曲线拟合的最小二乘法 共21页PPT资料
- 格式:ppt
- 大小:382.00 KB
- 文档页数:21
最小二乘法(Least Squares Method,简称LSM)是一种常用的拟合曲线的方法。
它的基本思想是通过调整拟合曲线的参数使得拟合曲线与实际数据的误差的平方和最小。
过程如下:
1.定义拟合曲线的形式:根据要求拟合的曲线的类型和需要拟合的参数个数,定义拟合曲线的形式。
例如,如果要拟合一条一次函数,则可以使用y = ax + b的形式。
2.定义误差:设实际数据点的横纵坐标分别为(x1, y1)、(x2, y2)、…、(xn, yn),则对于每一个数据点,可以定义误差为真实数据点的纵坐标与拟合曲线的纵坐标之差的平方。
3.最小化误差的平方和:将所有数据点的误差平方和最小化,从而得到最优的拟合曲线。
4.求解参数:根据定义的拟合曲线形式和误差表达式,通过一定的数学方法求解出最优的拟合曲线的参数。
最小二乘法的优点是可以得到一条能够很好地描述实际数据的拟合曲线,并且可以很方便地求解拟合曲线的参数。
但是,最小二乘法也有一些缺点:对于存在异常值的数据,最小二乘法得到的拟合曲线可能不太准确。
在拟合曲线的形式不确定的情况下,最小二乘法可能得到不同的拟合曲线。
在拟合数据量较少的情况下,最小二乘法得到的拟合曲线可能不太稳定。
总的来说,最小二乘法是一种常用的拟合曲线方法,但是也要根据具体情况选择合适的拟合方法。
一、曲线拟合是什么?曲线拟合也就是求一条曲线,使数据点均在离此曲线的上方或下方不远处, 它既能反映数据的总体分布,又不至于出现局部较大的波动, 能反映被逼近函数的特性,使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到最小。
设函数y=f(x)在m个互异点的观测数据为求一个简单的近似函数φ(x),使之“最好”地逼近f(x),而不必满足插值原则。
这时没必要取φ(xi) = yi, 而要使i=φ(xi)yi 总体上尽可能地小。
这种构造近似函数的方法称为曲线拟合,称函数y=φ(x)为经验公式或拟合曲线。
如下为一个曲线拟合示意图。
清楚什么是曲线拟合之后,我们还需要了解一个概念——残差。
曲线拟合不要求近似曲线严格过所有的数据点,但使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到总体上尽可能地小。
若令(1-1)则为残向量(残差)。
“使(1-1)尽可能地小”有不同的准则(1)残差最大值最小(2)残差绝对值和最小(绝对值的计算比较麻烦)(3)残差平方和最小(即最小二乘原则。
计算比较方便,对异常值非常敏感,并且得到的估计量具有优良特性。
)二、最小二乘法是什么?个人粗俗理解:按照最小二乘原则选取拟合曲线的方法,称为最小二乘法。
百度百科:最小二乘法(又称最小平方法)是一种数学优化技术。
它通过最小化误差的平方和寻找数据的最佳函数匹配。
利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法还可用于曲线拟合。
其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
三、求解最小二乘法(包含数学推导过程)我们以最简单的线性模型来解释最小二乘法。
什么是线性模型呢?监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。
回归分析中,n个自变量,且因变量和自变量之间是线性关系,则称为一/多元线性回归分析。
最小二乘法曲线拟合原理最小二乘法曲线拟合原理是指用曲线来拟合已知数据点的一种优化算法,也叫“误差最小化法”,更多的称之为“最小二乘法”,简称LSM。
最小二乘法曲线拟合的应用范围很广,拟合分析复杂数据的应用越来越多。
最小二乘法曲线拟合的原理最小二乘曲线拟合的基本原理是构造一个最适合拟合给定数据点的函数,使拟合后函数拟合数据点和真实数据点之间的均方误差(SSE)最小。
均方误差是指观测值和拟合函数值之间的差的平方(SSE = SΣ(Yi - Xk)^2)。
均方误差最小,表明拟合函数就是最适合拟合数据的函数,而最小二乘法的基本思想就是求均方误差最小,即求解最优解的函数,这个函数就是最合适拟合给定数据点的曲线函数,即最小二乘法曲线拟合函数。
最小二乘法曲线拟合的应用最小二乘法曲线拟合最常见的应用是拟合曲线,以解决未知函数形式的问题。
拟合曲线可以使用曲线来估计一组数据,曲线拟合可以使得模型更准确地拟合数据,并且可以获得该曲线的未知参数。
如果数据不符合一个函数,可以使用自定义函数进行拟合,比如指数函数、sin函数、双曲线等。
最小二乘法也可以用于拟合回归模型,这是一种统计学中常用的方法,它可以用来推断大量随机变量的变化趋势,或者用来分析一个可能受其他变量影响的变量之间的关系。
最小二乘法也可以用于数值估计,比如最小二乘法用于数值拟合,用于数值拟合可以求出未知函数的参数,用于回归分析中,可以估计因变量受自变量影响的参数。
最小二乘法曲线拟合的缺点最小二乘法曲线拟合的最大缺点是其依赖性强:由于拟合的曲线函数有固定形式,因此无法拟合数据点的异常值,也无法拟合数据不具有规律性的情况;另外,最小二乘法曲线拟合也可能因过拟合导致拟合出的函数复杂度较高,从而影响精度。
总结最小二乘法曲线拟合原理指用曲线来拟合已知数据点的一种优化算法,它的基本原理是构造一个最适合拟合给定数据点的函数,使拟合后函数拟合数据点和真实数据点之间的均方误差最小。
曲线拟合--最小二乘法1:已知平面上四个点:(0,1)、(1,2.1)、(2,2.9)和(3,3.2),求出一条直线拟合这四个点,使得偏差平方和变为极小。
解:设直线方程为:0 1 0 01 2.1 1 2.12 2.9 4 5.83 3.2 9 9.6Sum=6 Sum=9.2 Sum=14 Sum=17.5 代入正规方程:,编程求解上方程组:>> eq1='14*A+6*B=17.5';>>eq2='6*A+4*B=9.2';>> [A,B]=solve(eq1,eq2,'A,B');>> disp(A)0.74>> disp(B)1.19所以直线方程为:2:已知数据如下表所示1 2 4 610 5 2 1试求(1)用抛物线拟合这些数据使得偏差平方和最小;(2)用型如的函数来拟合这些数据使得偏差平方和最小。
(3)比较这两种拟合结果。
解:(1)设抛物线方程为:1 10 1 1 1 10 102 5 4 8 16 10 20 4 2 16 64 256 8 326 1 36 216 1296 6 36 Sum=13 Sum=18 Sum=57 Sum=289 Sum=1569 Sum=34 Sum=98代入正规方程:得到系数A,B,C的方程组:编程求解上方程组:>>eq1='1569*A+289*B+57*C=98';>>eq2='289*A+57*B+13*C=34';>>eq3='57*A+13*B+4*C=18';>> [A,B,C]=solve(eq1,eq2,eq3,'A,B,C');>> disp(A); disp(B); disp(C)102/199-1048/1992848/199>> A=102/199; disp(A) 0.5126>> B=-1048/199; disp(B) -5.2663>> C=2848/199; disp(C) 14.3116所以得到抛物线的方程为:(2)设函数1 10 1 1 102 5 1/2 1/4 5/24 2 1/4 1/16 1/26 1 1/6 1/36 1/6Sum=13 Sum=18 Sum=23/12 Sum=193/144 Sum=79/6 得到系数A,B的方程组:编程求解上方程组:>> eq1='4*A+23*B/12=18';>>eq2='23*A/12+193*B/144=79/6';>> [A,B]=solve(eq1,eq2,'A,B');>> disp(A); disp(B)-160/243872/81>> A=-160/243; disp(A)-0.6584>> B=827/81; disp(B)10.2099所以得到的函数为:(3)比较(1)和(2)两种方法拟合的方程:编程画出抛物线的图像为:>> x=-2:0.1:12;>> y=0.5126*x.^2-5.2663*x+14.3116;plot(x,y);grid on(a)再编程画出的图像为:>> x=-2:0.1:12;>> y=-0.6584+10.2099*(x.^(-1));>> plot(x,y);grid on>> x=-1:0.01:1;>> y=-0.6584+10.2099*(x.^(-1));plot(x,y);grid on(b)比较两图像可知,图像(b)在点(0,0)处不连续。