仪通常使用高亮度的灯泡或氙气灯作为光源。
它产生强烈的光束用于投影。
2. 显示芯片:DLP投影仪使用一块称为Digital Micromirror Device(DMD)的芯片来显示图像。
DMD芯片上有数百万个
微镜,每个微镜都可以独立倾斜来反射或不反射光线。
3. 运算芯片:DLP投影仪还包含一个运算芯片,负责接收输
入信号,并根据图像信号控制DMD芯片上的微镜倾斜角度。
每个微镜的倾斜决定了光线反射的位置。
4. 投影透镜:通过投影透镜,反射的光线从DMD芯片传递到
投影屏幕上形成图像。
透镜也用于调整和聚焦光线,确保最佳的投影效果。
在工作过程中,DLP投影仪的运算芯片将输入的图像信号转
换为微镜的倾斜角度控制信号。
这些信号通过微镜的倾斜与否,决定了光线是反射还是不反射。
通过快速控制微镜的倾斜角度,DLP投影仪可以精确地控制每个像素的亮度和颜色。
使用DLP技术的投影仪具有高亮度、高对比度和高色彩饱和度的特点。
此外,由于DLP芯片上的微镜非常小,因此DLP 投影仪可以实现更高的分辨率和更高的图像质量。
dlp投影机工作原理
DLP(数字光处理)投影机是一种利用数字微镜技术进行图像投射的设备。
它使用一个微型镜反射光源并通过快速的镜面调节来生成影像,然后通过镜面上的像素来创造出图像。
DLP投影机主要由下列部件组成:光源、DMD芯片、镜头和色轮。
首先,光源产生光线,然后通过透镜聚集,并经过色轮的滤色装置,其中色轮会将光线分为红、绿、蓝三色。
接着,光线通过DMD芯片,该芯片上有成千上万个微小镜面,每个镜面都可以独立地倾斜,使得光线可以在不同的方向上反射出去。
这些反射的光线最终通过镜头投射到屏幕上,形成图像。
DMD芯片是DLP投影机的核心。
它由大量微小的可移动反射镜(也称为微镜)组成。
这些微镜可以倾斜时上下左右,使得折射的光线进入或离开透镜,形成像素。
当像素倾斜时,光线会被反射到屏幕上的特定位置,生成亮或暗的点,从而形成图像。
这种快速的镜面调节速度使得图像可以以非常高的精度和速度被创建。
此外,色轮也是DLP投影机的重要组成部分。
色轮是一个旋转的装置,通常由红色、绿色和蓝色的滤光片组成。
当光线通过色轮时,每个颜色的滤光片会分别过滤掉或透射出相应的颜色。
这样,光线通过色轮时可以按照一定的时间间隔依次投射红、绿、蓝三种颜色,通过快速的色彩变换,人眼会将这些颜色混合成一个完整的彩色图像。
因为DLP投影机具有高亮度、高对比度和高色彩饱和度等特
点,所以它在商业演示、家庭影院等应用中被广泛使用。
通过光源、DMD芯片、镜头和色轮的协同作用,DLP投影机能够产生出清晰、细腻、色彩鲜艳的图像,满足人们对高质量影像的需求。
dlp投影仪原理一、DLP投影仪的工作原理DLP(数码光学投影技术)投影仪采用数字式图像显示技术,使用數位微鏡,將源自不同的多個單元投影成一個完整的顯示影像。
它是利用一個反射的微鏡陣列來輸出圖像,通過對微鏡陣列的控制,可以控制光的反射或者不反射,來實現對圖像的顯示。
二、DLP投影仪的构成DLP投影仪由三个主要部分组成:光源、微镜芯片和色轮。
光源发出光,通过透镜被聚焦到微镜芯片上。
微镜芯片由数以万计的微小镜面组成,每个镜面相当于一颗像素。
色轮接在光源和微镜芯片之间,它由不同颜色的滤光片构成,旋转时可以快速切换不同的颜色。
三、DLP投影仪的工作过程当光通过色轮后,会照射到微镜芯片的镜面上。
任何反射到屏幕上的光通过透镜再次聚焦,形成图像。
微镜芯片上的镜面可以根据输入信号的控制进行反射或者不反射。
当给定的镜面被控制为反射时,对应的像素会亮起;当镜面不反射时,对应的像素则黑暗。
通过控制微镜芯片上每一个镜面的反射情况,可以形成完整的图像。
四、DLP投影仪的优势DLP投影仪具有以下优势:1. 高画质:DLP技术可以提供高对比度、高亮度和鲜明的颜色,使投影图像更加清晰和逼真。
2. 高可靠性:DLP投影仪使用的微镜芯片具有长寿命和高度可靠性。
3. 显示灵活性:DLP投影仪可以投影在不同尺寸和各种表面上,适用于不同场合和需求。
4. 响应速度快:DLP投影仪的反应速度非常快,适用于动态视频和游戏等场景。
五、总结DLP投影仪利用数字式投影技术,通过控制数万个微小镜面的反射来显示图像。
它具有高画质、高可靠性和灵活性等优势,适用于各种场合的投影需求。
DLP数码投影机的六大优势我们称数字光处理(DLP)技术是一种出色的显示技术的原因共有六条,但真正重要的问题在于用户是如何看待的,就让我们来看看结果吧:1.更清晰DLP技术使图像随着窗口的刷新而更加清晰,它通过增强黑白对比度、描绘边界线和分离单个颜色而将图像中的缺陷抹去。
你的眼睛是不会欺骗你的,你可以尽情享受这种视觉效果。
DMD是由超过五十万块的微小镜面组成,而一个镜面则代表一个像素,一个镜面之下有一个合叶装置。
这种结构可以对输入进来的数字信号做出每秒开关超过五千次的响应,以产生像素。
DMD镜器件这一非凡的快速开关速度与被称为双脉冲宽度调制的一种精确的图像颜色和灰度复制技术相结合,产生的是透明似水晶的令人叹为观止的图像。
2.更细致如果你坐在会议室的最后一排,你依然可以清晰的看到荧幕上的图像。
而且无论从中间还是边上,你都看不到声名狼藉的“纱门”效果——在模拟放映技术中存在于像素之间的恼人缝隙。
无论你的座位在哪里,图像总是非常清晰,而且最大化地填充屏幕。
DMD镜片体积微小,每一侧边的长度为16微米,相邻镜头之间的缝隙小于1微米。
镜头是方形的,所以每一个镜片显示的内容要比实际图像更多“沙门效果相对比的是DLP投影机的无缝效果。
当一个图像的尺寸增加时,LCD投影机图像中的缝隙将变得更大。
DMD镜面的大小和形状决定了这一切。
每个镜片90%的面积动态地反射光线以生成一个投影图像,由于一个镜头与另一个镜头之间是如此的接近,所以图像看起来没有缝隙。
再加上当分辨率在增加时大小及间距仍保持一致,因此无论分辨率如何变化,图像始终能够保持很高的清晰度。
3.更明亮你愿意在观看投影的时候同时拥有光明吗?观众在做笔记的时候希望保持亮度或打开窗帘,与传统的模拟投影机相比,DLP投影机将更多的光线打到屏幕上,这样,图像的演示效果在光亮中将同在黑暗中一样好。
DLP技术有效的解决了这个问题。
DMD的强反射表面通过消除光路上的障碍以及将更多的光线反射到屏幕上,而最大化地利用了投影机的光源。
DLP技术资料数字光学处理(DLP TM)是投影和显示信息的一个革命性的新方法。
基于Texas 仪器公司开发的数字微反射镜器件(DMD TM),DLP完成了显示数字可视信息的最终环节。
数字光学处理(DLP TM)技术在消费者、商业和投影显示工业的专业领域方面被作为子系统或“发动机”提供给市场主管。
正如CD在音频领域的革命一样,DLP将在视频投影方面带来革命。
1DMD数字光处理器DMD(Digital Micromirror Device)结构每个DMD是由成千上万个倾斜的、显微的、铝合金镜片组成,这些镜片被固定在隐藏的轭上,扭转铰链结构连接轭和支柱,扭力铰链结构允许镜片旋转±10度。
支柱连接下面的偏置/复位总线,偏置/复位总线连接起来使得偏置和复位电压能够提供给每个镜片。
镜片、铰链结构及支柱都在互补金属氧化半导体上(CMOS)地址电路及一对地址电极上形成(如图1)。
图1图1:一个DMD上单独镜片的分解示意图。
DMD上每一个16um的平方镜片包括这样三个物理层和两个“空气隙”层,“空气隙”层分离三个物理层并且允许镜片倾斜+10度或-10度。
在一个地址电极上加上电压,连带着把偏置/复位电压加到镜片结构上,将在镜片与地址电极一侧产生一个静电吸引,镜片倾斜直到与具有同样电压的着陆点电极接触为止。
在这点,镜片以机电方式锁定在位置上。
在存储单元中存入一个二进制数字使镜片倾斜+10度,同时在存储单元中存入一个零使镜片倾斜-10度(图2a,b,c)。
DMD以2048x1152的阵列构成,每一个器件共有约2.3x10的6次方镜面,这些器件具有显示真的高分辨率电视的能力。
首次大量生产的DMD为848x600。
这种DMD 将能投影NTSC、相位交换线(PAL)、VGA以及高级视频图形适配器(SVGA)图形,并且它将可以显示16:9纵横比信号源。
(a)(b)(c)图2图2:一个DMD的表面上的镜片的特写镜头以及它的底层结构。
DLP的全称是Digital Light Processing,中文意思为“数字光学处理技术”。
DLP投影机的核心元器件DMD,全称为Digital Micromirror Device,中文意思为“数据微镜装置”,通过控制从而镜片的开启和偏转达到显示图像的目的。
DLP在投影机中应用主要是前投(也称正投)系统,和大屏幕和平板显示的背投领域属于不同的应用方式。
根据DMD数量的不同,可以将DLP投影机分为单片式DLP投影机,双片式DLP投影机和三片式DLP 投影机三种类型。
目前市场中几乎没有双片DLP投影机的存在,三片式DLP主要应用在高端工程、影院级投影机中,我们本文主要探讨的则是单片式DLP技术。
德州仪器DLP技术解析在探讨DLP技术之前,我们先对DLP和DMD的历史进行简单的了解。
DLP技术是由美国德州仪器的Larry Hornbeck博士所研发成功的。
Larry Hornbeck博士从1977年开始从事运用反射用以控制光线投射的原理研究,并于1987年将DMD研究成功。
DMD芯片最早应用在机票印票机中,到了1993年这种以DMD为核心的光学系统才被命名为DLP。
最早的DMD芯片使用的是模拟技术驱动,反射面是采用一种柔性材料,在当时被称为“变形镜器件Deformable Mirror De-vice”。
10年之后,Hornbeck博士正式以数字控制技术取代模拟技术,开发出了新一代DMD器件,并将名称改为“数码微镜器件(Digital Micromirror Device)”。
1993年DLP投影机开始研发,1996年DLP产品才上市,而国内的DLP投影机正式进入市场销售则是1999年之后的事情了。
从DLP的历史中我们不难看出,相对于LCD液晶显示技术而言,DLP技术非常年轻。
但是DLP技术的出现成功的打破了LCD液晶投影机的垄断局面,并在接下来的长时间内和3LCD技术平分秋色,各自占据半壁江山。
ti dlp 成像原理DLP(数字光处理)是一种使用数字化微镜片阵列进行图像投影的技术,最常见的应用是在投影仪中。
Texas Instruments(TI)是DLP 技术的主要开发者和供应商。
以下是DLP 成像原理的基本步骤:1. 光源:DLP 技术的第一步是有一个高亮度的光源,通常是一种高压汞灯或LED。
这个光源发射出白光,包括红、绿和蓝三原色的光。
2. 色轮(如果适用):一些DLP 技术使用一个旋转的彩色滤光轮,它有不同颜色的片段。
当光通过这个彩色滤光轮时,它会分解成不同的颜色,形成一个连续的颜色光束。
3. 微镜片阵列(DMD):DLP 的核心部件是Digital Micromirror Device(DMD),也就是数字微镜片阵列。
DMD 是一个芯片,上面有成千上万的微小镜片,每个镜片都可以独立倾斜。
每个微镜片对应于图像中的一个像素。
4. 光栅化:要显示图像,将输入的图像信号分解成像素,并将每个像素映射到DMD 上的相应微镜片。
这个过程称为光栅化。
5. 镜片倾斜:在DMD 上,每个微镜片可以倾斜,使其反射光束朝向屏幕或远离屏幕。
当一个微镜片倾斜时,它反射光进入投影镜头,最终投射到屏幕上。
如果微镜片垂直,则光被反射到其他方向,不进入投影镜头。
6. 形成图像:当微镜片以正确的角度倾斜时,它们的反射光就形成了一个图像的一部分。
通过控制每个微镜片的倾斜角度,可以在屏幕上形成完整的图像。
DLP 技术的优势包括高亮度、高对比度、快速的响应时间和长寿命。
这使得DLP 技术在许多应用中都有广泛的使用,特别是在投影仪、3D打印机和一些显示技术中。
大屏幕显示控制系统原理及控制器入门控制器和大屏幕控制系统是DLPTM大屏幕显示系统的大脑和中枢神经系统。
在市场上占据着主要地位的有美国JUPITER公司、法国SYNELEC公司等。
其中美国JUPITER公司控制器乃是业内公认的第一品牌。
随着科学技术的快速进步,特别是计算机技术的进步和普及以及各行各业对提高服务品质的呼声日益上升。
各个行业利用计算机处理各种事物的应用系统软件越来越多,如GIS等,造成传统的显示手段,如果普通显示器和监视器等的显示分辨率不再能满足需求,为此,VIDEOWALL(大屏幕显示墙)就自然渐渐成为特定场所的特别显示手段,自然,实现大屏幕组合显示的控制器也就应运而生,很快,大屏幕控制器生产厂家也就抢摊出现,生产出五花八门的控制器。
控制器的流派分,主要有日本流派和欧美流派。
其中日本流派主要以硬件处理为主,而欧美流派以软硬结合为主,成为当前大屏幕显示控制器的主流。
而作为欧美流派的,能独立生产大屏幕控制器生产厂家有法国SYNELEC公司、美国JUPITER公司、比利时BARCO公司、美国RGB公司等;而一部分厂家专门生产制造大屏幕控制器用的图形卡,如美国的COLORGRAPHICS公司、英国的DATAPATH公司、澳洲的AEON公司、加拿大的MATROX公司、台湾的新齐公司等;还有一部分自己不生产,主要以OEM或者购买第三方板卡及工控机组装控制器为主的公司,如加拿大的CHRISITIE公司(过去以OEM JUPITER F950为主)等,目前国内公司出产的大屏幕控制器也归入此类。
形成了各种品牌的控制器,进行市场竞争。
不过,不管如何竞争,能自我掌握全套研发生产技术的厂家,在经过三番四次的论剑,市场地位就完全显示出来,并占据着主要地位,如美国JUPITER公司、法国SYNELER公司大屏幕控制器乃是业内公认的第一品牌。
大屏幕控制器原理1、大屏幕控制器硬件构成:软硬件结合的大屏幕显示系统控制器其硬件构成一般包括信号输入部分、信号输出部分、和控制转换部分。
大屏幕显示系统方案大屏幕显示系统方案大屏幕显示系统的宣传表达能力强、高档、气派、豪华,它的使用能提升使用场合的档次,目前在电信网管、交通监控、公安调度、军事作战指挥、工业生产调度、体育场馆以及新闻展示等等众多领域得到了广泛的应用,它能够集中显示来自RGB、Video、和网络等多种不同信号源的信号,在会场内展示各种形式的会议资料或播放有关影像信息,该系统能够以高亮度、高清晰度为所有在场的与会者提供完美的感官效果,要求能够满足影片欣赏、资料展示等多种需求。
让与会人员体会多媒体会议诸多好处。
亮度不应低于35000ANSI流明。
要求能调整成宽屏显示,以满足用户大面积显示各种共享信息和综合信息的需求。
大屏幕显示系统一般由大屏幕拼接墙、图像处理系统及控制系统组成。
大屏幕拼接墙由投影箱体、投影机、专业背投玻璃屏等;图像处理系统包括多屏拼接处理器、媒体矩阵、分配器及线缆;控制系统包括大屏幕控制系统软件及整个系统的控制。
大屏幕拼接墙有DLP背投大屏幕电视墙、LCD背投大屏幕电视墙、CRT背投大屏幕电视墙和等离子PDP大屏幕电视墙。
/fangan.html 大屏幕投影显示系统设计思路在设备选型和匹配上我们提出以下设计思路大屏幕投影系统应具有每天24 小时/ 全年365 天连续运行的能力,抗拒灰尘侵扰。
整套系统具有先进性、稳定性。
拼接控制器需要达到画面显示的实时活动显示,各种操作快速响应。
操作灵活,可视化操作界面。
所有部件,包括线缆在内,均采用高可靠、高品质、长寿命设备。
达到各种画面显示质量清晰、锐利、色彩准确。
技术解决方案一、设计目标大屏幕显示系统的宣传表达能力强、高档、气派,它的使用,能够集中显示来自RGB、Video、和网络等多种不同信号源的信号,在会场内展示各种形式的会议资料或播放有关影像信息,该系统能够以高亮度、高清晰度为所有在场的与会者提供完美的感官效果,要求能够满足显示计算机网络画面及相关视频信号、计算机显示信号,可同时显示其中任何一个工作站或多个工作站应用程序的图形、文字、表格及视频图像、内容资料展示等多种需求。
DLPTM技术在投影机中的应用作者:董选明来源:《电脑知识与技术》2010年第02期摘要:该文介绍了DLPTM投影技术的核心芯片DMD,单片和三片DMD的DLPTM投影系统的光学结构以及DLPTM投影技术的优势和未来发展。
关键词:DLPTM;DMD;色轮;分辨率;流明中图分类号:TP311 文献标识码:A文章编号:1009-3044(2010)02-423-031 DLPTM技术的来源和核心器件DLPTM全称:Digital Light ProcessingTM,中文含义是数字光源处理技术,是德州仪器(TI)的版权所有。
目前,DLPTM的投影技术已成为投影业界的热门话题,它是首次将数字技术的优点应用到动、静态的投影领域中。
DLPTM技术的核心是DMD,即Digital Micromirror Device,中文含义是数字微镜器件,是一种半导体芯片。
它是TI公司Larry J. Hornbeck 在1987年利用MOEM(Micro-Optical-Electro-Mechanical System,微光学电子机械系统)技术发明的。
在光显领域,DMD是当前最复杂、最尖端的商业化MOEM产品,将引领光投影技术的未来发展方向。
如图1是一块完整的DMD半导体芯片,它的镜面是由一百三十多万个精微反射镜面组成的长方形阵列,每个镜面对应于投影画面中的一个光学象素,它能支持1280*1024的显示分辨率。
2 DMD的物理结构、工作原理DMD的物理结构:DMD精微反射镜面是一种整合的微机电上层结构电路单元(MEMSsuperstructure cell),它是利用CMOS SRAM记忆晶胞所制成。
DMD上层结构的制造是从完整CMOS内存电路开始,再透过光罩层的使用,制造出铝金属层和硬化光阻层(hardened photoresist)交替的上层结构,铝金属层包括地址电极(address electrode)、绞链(hinge)、轭(yoke)和反射镜,硬化光阻层则作为牺牲层(sacrificial layer),用来形成两个空气间隙(air gaps)。
铝金属会经过溅镀沉积(sputter-deposited)以及电浆蚀刻(plasma-etched)处理,牺牲层则会经过电浆去灰(plasma-ashed)处理,以便制造出层间的空气间隙(如图2)。
DMD工作原理:每个微反射镜都能将光线从两个方向反射出去,实际反射方向则视底层记忆晶胞的状态而定;当记忆晶胞处于「ON」状态时,反射镜会旋转至+12度,若记忆晶胞处于「OFF」状态,反射镜会旋转至-12度。
只要结合DMD以及适当光源和投影光学系统,反射镜就会把入射光反射进入或是离开投影镜头的透光孔,使得「ON」状态的反射镜看起来非常明亮,「OFF」状态的反射镜看起来就很黑暗(图3)。
利用二位脉冲宽度调变可以得到灰阶效果,如果使用固定式或旋转式彩色滤镜,再搭配一颗或三颗DMD芯片,即可得到彩色显示效果。
DMD的输入是由电流代表的电子字符,输出则是光学字符,这种光调变或开关技术又称为二位脉冲宽度调变(binary pulsewidth modulation),它会把8位字符送至DMD的每个数字光开关输入端,产生28或256个灰阶。
最简单的地址序列(address sequence) 是将可供使用的字符时间(field time)分成八个部份,再从最高有效位(MSB)到最低有效位(LSB),依序在每个位时间使用一个地址序列。
当整个光开关数组都被最高位寻址后,再将各个像素致能(重设),使他们同时对最高有效位的状态(1或0)做出反应。
在每个位时间,下个位会被加载内存数组,等到这个位时间结束时,这些像素会被重设,使它们同时对下个地址位做出反应。
此过程会不断重复,直到所有的地址位都加载内存。
入射光进入光开关后,会被光开关切换或调变成为一群光包(light bundles),然后再反射出来,光包时间则是由电子字符的个别位所决定。
对于观察者来说,由于光包时间远小于眼睛的整合响应(integration)时间,因此他们将会看到固定亮度的光线。
3 DLPTM投影技术架构DLPTTM投影系统分为单片DMD子系统和三片DMD子系统,采用哪一个方案由多项因素决定,包括成本、光源效率、功耗、重量和体积。
其它部件还有:氙灯泡、光学镜片、投影镜头和信号处理电路。
单芯片DLPTM子系统主要用于商用数据投影机、绝大多数的家庭娱乐投影机以及大屏幕背投电视,它先利用一组聚光镜将灯泡发出的光线聚焦在穿透性色轮(transmissive color wheel)(由红、绿、蓝群组成),再利用第二组会聚透镜将通过色轮的R、G、B三基色光线均匀聚焦在DMD组件表面。
随着精微反射镜旋转状态的不同(+12度或-12度),光线可能会反射进入投影镜头的透光孔(ON)或是离开投影镜头的透光孔(OFF)(如图4)。
精微反射镜反射光线的角度受视频信号控制,视频信号受数字光处理器DLPTM调制,把视频信号调制成等幅的脉宽调制信号,用脉冲宽度大小来控制精微反射镜开、关光路的时间,在屏幕上产生不同亮度的灰度等级图像。
采用单片面板可以缩小光学系统的体积,减轻它们的重量,使厂商得以发展出携带方便又有弹性的投影机。
仅重1.7公斤的BenQ的PB2225投影机就是成功应用单芯片DLPTM技术的典范。
对于必须提供高亮度输出的应用,例如会议室、礼堂、研讨会以及出租和舞台,就必须采用三颗DMD的架构,这能组成更大的反射面积,让投影机能透过镜头提供更高亮度的输出。
在采用三颗DMD组件的投影机中,灯泡发出的光线会被棱镜分成红绿蓝三种原色,每种颜色则分别被导向适当的DMD组件,这表示红光、绿光和蓝光都各有一颗DMD组件负责执行光调变。
对于采用单颗DMD的DLPTM 系统,屏幕像素是一个微反射镜的输出结果,但是3-DMD 提供的屏幕像素则是三个微反射镜输出的组合/聚光结果,一个微反射镜调变红光,第二个调变绿光,第三个调变蓝光。
使用三个DMD组件还能支持更先进的色彩处理,进而提供范围更宽广的色彩再生能力。
4 DLPTM投影技术的可靠性及优势DLPTM投影技术的可靠性:DLPTM非常可靠,对于一种在本质上属于机械性的技术来说,这确实令人惊讶。
实验室测试结果显示,DMD的预期寿命时间超过100,000小时,客户反应结果也多半证实了这项预测。
此外,DLPTM技术全部采用无机材料,不会像有机技术一样,因为长时间曝露在热源或光源下而逐渐劣化。
2002年五月,美国罗彻斯特大学的孟赛尔色彩科学实验室(Munsell Color Science Laboratory at the University of Rochester) 进行一项研究计划,对五部可携式商业资料液晶投影机和两部DLPTM投影机的「画面可靠性」进行比较,他们把「画面可靠性」定义为:投影机画面质量下降到无法接受地步的所需工作时间。
接受测试的投影机必须日夜不停连续工作4,000小时;测试期间结束后研究人员发现,所有液晶投影机都出现清楚可见而令人不悦的画面瑕疵,采用DLPTM技术的投影机却没有这些问题。
研究人员认为LCD技术的影像质量会下降,主要是因为偏光板和面板内的有机材料长期曝露在光源和热源之下。
DLPTM投影技术的优势:DLPTM 是数字投影技术,每个微反射镜只会处于「ON」或「OFF」状态,LCD却是一种模拟投影技术。
数字投影技术的优点是它能忠实而不断重复的产生影像,不会受到温度、湿气或震动等环境因素的影响,在对比度和均匀性都表现非常出色,图像清晰度高、画面均匀、色彩锐利,并且图像噪声消失,画面质量稳定,精确的数字图像可不断再现,而且历久弥新。
速度带来优势:DLPTM技术核心的微反射镜能以每秒5,000次速度开关,其微秒级的速度远超过LCD像素毫秒级的开关速度。
再加上DDR Ram的配合,数据处理速度再次提升。
所以就本质而言,它更有能力将画面的快速动作准确再生;LCD技术由于开关速度较慢,快速移动的影像画面看起来会有些模糊不清。
在重现快速移动的图像时,LCD技术中常见的拖尾和重影现象不会在DLPTM技术中看到。
架构简单合理:微反射镜拥有很高的开关速度,使DLPTM技术只需使用一个投影面板,就能同时调变红绿蓝三种光束;相形之下,LCD技术由于速度较慢,因此必须采用三片式投影面板架构,第一片面板用来调变红光,第二片调变绿光,第三片给蓝光使用。
单片面板架构有多项优点:首先,单面板架构只需一套简单轻巧的光学系统,使它能发展出体积重量都小于三片式面板系统的投影机和显示器。
更锐利的对比度:简单轻巧的光学系统为DLPTM技术带来另一项优势:投影机或大屏幕电视内的光线管理要比三片面板架构更简单,这能为它带来更高的对比度。
高对比度可以提供更丰富的画面细节,使画面更逼真,黑颜色会显得更黑,并让画面看起来更清晰锐利(人体视觉器官依赖对比度来分辨物体的边缘,因此高对比度影像看起来更锐利。
),采用DLPTM投影技术的投影机很容易就能达到2000:1以上的对比度。
目前,大多数 DLPTM投影机的对比度为600:1 到800:1的之间,低价位的也可达450:1,而LCD投影机对比度只在400:1附近,而低价位的只有250:1。
反射技术提高亮度利用:与传统的模拟投影机相比,DLPTM投影机将更多的光线打到屏幕上,这样,图像的演示效果在光亮中同在黑暗中一样好。
DLP技术有效的解决了这个问题。
DMD的强反射表面通过消除光路上的障碍以及将更多的光线反射到屏幕上,而最大化地利用了投影机的光源。
相比较的是,采用透射原理的LCD技术则是偏振光在图像到达屏幕之前必须通过大量的附加光学元件。
更为有利的是,基于DLPTM技术的投影机的亮度是随着分辨率的增加而增加的。
在如XGA和SXGA等更高分辨率的情况下,DMD提供更多的反射面积,如此一来就可以更为有效地利用灯光的亮度。
聚焦更加出色:根据定义,单片面板系统绝不会失焦,但采用三片面板的LCD系统却可能受到环境因素的影响而失焦,使得屏幕画面看起来有些模糊。
单片面板系统所提供的画面却能永远保持清晰锐利。
无缝图像消除颗粒感:观众对于影像画质的好坏还会受到另外一项因素影响,就是它看起来「与电影相似」的程度,在观看动态视讯时更是如此。
在DLPTM投影技术中,微反射镜的反射面积远大于它们之间的距离,因此它能提供很高的「填满率」(fill factor),投影画面看起来也更加完美自然。
另一方面,若和像素之间的距离相比,LCD技术的像素面积却没有那么大,使得画面看起来有点颗粒的感觉,这种情形就像是透过「格状玻璃」看图片一样(如图6)。
防尘提高耐力:DLPTM投影机采用了全封闭式光学引擎结构设计,进而避免了粉尘污染。